g CakePHP

CakePHP Book
Release 3.10

Cake Software Foundation

Aug 12, 2024

Contents

1 CakePHP at a Glance
Conventions Over Configurationot v ittt e e e e e e e

The Model Layer .
The View Layer . .
The Controller Layer

CakePHP Request Cycle o o 0 e e e e e e e e

Just the Start
Additional Reading

2 Quick Start Guide

Content Management Tutorial oL e e
CMS Tutorial - Creating the Database it e e e e e e e
CMS Tutorial - Creating the Articles Controller

3 3.x Migration Guide
300 Migration Guide L e e e e e e e e e e e e e e e

3.9 Migration Guide
3.8 Migration Guide
3.7 Migration Guide
3.6 Migration Guide
3.5 Migration Guide
3.4 Migration Guide
3.3 Migration Guide
3.2 Migration Guide
3.1 Migration Guide
3.0 Migration Guide

4 Tutorials & Examples
Content Management Tutorial oL L e e e e e
CMS Tutorial - Creating the Database 0 it e e e e e e e
CMS Tutorial - Creating the Articles Controller
CMS Tutorial - Tagsand Users o o it s e e
CMS Tutorial - Authentication e

Bookmarker Tutorial

N W WK N —

27
27
28
31
33
38
45
51
61
64
68
72

107
107
109
112
121
129
135

10

Bookmarker Tutorial Part 2 L.
Blog Tutorial e e e e e e e e e e e e e e e e e e e
Blog Tutorial - Part 2 e e e e
Blog Tutorial - Part 3
Blog Tutorial - Authentication and Authorization

Contributing
Documentation e e e e e e e e e e e e e

Coding Standards L e e e e e e e e e e e e e e e
Backwards Compatibility Guide

Installation

Installing CakePHP e e e e e e e
Permissions oL e e e e e
Development Server L L e e e e e e e e e e e e e
Productiono e e e e e e
Fire It Up . . . o e e e e
URL Rewriting e e e e e e e e e e e e e e e e e e e

Configuration

Configuring your Application o e e e e e e e e e e e
Environment Variables L
Additional Class Paths e
Inflection Configuration L
Configure Class e e e e e
Reading and writing configuration files L
Bootstrapping CakePHP e e e
Disabling Generic Tables o e e e e e e e e e e

Routing

Quick Tour e e e e e e
Connecting RoUtes o . e e e e e e e e e e
Connecting Scoped Middleware
RESTful Routing e e
Passed Arguments oL e e e e e e e e
Generating URLS o o e e e e e e e e e e
Redirect Routing e e e e e e e
Entity Routing e e e e e e e e
Custom Route Classes o i i i e e e e e e e e e e e e e
Creating Persistent URL Parameters o e
Handling Named Parameters in URLS e et

Request & Response Objects

Request o e e e e
Response e e e e e e e
Setting CooKieS o i e e e e e e e e e e e e e
Setting Cross Origin Request Headers (CORS)
Common Mistakes with Immutable Responses
Cookie Collections i i e e e e

Controllers
The App Controller i e e e e e e e e e e e e
Request Flow L o e

181
181
189
190
192
204

207
208
210
210
211
212
212

217
217
218
221
222
222
225
227
228

229
229
231
245
246
250
251
252
252
253
255
256

261
261
272
279
280
280
281

11

12

13

14

15

16

Controller ACHONS o i e e e e e e e
Interacting with VIeWs o L L e e e e e e e e e e
Redirecting to Other Pages e
Loading Additional Models L
Paginating a Model L e e e e e e e
Configuring Components to Load e
Configuring Helpers to Load o e e e e e e e
Request Life-cycle Callbacks o . . o o e e e e e e e
More on Controllers e e e e e

Views

The App View o o o e e e e e e e e e e e
View Templates o e e e
Using View Blocks o o L o e e e e
Layouts o e e e e e
Elements o o e e
View Bvents oo e
Creating Your Own View Classes o i it ettt e
More AbOUt VIEWS o o o e e e e e e e e e e e e e e e e e e

Database Access & ORM
Quick Example oL e e e e e e
More Information L L e e e e e e e e e e e

Caching

Configuring Cache Engines e
WritingtoaCache e e e e e
Reading FromaCache e
Deleting Froma Cache e e e e e e e e e e
Clearing Cached Data o e e e e e e e e
Using Cache to Store Counters it ittt et e e
Using Cache to Store Common Query Results o
Using Groups o o v v e
Globally Enable or Disable Cache i e e e e e e
Creating a Cache Engine o i i e e e e e e

Bake Console

Console Tools, Shells & Tasks

The CakePHP Console e e e e e e e e
Console Applications o . i i e e e e e e e e e e e e e e e e e e e
Renaming Commands o L e e e e e e e e e e e e e e e e e
Commands L e

Debugging

Basic Debugging e
Using the Debugger Class o o i e e e e e e e e e e e
Outputting Values o o e e e e
Logging With Stack Traces o o i et e e e e e e e e e e e e
Generating Stack Traces L L L e e e e e e e e e
Getting an Excerpt From aFile
Using Logging to Debug o e e e e e
Debug Kit o o e e e

292

337
337
338
341
343
346
348
349
349

461
461
463

631
632
635
636
638
638
639
639
639
640
641

643

645
645
647
648
648
672
687

689
689
690
690
691
691
691
692
692

17

18

19

20

21

22

Deployment

Moving files e e e e e e e e e e e e e e
Adjust config/lapp.php o L L e e e e e e e
Check Your Security L e e e
Set Document Root L e e e
Improve Your Application’s Performance L o
Deploying anupdate L e e e e e e e e e e e e e e

Email

Basic Usage o L e e e e e e
Configuration o L e e e e e e e e e e e e e e e e e e
Setting Headers o e e e e e e e
Sending Templated Emails oL
Sending Attachments L e e e e e e e e
Using Transports o o o e e e e e e e e e e e e e e e e e e e
Sending Messages Quickly L e e e e e e e e e e
Sending Emails from CLI 0 e e e e e e e
Creating Reusable Emails 0 e
Testing Email o L e e e e e e e e

Error & Exception Handling

Error & Exception Configuration L
Changing Exception Handling o . . e
Customize Error Templates o o o oo e e e e e e
Customize the ErrorController
Change the ExceptionRenderer e e e e e e
Creating your Own Error Handler
Creating your own Application Exceptions L e
Built in Exceptions for CakePHP

Events System

Example Event Usage o L o e e e e e e e e
Accessing Event Managers Lo e e e e e e e e e e e e
Core EVents i e e
Registering Listeners e e e e e e e e e e e e e e
Dispatching Events e e
Additional Reading L e e e e e e e e

Internationalization & Localization

Setting Up Translations e
Using Translation Functions o e e e e
Creating Your Own Translators o o L e e e
Localizing Dates and Numbers o v v it e e e e e e e e e e e e e e e
Automatically Choosing the Locale Based on Request Data

Logging

Logging Configuration i i e e e e e e e e e e e e e e e e
Error and Exception Logging e e e e e e e e e
Interacting with Log Streams L
Using the FileLog Adapter o . e e e e e e e e
Logging to Syslog o L e e e e e e e
Writing to Logs o L e e e e e e e e e
Log APL . . o e e e e e e e e e e
Logging Trait e e e e e e e e
Using Monolog o o o o e e e e e e e e e e e e e

693
693
693
694
694
694
695

697
697
698
701
701
703
703
705
705
705
707

709
709
710
710
711
712
713
714
715

719
720
720
721
722
725
728

729
729
731
735
738
739

23 Modelless Forms

Creating a FOrm e e e e e e e e e e e
Setting Form Values e e e
Getting Form Values o e
Processing Request Data L e e e e e e

24

25

26

27

28

Getting Form E

) 1)

Invalidating Individual Form Fields from Controller
Creating HTML with FormHelper o

Plugins

Installing a Plugin With Composer o o i i e e e e e e e e e e e e e

Manually Instal

lingaPlugin e

Loadinga Plugin L
Plugin Hook Configuration o . e e e e e e
Using Plugin Classes o o i 0 e e e e e e e
Creating Your Own Plugins 0 0 i e e e e e e e e e e e e

Plugin Objects
Plugin Routes

Plugin Controllers e e e e e e e e e e e

Plugin Models

Plugin Templates o 0 o e e e e e e e e e e e e e e e e e e e

Plugin Assets
Components, H
Commands .

elpersand Behaviors e

Testing your Plugin L L e e e e e e e e
Publishing your Plugin e
Plugin Map File e e e e e e e e e
Manage Your Plugins using Mixer e

REST

The Simple Setup o o o e e e e e e e e e e e e e
Accepting Input in Other Formats
RESTful Routing e

Security
Security Utility

Sessions

Session Configuration L e e e e e e e e e e e e e e
Built-in Session Handlers & Configuration L oo
Setting ini direCtives L L e e e e e e e e e e e e e
Creating a Custom Session Handler
Accessing the Session Object L e e e e e e e e e e
Reading & Writing Session Data e e e e e e
Destroying the Session e
Rotating Session Identifiers oL e e e

Flash Messages

Testing

Installing PHPUnit e e e e e e e e
Test Database Setup L L e e e e e e e e e e
Checking the Test Setup o v v i v i e
Test Case Conventions ot ittt e e e e e
Creating Your First Test Case 0 o it ittt e e e e e

Running Tests

749
749
750
751
752
753
753
753

755
755
756
757
758
760
760
761
762
763
764
765
766
767
768
768
768
768
769

771
771
774
774

775
775

779
779
780
782
783
784
785
786
786
786

787
787
788
789
789
789
791

29

30

31

32

33

34

Test Case Lifecycle Callbacks o o i i e e e e e e e e e e e e 793

FIXTUIES o e e e e 793
Testing Table Classes o o 0 i i i e e e e e 800
Controller Integration Testing L e 802
Console Integration Testing 0 L o e e e e e e e 813
Testing VIEWS o o o o e e e e 813
Testing COMPONENLS v v v v v o o e e et e 813
Testing Helpers o o o o o e e e e e e e e e e 815
Testing EVENtS o o o e e e e e e e e e e e e e 816
Testing Email L L e 818
Creating Test SUites o 0 o i e e e 818
Creating Tests for Plugins 0 e e e e e e e e 819
Generating Tests with Bake 0 0 e e 820
Integration with Jenkins 820
Validation 823
Creating Validators e e e e e e e 823
Validating Data o o . e e e e e e e 832
Validating Entity Data e 833
Core Validation Rules e 833
App Class 835
Finding Classes e 835
Finding Paths to Namespaces o i i i ittt e e e 836
Locating Plugins o o e e e e e e e e e e e e e e e 836
Locating Themes o o o e e e e e e e e e e e e e e e e e e 836
Loading Vendor Files e e 836
Collections 839
Quick Example o e e e e e e e e 839
Listof Methods o e e e 840
Iterating L L e 840
Filtering o o e e e 845
AGEregation e e e e e e e e e e e e e e e e 846
SOTHNZ . . o v o e e e e e e e e e e e 850
Working with Tree Data o 0 e 851
Other Methods o L . e e e e e e e e 853
Folder & File 861
Basic Usage o o e e e e e e e e 861
Folder APL e e 862
File APL e e e 866
Hash 869
Hash Path Syntax 0. e 869
Http Client 885
Doing Requests e e e e e e e 885
Creating Multipart Requests with Files o oo 886
Sending Request Bodies L e 887
Request Method Options i e e e e e 887
Authentication L e e e e e e e e 888
Creating Scoped Clients e 890
Setting and Managing Cookies L e 890
Response ObJects o o e e e e e e e 891

vi

35

36

37

38

39

40

Changing Transport Adapters o v i i e e e e e e e e e e e e e e e e

Inflector

Summary of Inflector Methods and Their Output
Creating Plural & Singular Forms e e e e e
Creating CamelCase and under_scored Forms i i

Creating Table and Class Name Forms et i e
Creating Variable Names o L o o e e e e e e e e e
Creating URL Safe Strings o e e e
Inflection Configuration 0 e e e e e e e e e e e e

Number

Formatting Currency Values o o i e e e e e e e e e e e e e e
Setting the Default Currency 0 o i i e e e e e e e e e e e e
Formatting Floating Point Numbers
Formatting Percentages e
Interacting with Human Readable Values
Formatting Numbers L e e e
Format Differences L
Configure formatters o L e

Registry Objects

Loading Objects o v it e e e e e e e e e e e e e e e
Triggering Callbacks e
Disabling Callbacks e

Text

Convert Strings into ASCIL 0 e
Creating URL Safe Strings 0 o o e e e e e e
Generating UUIDs L . o o e e e e e
Simple String Parsing e e e e e e e e e e
Formatting Strings o o . e e e e e e e e e e e e e e e e e
Wrapping Text o e e e e e e e e e e e
Highlighting Substrings e
Removing Links o L e e e e e e
Truncating TeXt e e e e e e e e e e e e e e
Truncating the Tail of a String o e e e e e e e e e
Extracting an EXCerpt L e e e e e e e e e e
Converting an Array to Sentence Form L oo

Date & Time

Creating Time Instances o e e e
Manipulation e e e
Formatting o e e e e e e e e
CONVETSION v v o e e e e e e e e e e e e e e e e e e e
Comparing With the Present 0 e e e e e e e
Comparing With Intervals 0 e e e e e e e e e
Dates L e e e
Immutable Dates and Times o e e e e e e e e e
Accepting Localized Request Data L e
Supported TIMEZONes o v v i i e

Xml
Loading XML dOCUMENES« v v v vt e e et e et e e e e e e e e e e e e

895
895
896
897
897
897
898
898
898

899
900
901
901
901
902
902
904
904

907
907
908
908

909
910
910
911
911
911
912
913
913
913
914
915
916

917
918
919
919
922
923
923
924
924
925
925

927
927

vii

Loading HTML dOCUMENES v v i i e
Transforming a XML String in Array o ot 0 o e e e e e e e
Transforming an Array into a Stringof XML L oo

41 Constants & Functions
Global Functions e e e e e e e e
Core Definition Constants 0 e e e e e e e e e e e e e e e
Timing Definition Constants 0 o o e e e e e e e e e e e

42 Chronos

43 Debug Kit
44 Migrations
45 ElasticSearch

46 Appendices
3x Migration Guide L e e e e e e e e e e e
Forwards Compatibility Shimming
General Information L e

PHP Namespace Index

Index

931
931
933
934

935

937

939

941

943
943
943
943

947

949

viii

CHAPTER 1

CakePHP at a Glance

CakePHP is designed to make common web-development tasks simple, and easy. By providing an all-in-one toolbox
to get you started the various parts of CakePHP work well together or separately.

The goal of this overview is to introduce the general concepts in CakePHP, and give you a quick overview of how those
concepts are implemented in CakePHP. If you are itching to get started on a project, you can start with the tutorial, or
dive into the docs.

Conventions Over Configuration

CakePHP provides a basic organizational structure that covers class names, filenames, database table names, and other
conventions. While the conventions take some time to learn, by following the conventions CakePHP provides you
can avoid needless configuration and make a uniform application structure that makes working with various projects
simple. The conventions chapter covers the various conventions that CakePHP uses.

The Model Layer

The Model layer represents the part of your application that implements the business logic. It is responsible for re-
trieving data and converting it into the primary meaningful concepts in your application. This includes processing,
validating, associating or other tasks related to handling data.

In the case of a social network, the Model layer would take care of tasks such as saving the user data, saving friends’
associations, storing and retrieving user photos, finding suggestions for new friends, etc. The model objects can be
thought of as “Friend”, “User”, “Comment”, or “Photo”. If we wanted to load some data from our users table we
could do:

use Cake\ORM\TableRegistry;

(continues on next page)

CakePHP Book, Release 3.10

(continued from previous page)

// Prior to 3.6 use TableRegistry::get(Users')
$users = TableRegistry::getTableLocator()->get('Users');
$query = $users->find(Q);
foreach ($query as $row) {
echo $row->username;

}

You may notice that we didn’t have to write any code before we could start working with our data. By using conventions,
CakePHP will use standard classes for table and entity classes that have not yet been defined.

If we wanted to make a new user and save it (with validation) we would do something like:

use Cake\ORM\TableRegistry;

// Prior to 3.6 use TableRegistry::get('Users')

$users = TableRegistry::getTableLocator()->get('Users');
$user = $users->newEntity(['email' => 'mark@example.com']);
$users->save($user);

The View Layer

The View layer renders a presentation of modeled data. Being separate from the Model objects, it is responsible for
using the information it has available to produce any presentational interface your application might need.

For example, the view could use model data to render an HTML view template containing it, or a XML formatted result
for others to consume:

// In a view template file, we'll render an 'element' for each user.
<?php foreach ($users as $user): 7>
<1i class="user">
<?= $this->element('user_info', ['user' => S$user]) ?>
</1li>
<?php endforeach; 7>

The View layer provides a number of extension points like View Templates, Elements and View Cells to let you re-use
your presentation logic.

The View layer is not only limited to HTML or text representation of the data. It can be used to deliver common data
formats like JSON, XML, and through a pluggable architecture any other format you may need, such as CSV.

The Controller Layer

The Controller layer handles requests from users. It is responsible for rendering a response with the aid of both the
Model and the View layers.

A controller can be seen as a manager that ensures that all resources needed for completing a task are delegated to the
correct workers. It waits for petitions from clients, checks their validity according to authentication or authorization
rules, delegates data fetching or processing to the model, selects the type of presentational data that the clients are
accepting, and finally delegates the rendering process to the View layer. An example of a user registration controller
would be:

2 Chapter 1. CakePHP at a Glance

CakePHP Book, Release 3.10

public function add(Q)

{
$user = $this->Users->newEntity();
if ($this->request->is('post')) {
$user = $this->Users->patchEntity($user, $this->request->getData());
if ($this->Users->save($user, ['validate' => 'registration'])) {
$this->Flash->success(__('You are now registered.'));
} else {
$this->Flash->error(__('There were some problems.'));
}
}
$this->set('user', $user);
}

You may notice that we never explicitly rendered a view. CakePHP’s conventions will take care of selecting the right
view and rendering it with the view data we prepared with set ().

CakePHP Request Cycle

Now that you are familiar with the different layers in CakePHP, lets review how a request cycle works in CakePHP:

The typical CakePHP request cycle starts with a user requesting a page or resource in your application. At a high level
each request goes through the following steps:

1. The webserver rewrite rules direct the request to webroot/index.php.
2. Your Application is loaded and bound to an HttpServer.

3. Your application’s middleware is initialized.
4

. A request and response is dispatched through the PSR-7 Middleware that your application uses. Typically this
includes error trapping and routing.

e

If no response is returned from the middleware and the request contains routing information, a controller & action
are selected.

The controller’s action is called and the controller interacts with the required Models and Components.
The controller delegates response creation to the View to generate the output resulting from the model data.

The view uses Helpers and Cells to generate the response body and headers.

© ® =2

The response is sent back out through the /controllers/middleware.

10. The HttpServer emits the response to the webserver.

Just the Start

Hopefully this quick overview has piqued your interest. Some other great features in CakePHP are:
* A caching framework that integrates with Memcached, Redis and other backends.
* Powerful code generation tools so you can start immediately.
e Integrated testing framework so you can ensure your code works perfectly.

The next obvious steps are to download CakePHP, read the tutorial and build something awesome.

CakePHP Request Cycle 3

CakePHP Book, Release 3.10

index.php autoloader

!

- u

Load Application &
bind to HittpServer

N "

“ T

[Middleware] { Middleware]

L
o o

Hesponse

T Helper

-

View

4 Chapter 1. CakePHP at a Glance

CakePHP Book, Release 3.10

Additional Reading

Where to Get Help
The Official CakePHP website

https://cakephp.org

The Official CakePHP website is always a great place to visit. It features links to oft-used developer tools, screencasts,
donation opportunities, and downloads.

The Cookbook

https://book.cakephp.org

This manual should probably be the first place you go to get answers. As with many other open source projects, we
get new folks regularly. Try your best to answer your questions on your own first. Answers may come slower, but will
remain longer — and you’ll also be lightening our support load. Both the manual and the API have an online component.

The Bakery

https://bakery.cakephp.org

The CakePHP Bakery is a clearing house for all things regarding CakePHP. Check it out for tutorials, case studies, and
code examples. Once you’re acquainted with CakePHP, log on and share your knowledge with the community and gain
instant fame and fortune.

The API

https://api.cakephp.org/

Straight to the point and straight from the core developers, the CakePHP API (Application Programming Interface) is
the most comprehensive documentation around for all the nitty gritty details of the internal workings of the framework.
It’s a straight forward code reference, so bring your propeller hat.

The Test Cases

If you ever feel the information provided in the API is not sufficient, check out the code of the test cases provided with
CakePHP. They can serve as practical examples for function and data member usage for a class.

tests/TestCase/

Additional Reading 5

https://cakephp.org
https://book.cakephp.org
https://bakery.cakephp.org
https://api.cakephp.org/

CakePHP Book, Release 3.10

The IRC Channel

IRC Channels on irc.freenode.net:
* #cakephp — General Discussion
e #cakephp-docs — Documentation
* #cakephp-bakery — Bakery
* #cakephp-fr — French Canal.

If you're stumped, give us a holler in the CakePHP IRC channel. Someone from the development team* is usually
there, especially during the daylight hours for North and South America users. We’d love to hear from you, whether
you need some help, want to find users in your area, or would like to donate your brand new sports car.

Official CakePHP Forum

CakePHP Official Forum®

Our official forum where you can ask for help, suggest ideas and have a talk about CakePHP. It’s a perfect place for
quickly finding answers and help others. Join the CakePHP family by signing up.

Stackoverflow

https://stackoverflow.com/®

Tag your questions with cakephp and the specific version you are using to enable existing users of stackoverflow to
find your questions.

Where to get Help in your Language

Danish

* Danish CakePHP Slack Channel’

French

* French CakePHP Community®

4 https://github.com/cakephp?tab=members

5 https://discourse.cakephp.org

6 https:/stackoverflow.com/questions/tagged/cakephp/
7 https://cakesf.slack.com/messages/denmark/

8 https://cakephp-fr.org

6 Chapter 1. CakePHP at a Glance

irc://irc.freenode.net/cakephp
irc://irc.freenode.net/cakephp-docs
irc://irc.freenode.net/cakephp-bakery
irc://irc.freenode.net/cakephp-fr
https://github.com/cakephp?tab=members
https://discourse.cakephp.org
https://stackoverflow.com/questions/tagged/cakephp/
https://cakesf.slack.com/messages/denmark/
https://cakephp-fr.org

CakePHP Book, Release 3.10

German

o German CakePHP Slack Channel’
+ German CakePHP Facebook Group '’

Iranian

« Iranian CakePHP Community''

Dutch

 Dutch CakePHP Slack Channel'?

Japanese

« Japanese CakePHP Slack Channel'?

« Japanese CakePHP Facebook Group'*

Portuguese
* Portuguese CakePHP Google Group'”
Spanish

« Spanish CakePHP Slack Channel'®
* Spanish CakePHP IRC Channel
* Spanish CakePHP Google Group'’

CakePHP Conventions

We are big fans of convention over configuration. While it takes a bit of time to learn CakePHP’s conventions, you
save time in the long run. By following conventions, you get free functionality, and you liberate yourself from the
maintenance nightmare of tracking config files. Conventions also make for a very uniform development experience,

allowing other developers to jump in and help.

9 https://cakesf.slack.com/messages/german/

10 hitps://www.facebook.com/groups/ 146324018754907/

T https://cakephp.ir
12 https://cakesf.slack.com/messages/netherlands/
13 https://cakesf.slack.com/messages/japanese/

14 https://www.facebook.com/groups/304490963004377/

15 hitps://groups.google.com/group/cakephp-pt
16 https://cakesf.slack.com/messages/spanish/
17 https://groups.google.com/group/cakephp-esp

Additional Reading

https://cakesf.slack.com/messages/german/
https://www.facebook.com/groups/146324018754907/
https://cakephp.ir
https://cakesf.slack.com/messages/netherlands/
https://cakesf.slack.com/messages/japanese/
https://www.facebook.com/groups/304490963004377/
https://groups.google.com/group/cakephp-pt
https://cakesf.slack.com/messages/spanish/
irc://irc.freenode.net/cakephp-es
https://groups.google.com/group/cakephp-esp

CakePHP Book, Release 3.10

Controller Conventions
Controller class names are plural, PascalCased, and end in Controller. UsersController and
ArticleCategoriesController are both examples of conventional controller names.

Public methods on Controllers are often exposed as ‘actions’ accessible through a web browser. For example the /
users/view maps to the view() method of the UsersController out of the box. Protected or private methods
cannot be accessed with routing.

URL Considerations for Controller Names

As you’ve just seen, single word controllers map to a simple lower case URL path. For example, UsersController
(which would be defined in the file name UsersController.php) is accessed from http://example.com/users.

While you can route multiple word controllers in any way you like, the convention is that your URLs are lowercase and
dashed using the DashedRoute class, therefore /article-categories/view-all is the correct form to access the
ArticleCategoriesController::viewAll () action.

When you create links using this->Html->1ink (), you can use the following conventions for the url array:

$this->Html->link('link-title', [
'prefix' => 'MyPrefix' // PascalCased
'plugin' => 'MyPlugin', // PascalCased
'controller' => 'ControllerName', // PascalCased
'action' => 'actionName' // camelBacked

]

For more information on CakePHP URLs and parameter handling, see Connecting Routes.

File and Class Name Conventions
In general, filenames match the class names, and follow the PSR-4 standard for autoloading. The following are some
examples of class names and their filenames:

e The Controller class LatestArticlesController would be found in a file named LatestArticlesCon-
troller.php

* The Component class MyHandyComponent would be found in a file named MyHandyComponent.php
* The Table class OptionValuesTable would be found in a file named OptionValuesTable.php.
¢ The Entity class OptionValue would be found in a file named OptionValue.php.

¢ The Behavior class EspeciallyFunkableBehavior would be found in a file named EspeciallyFunkableBe-
havior.php

* The View class SuperSimpleView would be found in a file named SuperSimpleView.php
» The Helper class BestEverHelper would be found in a file named BestEverHelper.php

Each file would be located in the appropriate folder/namespace in your app folder.

8 Chapter 1. CakePHP at a Glance

CakePHP Book, Release 3.10

Database Conventions

Table names corresponding to CakePHP models are plural and underscored. For example users,
article_categories, and user_favorite_pages respectively.

Field/Column names with two or more words are underscored: first_name.

Foreign keys in hasMany, belongsTo/hasOne relationships are recognized by default as the (singular) name of the related
table followed by _id. So if Users hasMany Articles, the articles table will refer to the users table via a user_id
foreign key. For a table like article_categories whose name contains multiple words, the foreign key would be
article_category_id.

Join tables, used in BelongsToMany relationships between models, should be named after the model tables they will
join or the bake command won’t work, arranged in alphabetical order (articles_tags rather than tags_articles).
If you need to add additional columns on the junction table you should create a separate entity/table class for that table.

In addition to using an auto-incrementing integer as primary keys, you can also use UUID columns. CakePHP will
create UUID values automatically using (Cake\Utility\Text: :uuid()) whenever you save new records using the
Table: :save() method.

Model Conventions

Table class names are plural, PascalCased and end in Table. UsersTable, ArticleCategoriesTable, and
UserFavoritePagesTable are all examples of table class names matching the users, article_categories and
user_favorite_pages tables respectively.

Entity class names are singular PascalCased and have no suffix. User, ArticleCategory, and UserFavoritePage
are all examples of entity names matching the users, article_categories and user_favorite_pages tables
respectively.

View Conventions

View template files are named after the controller functions they display, in an underscored form. The viewAll()
function of the ArticlesController class will look for a view template in src/Template/Articles/view_all.ctp.

The basic pattern is src/Template/Controller/underscored_function_name.ctp.

Note: By default CakePHP uses English inflections. If you have database tables/columns that use another language,
you will need to add inflection rules (from singular to plural and vice-versa). You can use Cake\Utility\Inflector
to define your custom inflection rules. See the documentation about /nflector for more information.

Plugins Conventions
It is useful to prefix a CakePHP plugin with “cakephp-" in the package name. This makes the name semantically related
on the framework it depends on.

Do not use the CakePHP namespace (cakephp) as vendor name as this is reserved to CakePHP owned plugins. The
convention is to use lowercase letters and dashes as separator:

// Bad
cakephp/foo-bar

// Good
your-name/cakephp-foo-bar

Additional Reading 9

CakePHP Book, Release 3.10

Summarized
By naming the pieces of your application using CakePHP conventions, you gain functionality without the hassle and
maintenance tethers of configuration. Here’s a final example that ties the conventions together:

» Database table: “articles”

* Table class: ArticlesTable, found at src/Model/Table/ArticlesTable.php

* Entity class: Article, found at src/Model/Entity/Article.php

 Controller class: ArticlesController, found at src/Controller/ArticlesController.php

* View template, found at sre/Template/Articles/index.ctp

Using these conventions, CakePHP knows that a request to http://example.com/articles maps to a call on the
index () function of the ArticlesController, where the Articles model is automatically available (and automatically
tied to the ‘articles’ table in the database), and renders to a file. None of these relationships have been configured by
any means other than by creating classes and files that you’d need to create anyway.

Now that you’ve been introduced to CakePHP’s fundamentals, you might try a run through the Content Management
Tutorial to see how things fit together.

See awesome list recommendations'® for details.

CakePHP Folder Structure

After you’ve downloaded the CakePHP application skeleton, there are a few top level folders you should see:
* The bin folder holds the Cake console executables.

* The config folder holds the Configuration files CakePHP uses. Database connection details, bootstrapping, core
configuration files and more should be stored here.

* The plugins folder is where the Plugins your application uses are stored.

* The logs folder normally contains your log files, depending on your log configuration.
* The src folder will be where your application’s source files will be placed.

* The fests folder will be where you put the test cases for your application.

* The tmp folder is where CakePHP stores temporary data. The actual data it stores depends on how you have
CakePHP configured, but this folder is usually used to store translation messages, model descriptions and some-
times session information.

* The vendor folder is where CakePHP and other application dependencies will be installed by Composer'”. Edit-
ing these files is not advised, as Composer will overwrite your changes next time you update.

» The webroot directory is the public document root of your application. It contains all the files you want to be
publicly reachable.

Make sure that the tmp and logs folders exist and are writable, otherwise the performance of your application
will be severely impacted. In debug mode, CakePHP will warn you, if these directories are not writable.

18 https://github.com/FriendsOfCake/awesome-cakephp/blob/master/CONTRIBUTING.md#tips- for-creating-cakephp-plugins
19 https://getcomposer.org

10 Chapter 1. CakePHP at a Glance

https://github.com/FriendsOfCake/awesome-cakephp/blob/master/CONTRIBUTING.md#tips-for-creating-cakephp-plugins
https://getcomposer.org

CakePHP Book, Release 3.10

The src Folder

CakePHP’s src folder is where you will do most of your application development. Let’s look a little closer at the folders
inside src.

Command
Contains your application’s console commands. See Console Commands to learn more.

Console
Contains the installation script executed by Composer.

Controller
Contains your application’s Controllers and their components.

Locale
Stores language files for internationalization.

Middleware
Stores any /controllers/middleware for your application.

Model
Contains your application’s tables, entities and behaviors.

Shell
Contains shell tasks for your application. For more information see Console Tools, Shells & Tasks.

Template

Presentational files are placed here: elements, error pages, layouts, and view template files.
View

Presentational classes are placed here: views, cells, helpers.

Note: The folders Command and Locale are not there by default. You can add them when you need them.

Additional Reading 11

CakePHP Book, Release 3.10

12 Chapter 1. CakePHP at a Glance

CHAPTER 2

Quick Start Guide

The best way to experience and learn CakePHP is to sit down and build something. To start off we’ll build a simple
Content Management application.

Content Management Tutorial

This tutorial will walk you through the creation of a simple CMS (Content Management System) application. To start
with, we’ll be installing CakePHP, creating our database, and building simple article management.

Here’s what you’ll need:

1. A database server. We’re going to be using MySQL server in this tutorial. You’ll need to know enough about
SQL in order to create a database, and run SQL snippets from the tutorial. CakePHP will handle building all the
queries your application needs. Since we’re using MySQL, also make sure that you have pdo_mysql enabled in
PHP.

2. Basic PHP knowledge.

Before starting you should make sure that you have got an up to date PHP version:
php -v

You should at least have got installed PHP 5.6 (CLI) or higher. Your webserver’s PHP version must also be of 5.6 or
higher, and should be the same version your command line interface (CLI) PHP is.

13

CakePHP Book, Release 3.10

Getting CakePHP

The easiest way to install CakePHP is to use Composer. Composer is a simple way of installing CakePHP from your
terminal or command line prompt. First, you’ll need to download and install Composer if you haven’t done so already.
If you have cURL installed, it’s as easy as running the following:

curl -s https://getcomposer.org/installer | php

Or, you can download composer . phar from the Composer website”’.

Then simply type the following line in your terminal from your installation directory to install the CakePHP application
skeleton in the ems directory of the current working directory:

php composer.phar create-project --prefer-dist cakephp/app:"+3.10" cms

If you downloaded and ran the Composer Windows Installer’!, then type the following line in your terminal from your
installation directory (ie. C:\wamp\www\dev\cakephp3):

composer self-update && composer create-project --prefer-dist cakephp/app:"+3.10" cms

The advantage to using Composer is that it will automatically complete some important set up tasks, such as setting
the correct file permissions and creating your config/app.php file for you.

There are other ways to install CakePHP. If you cannot or don’t want to use Composer, check out the /nstallation section.

Regardless of how you downloaded and installed CakePHP, once your set up is completed, your directory setup should
look something like the following:

/cms
/bin
/config
/logs
/plugins
/src
/tests
/tmp
/vendor
/webroot
.editorconfig
.gitignore
.htaccess
.travis.yml
composer. json
index.php
phpunit.xml.dist
README . md

Now might be a good time to learn a bit about how CakePHP’s directory structure works: check out the CakePHP
Folder Structure section.

If you get lost during this tutorial, you can see the finished result on GitHub??,

20 https://getcomposer.org/download/
21 https://getcomposer.org/Composer-Setup.exe
22 https://github.com/cakephp/cms-tutorial

14 Chapter 2. Quick Start Guide

https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
https://github.com/cakephp/cms-tutorial

CakePHP Book, Release 3.10

Checking our Installation

We can quickly check that our installation is correct, by checking the default home page. Before you can do that, you’ll
need to start the development server:

cd /path/to/our/app

bin/cake server

Note: For Windows, the command needs to be bin\cake server (note the backslash).

This will start PHP’s built-in webserver on port 8765. Open up http://localhost:8765 in your web browser to see
the welcome page. All the bullet points should be green chef hats other than CakePHP being able to connect to your
database. If not, you may need to install additional PHP extensions, or set directory permissions.

Next, we will build our Database and create our first model.

CMS Tutorial - Creating the Database

Now that we have CakePHP installed, let’s set up the database for our CMS application. If you haven’t already done
S0, create an empty database for use in this tutorial, with a name of your choice, e.g. cake_cms. You can execute the
following SQL to create the necessary tables:

USE cake_cms;

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created DATETIME,
modified DATETIME

);

CREATE TABLE articles (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created DATETIME,
modified DATETIME,
UNIQUE KEY (slug),
FOREIGN KEY user_key (user_id) REFERENCES users(id)
) CHARSET=utf8mb4;

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(191),
created DATETIME,
modified DATETIME,

(continues on next page)

CMS Tutorial - Creating the Database 15

CakePHP Book, Release 3.10

(continued from previous page)

UNIQUE KEY (title)
) CHARSET=utf8mb4;

CREATE TABLE articles_tags (

article_id INT NOT NULL,

tag_id INT NOT NULL,

PRIMARY KEY (article_id, tag_id),

FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),

FOREIGN KEY article_key(article_id) REFERENCES articles(id)
);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOWQ));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, '"First Post', 'first-post', 'This is the first post.', 1, now(), now());

You may have noticed that the articles_tags table used a composite primary key. CakePHP supports composite
primary keys almost everywhere allowing you to have simpler schemas that don’t require additional id columns.

The table and column names we used were not arbitrary. By using CakePHP’s naming conventions, we can leverage
CakePHP more effectively and avoid needing to configure the framework. While CakePHP is flexible enough to accom-
modate almost any database schema, adhering to the conventions will save you time as you can leverage the convention
based defaults CakePHP provides.

Database Configuration

Next, let’s tell CakePHP where our database is and how to connect to it. Replace the values in the Datasources.
default array in your config/app_local.php file with those that apply to your setup. A sample completed configuration
array might look something like the following:

<?php
return [
// More configuration above.
'Datasources' => [
'default' => [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~',
'database' => 'cake_cms',
'encoding' => 'utf8mb4',
'timezone' => 'UTC',
'cacheMetadata' => true,

1,

// More configuration below.

16 Chapter 2. Quick Start Guide

CakePHP Book, Release 3.10

Once you’ve saved your config/app_local.php file, you should see that ‘CakePHP is able to connect to the database’
section have a green chef hat.

Note: A copy of CakePHP’s default configuration file is found in config/app.default.php.

Creating our First Model

Models are the heart of a CakePHP applications. They enable us to read and modify our data. They allow us to build
relations between our data, validate data, and apply application rules. Models build the foundations necessary to build
our controller actions and templates.

CakePHP’s models are composed of Table and Entity objects. Table objects provide access to the collection of
entities stored in a specific table. They are stored in src/Model/Table. The file we’ll be creating will be saved to
src/Model/Table/ArticlesTable.php. The completed file should look like this:

<?php

// src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table

{
public function initialize(array $config)
{
$this->addBehavior('Timestamp');
}
}

We’ve attached the Timestamp behavior which will automatically populate the created and modified columns of our
table. By naming our Table object ArticlesTable, CakePHP can use naming conventions to know that our model
uses the articles table. CakePHP also uses conventions to know that the id column is our table’s primary key.

Note: CakePHP will dynamically create a model object for you if it cannot find a corresponding file in
src/Model/Table. This also means that if you accidentally name your file wrong (i.e. articlestable.php or Arti-
cleTable.php), CakePHP will not recognize any of your settings and will use the generated model instead.

We’ll also create an Entity class for our Articles. Entities represent a single record in the database, and provide row
level behavior for our data. Our entity will be saved to src/Model/Entity/Article.php. The completed file should look
like this:

<?php
// src/Model/Entity/Article.php
namespace App\Model\Entity;

use Cake\ORM\Entity;

class Article extends Entity
{
protected $_accessible = [
'*¥!' => true,
(continues on next page)

CMS Tutorial - Creating the Database 17

CakePHP Book, Release 3.10

(continued from previous page)
'id' => false,
'slug' => false,

13

Our entity is quite slim right now, and we’ve only setup the _accessible property which controls how properties can
be modified by Mass Assignment.

We can’t do much with our models right now, so next we’ll create our first Controller and Template to allow us to
interact with our model.

CMS Tutorial - Creating the Articles Controller

With our model created, we need a controller for our articles. Controllers in CakePHP handle HTTP requests and
execute business logic contained in model methods, to prepare the response. We’ll place this new controller in a file
called ArticlesController.php inside the sre/Controller directory. Here’s what the basic controller should look like:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController
{
}

Now, let’s add an action to our controller. Actions are controller methods that have routes connected to them. For exam-
ple, when a user requests www.example.com/articles/index (which is also the same as www.example.com/articles),
CakeP