g CakePHP

CakePHP Book

Release 4.x

Cake Software Foundation

Oct 06, 2024

Contents

1 CakePHP at a Glance
Conventions Over Configurationot v ittt e e e e e e e
The Model Layer ot e e e e e e e e e e e e e e e e e e
The View Layer o e e e e e e e e e e e e
The Controller Layer e e e e
CakePHP Request Cycle o o 0 e e e e e e e e
Justthe Start L e e e e e e e e
Additional Reading e e

2 Quick Start Guide
Content Management Tutorial oL e e
CMS Tutorial - Creating the Database it e e e e e e e
CMS Tutorial - Creating the Articles Controller

3 Migration Guides
4.0 Upgrade Guide 0t i e e e e e e e e e e e e e e e e e
4.0Migration Guide e e e e e e e e e e
4.1 Migration Guide L L e e e e e e e e e e e e
42 Migration Guide L. e e e e e e e e e e
43 Migration Guide L L e e e e e e e e e
44 Migration Guide L. e e e e e e e e e e e e e e e e
4.5 Migration Guide L. e e e e e e e e e e e e e e e

4 Tutorials & Examples
Content Management Tutorial 0 L e e e e e e e e e e e
CMS Tutorial - Creating the Database 0 ittt e e e
CMS Tutorial - Creating the Articles Controller
CMS Tutorial - Tags and Users o o o i v i i e e e e e e e e e e e e e e
CMS Tutorial - Authentication e e
CMS Tutorial - Authorization e
Bookmarker Tutorial e e
Bookmarker Tutorial Part 2 oL e e e e e e
Blog Tutorial e e e e e e e e e e
Blog Tutorial - Part 2 e e e e e e e e e

N W WK N —

15

17
21

31
31
33
43
48
52
59
64

10

Blog Tutorial - Part 3 e e e e e e e e e e e e e e e
Blog Tutorial - Authentication 0 . 0 e e e e e e e e e e e

Contributing
Documentation e e e e e e e e e e e e e e e e
Tickets e e e e e e

Coding Standards L L e e e e e e e e e e e e
Backwards Compatibility Guide L e e e e

Installation

Installing CakePHP o e e
Permissions L e e e e e e e e e e
Development SEIVEr o L e
Production L L e e e e
Fire It Up . . . o o e e e e e e
URL Rewriting o o o e e e e e e e e e e e

Configuration

Configuring your Application L e
Additional Class Paths L o e e e e e
Inflection Configuration L e e e
Configure Class o v v i e e e e e e e e e e e e e e e e e e
Reading and writing configuration files L e e e
Disabling Generic Tables e e

Routing

Quick Tour e e e e e e e e e e
Connecting Routes o e e e e e e e
Route Scoped Middleware e e e e e
RESTful Routing e e
Passed ArgUmEents e
Generating URLS 0 o e e e e e e e
Generating Asset URLSs o . L e
Redirect Routing L
Entity Routing L . e e e e e
Custom Route CIasses i i e e e e e e e e e e e e e e
Creating Persistent URL Parameters i i i e e e e e e e e e e e

Request & Response Objects

Request o e e e e
Response L e e e e e e e
Setting Cross Origin Request Headers (CORS)
Common Mistakes with Immutable Responses
Cookie Collections o i i i e e e e e e e e e e e e

Controllers

The App Controller e e
Request Flow o o e e e e e
Controller ACHONS o o e e e e e e e
Interacting with VIEWS L e e e e e e e e e e e
Content Type Negotiation 0 i i e e e e e e e e e e e e e e
Content Type Negotiation Fallbacks
Using AjaxView o o o e e e e e e e e e e
Redirecting to Other Pages e e

149
149
157
158
160
173

177
178
179
180
181
181
182

189
189
193
194
194
196
199

201
201
203
216
218
221
222
225
226
226
227
229

231
231
242
250
250
251

11

12

13

14

15

16

Loading Additional Models e e e e e e e e e e e e
Paginating a Model e e e e e e e e
Configuring ComponentstoLoad
Request Life-cycle Callbacks
Controller Middleware L e e e e e e e e e
More on Controllers o o i e e e e e e e

Views

The App View o . o e e e e e e e e
View Templates o v i ot e
Extending Layouts e e e e e e e e e e e e e e e e
Using View Blocks o 0 e e e e e e
Layouts o e e
Elements e e e e e e e e
View Events o e e e e e
Creating Your Own View CIasses o v v i v v i i e
More About VIEWS o o e e e e e e e e e e

Database Access & ORM
Quick Example e e e e e e e e e e
More Information L e e e e e e e e e e e

Caching

Configuring Cache Engines o . i i e e e e e e e e e e
WritingtoaCache e e e e e e e e
Reading FromaCache e
Deleting Froma Cache e e
Clearing Cached Data e e
Using Cache to Store COUNETS v v v v i e
Using Cache to Store Common Query Results e
Using GIroups v v i e
Globally Enable or Disable Cache e
Creating a Cache Engine e

Bake Console

Console Commands

The CakePHP Console e e e e
Console Applications o L e e e e e e e e e e e e e
Renaming Commands L e e e e e e e e e e
Commands e e e e e e e e e e
CakePHP Provided Commands i e
Routing in the Console Environment

Debugging

Basic Debugging e e e e e e e
Using the Debugger Class i e e e e
Outputting Values o e e e
Logging With Stack Traces o o e e e e e e e e
Generating Stack Traces o L e e e e
Getting an Excerpt FromaFile o e e
Editor Integration e e e e e e e e e e e e e e e e
Using Logging to Debug o . L e
Debug Kit o e e e e e e

305
305
306
309
309
311
314
316
317
317

419
419
421

605
606
609
611
612
613
613
614
614
615
615

617

619
619
620
621
621
645
659

661
661
662
662
663
663
663
664
664
665

17

18

19

20

21

22

Deployment

Moving files e e e e e e e e e e e e e e
Adjusting Configuration L. e e e e e e e
Check Your Security L e e e
Set Document Root L e e e
Improve Your Application’s Performance L o
Deploying anupdate L e e e e e e e e e e e e e e

Mailer

Basic Usage o L e e e e e e
Configuration o L e e e e e e e e e e e e e e e e e e
Setting Headers o e e e e e e e
Sending Templated Emails oL
Sending Attachments L e e e e e e e e
Sending Messages Quickly L
Sending Emails from CLI e e e e e e e e e e
Creating Reusable Emails 0 o e e e e
Configuring Transports o e e e e e
Sending emails without using Mailer L oL
Testing Mailers L e e e e e e e e

Error & Exception Handling

Error & Exception Configuration L e e e e
Changing Exception Handling e
Listento Events o e
Custom Error Templates o . o e e e e e e e e e e e e
Custom ErrorController o
Custom ExceptionRenderer L e e e e e
Custom Error Logging o L e e e e e e
Custom Error Rendering 0 e e e e e e e e e e e
Creating your own Application Exceptions e e e
Built in Exceptions for CakePHP o
Creating your Own Error Handler

Events System

Example Event Usage 0 i e e e e e e e e e
Accessing Event Managers oL o e e e e e e e e e e e e
Core Events o e e e e e
Registering Listeners e e e e e e e e e e e e
Dispatching Events e e e e e e e e e e e e e e
Additional Reading e e e

Internationalization & Localization

Setting Up Translations L e e e e e e e e e e e e
Using Translation Functions o e
Creating Your Own Translators 0 o 0 e e e e e e
Localizing Dates and Numbers o . L 0 e e e e e e e e e
Automatically Choosing the Locale Based on Request Data
Translate Content/Entities e e e e e e

Logging

Logging Configuration 0 i e e e e e e e e e e e e e e
Error and Exception Logging o .o e e e e e e e e e e e
Writing to Logs L e e e e e e e e
Logging to Files o e e e e e e e e

667
667
667
668
668
669
669

671
671
672
674
674
675
676
677
677
679
681
681

685
685
686
687
687
688
689
690
692
692
693
697

699
700
700
701
702
705
708

709
709
711
716
719
721
721

23

24

25

26

27

Logging to Syslog o i e e e e e e e e e e e e e
Creating Log Engines o e e e e e e e e e
Log APL . . . o e e e e e e
Logging Trait o e e e e e
Using Monolog o o o e e e e e e e e e e e e

Modelless Forms

Creating a Form L L e e e e e e e e
Processing Request Data oL e e e e e
Setting Form Values o e e
Getting Form Errors o . e e e e e e e e e e
Invalidating Individual Form Fields from Controller
Creating HTML with FormHelper

Plugins

Installing a Plugin With Composer
Manually Installing a Plugin 00 L
LoadingaPlugin L e e e
Plugin Hook Configuration e e e e e
Using Plugin Classes o o i i i e e e e e e e e e e e e e e e e
Creating Your Own Plugins o L . o e e e e e e e

Plugin Routes e e e e e e
Plugin Controllers o o o e e e e e
Plugin Models o e e e e e e e e e e e e e e e
Plugin Templates 0 o e e e e e e e e e e e e e e
Plugin ASSEts o i i e e e e e e e e e e e e e e
Components, Helpers and Behaviors
Commandsl e e e e e
Testing your Plugin e e e e e e e e e e e e
Publishing your Plugin e e e e e e e e e
Plugin Map File e e e e e e
Manage Your Plugins using Mlixer

REST

The Simple Setup o e e e e e e e e e e
Accepting Input in Other Formats o e
RESTful Routing e e

Security

Security Utility o o e e e e e e e e
CSRFE Protection e e e e e e e e e e e e
Content Security Policy Middleware e e e e e
Security Header Middleware o e e e e e e e e e
HTTPS Enforcer Middleware o e e e e e e e e

Sessions

Session Configuration L e e e e e e e e e e e e e e
Built-in Session Handlers & Configuration L oo
Setting ini direCtives L L e e e e e e e e e e e
Creating a Custom Session Handler
Accessing the Session Object L e e e e e e e e e
Reading & Writing Session Data o . . e e e e e e
Destroying the Session
Rotating Session Identifiers L e e e e

733
733
734
735
736
736
737

739
739
740
740
741
742
743
744
745
746
747
748
749
749
750
750
751
751
751

753
753
755
755

757
757
759
762
763
764

767
767
769
771
771
773
773
774
775

28

29

30

31

32

Flash MESSages v v v v i e

Testing

Installing PHPUnit e e e e e e e e
Test Database Setup o vt i e e e e e e e e e e e e e e e e e e e
Checking the Test Setup o o v i e e e e e e e e e e e e e e e
Test Case CONVENtionS ot v v ittt e e e e e e e e e e e e e e
Creating Your First Test Case o o o i i i e e e e e e e e e e
Running Tests o o e e e e e e e
Test Case Lifecycle Callbacks o o i i e e e e e e e e e e e
FiXtures e
Loading Routesin Tests o o e e e
Testing Table Classes i i i e e e e
Controller Integration Testing 0 o o e e e e e e e e e
Console Integration Testing o i i e e e e
Mocking Injected Dependencies o i e e e e e e e e e e e e
Mocking HTTP Client Responses o v v i i e e e e e e e e e e e e e e e e e e
Testing VIews o o L e e e e e e e
Testing COMPONENLS v v vt it et e
Testing Helpers o . o o e e e e e
Testing Events L L e e e e e e e e e
Testing Email 0 L e e e e e e e e
Creating Test Suites L e e e e
Creating Tests for Plugins o e e e e
Generating Tests with Bake o . o

Validation

Creating Validators o o L e e e e e e e e e
Make Rules ‘last’ by default.o e
Validating Data e e e e e e e e e e e e e e e
Validating Entity Data o 0 . e e e e e e e e e e e e
Core Validation Rules o e

App Class

Finding Classes o o v i i it e e e e e e e e e e e e e e e e e e e
Finding Paths to Resources L
Finding Paths to Namespaces o . o i v i i e e e e e e e e e e e e e e
Locating Themes o 0 e e e e e e e e e e e e
Loading Vendor Files o e e e e e e e e e e e

Collections

Quick Example L e
Listof Methods e e e
Tterating e e e e e e e e e e
Filtering o e e e e e e e e e
AGEregation oL e
SOTHNG . . . o o e e e e e e e e e e e
Working with Tree Data o e e e e e e e e e e e e e
Other Methods L . e e e

Folder & File

Basic Usage o e e e e e e
Folder APL e e e e e
File APL o e e e e e e

777
777
778
778
779
779
781
783
783
790
791
794
807
807
807
807
807
809
810
812
812
813
814

815
815
821
824
825
825

827
827
828
828
828
828

831
831
832
832
837
838
842
843
845

vi

33 Hash
Hash Path Syntax

34 Http Client
Doing Requests
Creating Multipart Requests with Files

Request Method Options
Authentication
Creating Scoped Clients
Setting and Managing Cookies
Response Objects
Changing Transport Adapters
Testing,

35 Inflector

Summary of Inflector Methods and Their Output,

Creating Plural & Singular Forms . .

Creating CamelCase and under_scored Forms o

Creating Human Readable Forms . . .
Creating Table and Class Name Forms
Creating Variable Names
Inflection Configuration

36 Number
Formatting Currency Values
Setting the Default Currency
Getting the Default Currency
Formatting Floating Point Numbers .
Formatting Percentages

Interacting with Human Readable Values

Formatting Numbers
Format Differences
Configure formatters

37 Registry Objects
Loading Objects
Triggering Callbacks
Disabling Callbacks

38 Text
Convert Strings into ASCII
Creating URL Safe Strings
Generating UUIDs
Simple String Parsing
Formatting Strings
Wrapping Text
Highlighting Substrings
Removing Links
Truncating Text
Truncating the Tail of a String
Extracting an Excerpt
Converting an Array to Sentence Form

39 Date & Time

861
861

877
877
878
879
880
880
882
883
884
886
886

889
889
890
891
891
891
892
892

893
894
894
895
895
895
896
896
898
898

901
901
902
902

903
904
904
905
905
905
906
907
907
907
908
909
910

911

vii

Creating FrozenTime Instances o 0 0 i i i it e e e e e e e e e e e e e e e 912

Manipulation L e e e e e e e e e e e e e e e e e 913
Formatting o e e e e e e e e e e e e 914
CONVETSION o vt e 918
Comparing With the Present L 918
Comparing With Intervals e 918
FrozenDate e e e 919
Mutable Dates and Times o L e e e e e 920
Accepting Localized Request Data L 920
Supported Timezones e 921
40 Xml 923
Loading XML documents e e e e e 923
Loading HTML documents et 924
Transforming a XML String in Array 000 o e 924
Transforming an Array into a Stringof XML L 925
41 Constants & Functions 927
Global Functions 0 e e e e e e e e e e e e e e e 927
Core Definition Constants it e e e e e e e e e e e e e 929
Timing Definition Constantst i v i e e e e e e e e e e e e e e 930
42 Chronos 931
43 Debug Kit 933
44 Migrations 935
45 ElasticSearch 937
46 Appendices 939
4.x Migration Guide oL e e 939
Backwards Compatibility Shimming 942
Forwards Compatibility Shimming 942
General Information L L e e e e e e e e e e 942
PHP Namespace Index 947
Index 949

viii

CHAPTER 1

CakePHP at a Glance

CakePHP is designed to make common web-development tasks simple, and easy. By providing an all-in-one toolbox
to get you started the various parts of CakePHP work well together or separately.

The goal of this overview is to introduce the general concepts in CakePHP, and give you a quick overview of how those
concepts are implemented in CakePHP. If you are itching to get started on a project, you can start with the tutorial, or
dive into the docs.

Conventions Over Configuration

CakePHP provides a basic organizational structure that covers class names, filenames, database table names, and other
conventions. While the conventions take some time to learn, by following the conventions CakePHP provides you
can avoid needless configuration and make a uniform application structure that makes working with various projects
simple. The conventions chapter covers the various conventions that CakePHP uses.

The Model Layer

The Model layer represents the part of your application that implements the business logic. It is responsible for re-
trieving data and converting it into the primary meaningful concepts in your application. This includes processing,
validating, associating or other tasks related to handling data.

In the case of a social network, the Model layer would take care of tasks such as saving the user data, saving friends’
associations, storing and retrieving user photos, finding suggestions for new friends, etc. The model objects can be
thought of as “Friend”, “User”, “Comment”, or “Photo”. If we wanted to load some data from our users table we
could do:

use Cake\ORM\Locator\LocatorAwareTrait;

(continues on next page)

CakePHP Book, Release 4.x

(continued from previous page)

$users = $this->getTableLocator()->get('Users');
$resultset = $users->find()->all();
foreach ($resultset as $row) {

echo $row->username;

}

You may notice that we didn’t have to write any code before we could start working with our data. By using conventions,
CakePHP will use standard classes for table and entity classes that have not yet been defined.

If we wanted to make a new user and save it (with validation) we would do something like:

use Cake\ORM\Locator\LocatorAwareTrait;

$users = $this->getTableLocator()->get('Users');
$user = $users->newEntity(['email' => 'mark@example.com']);
$users->save($user);

The View Layer

The View layer renders a presentation of modeled data. Being separate from the Model objects, it is responsible for
using the information it has available to produce any presentational interface your application might need.

For example, the view could use model data to render an HTML view template containing it, or a XML formatted result
for others to consume:

// In a view template file, we'll render an 'element' for each user.
<?php foreach ($users as S$user): 7>
<1li class="user">
<?= $this->element('user_info', ['user' => $user]) ?>

<?php endforeach; 7>

The View layer provides a number of extension points like View Templates, Elements and View Cells to let you re-use
your presentation logic.

The View layer is not only limited to HTML or text representation of the data. It can be used to deliver common data
formats like JSON, XML, and through a pluggable architecture any other format you may need, such as CSV.

The Controller Layer

The Controller layer handles requests from users. It is responsible for rendering a response with the aid of both the
Model and the View layers.

A controller can be seen as a manager that ensures that all resources needed for completing a task are delegated to the
correct workers. It waits for petitions from clients, checks their validity according to authentication or authorization
rules, delegates data fetching or processing to the model, selects the type of presentational data that the clients are
accepting, and finally delegates the rendering process to the View layer. An example of a user registration controller
would be:

2 Chapter 1. CakePHP at a Glance

CakePHP Book, Release 4.x

public function add(Q)

{
$user = $this->Users->newEmptyEntity();
if ($this->request->is('post')) {
$user = $this->Users->patchEntity($user, $this->request->getData());
if ($this->Users->save($user, ['validate' => 'registration'])) {
$this->Flash->success(__('You are now registered.'));
} else {
$this->Flash->error(__('There were some problems.'));
}
}
$this->set('user', $user);
}

You may notice that we never explicitly rendered a view. CakePHP’s conventions will take care of selecting the right
view and rendering it with the view data we prepared with set ().

CakePHP Request Cycle

Now that you are familiar with the different layers in CakePHP, lets review how a request cycle works in CakePHP:

The typical CakePHP request cycle starts with a user requesting a page or resource in your application. At a high level
each request goes through the following steps:

1. The webserver rewrite rules direct the request to webroot/index.php.
2. Your Application is loaded and bound to an HttpServer.

3. Your application’s middleware is initialized.
4

. A request and response is dispatched through the PSR-7 Middleware that your application uses. Typically this
includes error trapping and routing.

e

If no response is returned from the middleware and the request contains routing information, a controller & action
are selected.

The controller’s action is called and the controller interacts with the required Models and Components.
The controller delegates response creation to the View to generate the output resulting from the model data.

The view uses Helpers and Cells to generate the response body and headers.

© ® =2

The response is sent back out through the /controllers/middleware.

10. The HttpServer emits the response to the webserver.

Just the Start

Hopefully this quick overview has piqued your interest. Some other great features in CakePHP are:
* A caching framework that integrates with Memcached, Redis and other backends.
* Powerful code generation tools so you can start immediately.
e Integrated testing framework so you can ensure your code works perfectly.

The next obvious steps are to download CakePHP, read the tutorial and build something awesome.

CakePHP Request Cycle 3

CakePHP Book, Release 4.x

index.php autoloader

!

- u

Load Application &
bind to HittpServer

N "

“ T

[Middleware] { Middleware]

L
o o

Hesponse

T Helper

-

View

4 Chapter 1. CakePHP at a Glance

CakePHP Book, Release 4.x

Additional Reading

Where to Get Help
The Official CakePHP website

https://cakephp.org

The Official CakePHP website is always a great place to visit. It features links to oft-used developer tools, screencasts,
donation opportunities, and downloads.

The Cookbook

https://book.cakephp.org

This manual should probably be the first place you go to get answers. As with many other open source projects, we
get new folks regularly. Try your best to answer your questions on your own first. Answers may come slower, but will
remain longer — and you’ll also be lightening our support load. Both the manual and the API have an online component.

The Bakery

https://bakery.cakephp.org

The CakePHP Bakery is a clearing house for all things regarding CakePHP. Check it out for tutorials, case studies, and
code examples. Once you’re acquainted with CakePHP, log on and share your knowledge with the community and gain
instant fame and fortune.

The API

https://api.cakephp.org/

Straight to the point and straight from the core developers, the CakePHP API (Application Programming Interface) is
the most comprehensive documentation around for all the nitty gritty details of the internal workings of the framework.
It’s a straight forward code reference, so bring your propeller hat.

The Test Cases

If you ever feel the information provided in the API is not sufficient, check out the code of the test cases provided with
CakePHP. They can serve as practical examples for function and data member usage for a class.

tests/TestCase/

Additional Reading 5

https://cakephp.org
https://book.cakephp.org
https://bakery.cakephp.org
https://api.cakephp.org/

CakePHP Book, Release 4.x

The IRC Channel

IRC Channels on irc.freenode.net:
* #cakephp — General Discussion
e #cakephp-docs — Documentation
* #cakephp-bakery — Bakery
* #cakephp-fr — French Canal.

If you're stumped, give us a holler in the CakePHP IRC channel. Someone from the development team* is usually
there, especially during the daylight hours for North and South America users. We’d love to hear from you, whether
you need some help, want to find users in your area, or would like to donate your brand new sports car.

Official CakePHP Forum

CakePHP Official Forum®

Our official forum where you can ask for help, suggest ideas and have a talk about CakePHP. It’s a perfect place for
quickly finding answers and help others. Join the CakePHP family by signing up.

Stackoverflow

https://stackoverflow.com/®

Tag your questions with cakephp and the specific version you are using to enable existing users of stackoverflow to
find your questions.

Where to get Help in your Language

Danish

* Danish CakePHP Slack Channel’

French

* French CakePHP Community®

4 https://cakephp.org/team

5 https://discourse.cakephp.org

6 https:/stackoverflow.com/questions/tagged/cakephp/
7 https://cakesf.slack.com/messages/denmark/

8 https://cakephp-fr.org

6 Chapter 1. CakePHP at a Glance

irc://irc.freenode.net/cakephp
irc://irc.freenode.net/cakephp-docs
irc://irc.freenode.net/cakephp-bakery
irc://irc.freenode.net/cakephp-fr
https://cakephp.org/team
https://discourse.cakephp.org
https://stackoverflow.com/questions/tagged/cakephp/
https://cakesf.slack.com/messages/denmark/
https://cakephp-fr.org

CakePHP Book, Release 4.x

German

o German CakePHP Slack Channel’
+ German CakePHP Facebook Group '’

Iranian

« Iranian CakePHP Community''

Dutch

 Dutch CakePHP Slack Channel'?

Japanese

« Japanese CakePHP Slack Channel'?

« Japanese CakePHP Facebook Group'*

Portuguese
* Portuguese CakePHP Google Group'”
Spanish

« Spanish CakePHP Slack Channel'®
* Spanish CakePHP IRC Channel
* Spanish CakePHP Google Group'’

CakePHP Conventions

We are big fans of convention over configuration. While it takes a bit of time to learn CakePHP’s conventions, you
save time in the long run. By following conventions, you get free functionality, and you liberate yourself from the
maintenance nightmare of tracking config files. Conventions also make for a very uniform development experience,

allowing other developers to jump in and help.

9 https://cakesf.slack.com/messages/german/

10 hitps://www.facebook.com/groups/ 146324018754907/

T https://cakephp.ir
12 https://cakesf.slack.com/messages/netherlands/
13 https://cakesf.slack.com/messages/japanese/

14 https://www.facebook.com/groups/304490963004377/

15 hitps://groups.google.com/group/cakephp-pt
16 https://cakesf.slack.com/messages/spanish/
17 https://groups.google.com/group/cakephp-esp

Additional Reading

https://cakesf.slack.com/messages/german/
https://www.facebook.com/groups/146324018754907/
https://cakephp.ir
https://cakesf.slack.com/messages/netherlands/
https://cakesf.slack.com/messages/japanese/
https://www.facebook.com/groups/304490963004377/
https://groups.google.com/group/cakephp-pt
https://cakesf.slack.com/messages/spanish/
irc://irc.freenode.net/cakephp-es
https://groups.google.com/group/cakephp-esp

CakePHP Book, Release 4.x

Controller Conventions
Controller class names are plural, CamelCased, and end in Controller. UsersController and
MenuLinksController are both examples of conventional controller names.

Public methods on Controllers are often exposed as ‘actions’ accessible through a web browser. They are camelBacked.
For example the /users/view-me maps to the viewMe () method of the UsersController out of the box (if one
uses default dashed inflection in routing). Protected or private methods cannot be accessed with routing.

URL Considerations for Controller Names

As you’ve just seen, single word controllers map to a simple lower case URL path. For example, UsersController
(which would be defined in the file name UsersController.php) is accessed from http://example.com/users.

While you can route multiple word controllers in any way you like, the convention is that your URLs are lower-
case and dashed using the DashedRoute class, therefore /menu-1links/view-all is the correct form to access the
MenuLinksController: :viewAll() action.

When you create links using this->Html->1ink (), you can use the following conventions for the url array:
$this->Html->1ink('link-title', [

'prefix' => 'MyPrefix' // CamelCased

'plugin' => 'MyPlugin', // CamelCased

'controller' => 'ControllerName', // CamelCased

'action' => 'actionName' // camelBacked

]

For more information on CakePHP URLs and parameter handling, see Connecting Routes.

File and Class Name Conventions
In general, filenames match the class names, and follow the PSR-4 standard for autoloading. The following are some
examples of class names and their filenames:

e The Controller class LatestArticlesController would be found in a file named LatestArticlesCon-
troller.php

* The Component class MyHandyComponent would be found in a file named MyHandyComponent.php
* The Table class OptionValuesTable would be found in a file named OptionValuesTable.php.
¢ The Entity class OptionValue would be found in a file named OptionValue.php.

¢ The Behavior class EspeciallyFunkableBehavior would be found in a file named EspeciallyFunkableBe-
havior.php

* The View class SuperSimpleView would be found in a file named SuperSimpleView.php
» The Helper class BestEverHelper would be found in a file named BestEverHelper.php

Each file would be located in the appropriate folder/namespace in your app folder.

8 Chapter 1. CakePHP at a Glance

CakePHP Book, Release 4.x

Database Conventions

Table names corresponding to CakePHP models are plural and underscored. For example users, menu_links, and
user_favorite_pages respectively. Table name whose name contains multiple words should only pluralize the last
word, for example, menu_links.

Column names with two or more words are underscored, for example, first_name.

Foreign keys in hasMany, belongsTo/hasOne relationships are recognized by default as the (singular) name of the
related table followed by _id. So if Users hasMany Articles, the articles table will refer to the users table via a
user_id foreign key. For a table like menu_links whose name contains multiple words, the foreign key would be
menu_link_id.

Join (or “junction”) tables are used in BelongsToMany relationships between models. These should be named for the
tables they connect. The names should be pluralized and sorted alphabetically: articles_tags, not tags_articles
or article_tags. The bake command will not work if this convention is not followed. 1f the junction table holds any
data other than the linking foreign keys, you should create a concrete entity/table class for the table.

In addition to using an auto-incrementing integer as primary keys, you can also use UUID columns. CakePHP will
create UUID values automatically using (Cake\Utility\Text: :uuid()) whenever you save new records using the
Table: :save() method.

Model Conventions

Table class names are plural, CamelCased and end in Table. UsersTable, MenuLinksTable, and
UserFavoritePagesTable are all examples of table class names matching the users, menu_links and
user_favorite_pages tables respectively.

Entity class names are singular CamelCased and have no suffix. User, MenuLink, and UserFavoritePage are all
examples of entity names matching the users, menu_links and user_favorite_pages tables respectively.

View Conventions

View template files are named after the controller functions they display, in an underscored form. The viewAll()
function of the ArticlesController class will look for a view template in templates/Articles/view_all.php.

The basic pattern is templates/Controller/underscored_function_name.php.

Note: By default CakePHP uses English inflections. If you have database tables/columns that use another language,
you will need to add inflection rules (from singular to plural and vice-versa). You can use Cake\Utility\Inflector
to define your custom inflection rules. See the documentation about /nflector for more information.

Plugins Conventions
It is useful to prefix a CakePHP plugin with “cakephp-" in the package name. This makes the name semantically related
on the framework it depends on.

Do not use the CakePHP namespace (cakephp) as vendor name as this is reserved to CakePHP owned plugins. The
convention is to use lowercase letters and dashes as separator:

// Bad
cakephp/foo-bar

(continues on next page)

Additional Reading 9

CakePHP Book, Release 4.x

(continued from previous page)

// Good
your-name/cakephp-foo-bar

See awesome list recommendations'® for details.

Summarized

By naming the pieces of your application using CakePHP conventions, you gain functionality without the hassle and
maintenance tethers of configuration. Here’s a final example that ties the conventions together:

¢ Database table: “articles”, “menu_links”

* Table class: ArticlesTable, found at sre/Model/Table/ArticlesTable.php

* Entity class: Article, found at src/Model/Entity/Article.php

* Controller class: ArticlesController, found at src/Controller/ArticlesController.php
¢ View template, found at templates/Articles/index.php

Using these conventions, CakePHP knows that a request to http://example.com/articles maps to a call on the
index () method of the ArticlesController, where the Articles model is automatically available. None of these
relationships have been configured by any means other than by creating classes and files that you’d need to create
anyway.

18 https://github.com/FriendsOfCake/awesome-cakephp/blob/master/CONTRIBUTING.md#tips- for- creating- cakephp- plugins

10 Chapter 1. CakePHP at a Glance

https://github.com/FriendsOfCake/awesome-cakephp/blob/master/CONTRIBUTING.md#tips-for-creating-cakephp-plugins

CakePHP Book, Release 4.x

Ex-
am-
ple

Databa:

Table
File

Table

En-
tity
Class

Con-
troller
Be-
hav-
ior
View

Helper

Com-
po-
nent
Plu-
gin

articles menu_links
articles menu_links Table names corresponding to CakePHP models are plural and under-
scored.
ArticlesCon- MenuLinksCo
troller.php troller.php
Arti- MenuLinksTat Table class names are plural, CamelCased and end in Table
clesTable.php
Article.php MenuLink.php Entity class names are singular, CamelCased: Article and MenuLink
ArticlesCon- ~ MenuLinksCo
troller troller
ArticlesCon- MenuLinksCo Plural, CamelCased, end in Controller
troller troller
ArticlesBe- MenuLinks-
havior.php Behav-
ior.php
Arti- MenuLinksVi¢ View template files are named after the controller functions they display,
clesView.php in an underscored form
Arti- MenuLinksHe
clesHelper.php
ArticlesCom- MenuLinksCo
ponent.php ponent.php
Bad: cakephp/menu Useful to prefix a CakePHP plugin with “cakephp-" in the package name.
cakephp/articles links Do not use the CakePHP namespace (cakephp) as vendor name as this is
Good: you/cakephp- reserved to CakePHP owned plugins. The convention is to use lowercase
you/cakephp- menu-links letters and dashes as separator.
articles

Each file would be located in the appropriate folder/namespace in your app folder.

Database Convention Summary

Foreign keys

hasMany
longsTo/

be-
hasOne

BelongsToMany
Multiple Words

Auto Increment

Join tables

Relationships are recognized by default as the (singular) name of the related table followed
by _id. Users hasMany Articles, articles table will refer to the users table viaauser_id
foreign key.

menu_links whose name contains multiple words,
menu_link_id.

In addition to using an auto-incrementing integer as primary keys, you can also use
UUID columns. CakePHP will create UUID values automatically using (Cake\Utility\
Text: :uuid()) whenever you save new records using the Table: : save () method.
Should be named after the model tables they will join or the bake command won’t work,
arranged in alphabetical order (articles_tags rather than tags_articles). Additional
columns on the junction table you should create a separate entity/table class for that table.

the foreign key would be

Now that you’ve been introduced to CakePHP’s fundamentals, you might try a run through the Content Management
Tutorial to see how things fit together.

Additional Reading

11

CakePHP Book, Release 4.x

CakePHP Folder Structure

After you’ve downloaded the CakePHP application skeleton, there are a few top level folders you should see:

The bin folder holds the Cake console executables.

The config folder holds the Configuration files CakePHP uses. Database connection details, bootstrapping, core
configuration files and more should be stored here.

The plugins folder is where the Plugins your application uses are stored.

The logs folder normally contains your log files, depending on your log configuration.

The src folder will be where your application’s source files will be placed.

The templates folder has presentational files placed here: elements, error pages, layouts, and view template files.

The resources folder has sub folder for various types of resource files. The locales sub folder stores language
files for internationalization.

The fests folder will be where you put the test cases for your application.

The tmp folder is where CakePHP stores temporary data. The actual data it stores depends on how you have
CakePHP configured, but this folder is usually used to store translation messages, model descriptions and some-
times session information.

The vendor folder is where CakePHP and other application dependencies will be installed by Composer'”. Edit-
ing these files is not advised, as Composer will overwrite your changes next time you update.

The webroot directory is the public document root of your application. It contains all the files you want to be
publicly reachable.

Make sure that the tmp and logs folders exist and are writable, otherwise the performance of your application
will be severely impacted. In debug mode, CakePHP will warn you, if these directories are not writable.

The src Folder

CakePHP’s src folder is where you will do most of your application development. Let’s look a little closer at the folders
inside src.

Command

Contains your application’s console commands. See Command Objects to learn more.

Console

Contains the installation script executed by Composer.

Controller

Contains your application’s Controllers and their components.

Middleware

Stores any /controllers/middleware for your application.

Model

Shell

View

Contains your application’s tables, entities and behaviors.

Contains shell tasks for your application. For more information see Shells.

Presentational classes are placed here: views, cells, helpers.

19 https://getcomposer.org

12

Chapter 1. CakePHP at a Glance

https://getcomposer.org

CakePHP Book, Release 4.x

Note: The folder Shell is not present by default. You can add it when you need it.

Additional Reading 13

CakePHP Book, Release 4.x

14 Chapter 1. CakePHP at a Glance

CHAPTER 2

Quick Start Guide

The best way to experience and learn CakePHP is to sit down and build something. To start off we’ll build a simple
Content Management application.

Content Management Tutorial

This tutorial will walk you through the creation of a simple CMS (Content Management System) application. To start
with, we’ll be installing CakePHP, creating our database, and building simple article management.

Here’s what you’ll need:

1. A database server. We’re going to be using MySQL server in this tutorial. You’ll need to know enough about
SQL in order to create a database, and run SQL snippets from the tutorial. CakePHP will handle building all the
queries your application needs. Since we’re using MySQL, also make sure that you have pdo_mysql enabled in
PHP.

2. Basic PHP knowledge.

Before starting you should make sure that you have got an up to date PHP version:
php -v

You should at least have got installed PHP 7.4 (CLI) or higher. Your webserver’s PHP version must also be of 7.4 or
higher, and should be the same version your command line interface (CLI) PHP is.

15

CakePHP Book, Release 4.x

Getting CakePHP

The easiest way to install CakePHP is to use Composer. Composer is a simple way of installing CakePHP from your
terminal or command line prompt. First, you’ll need to download and install Composer if you haven’t done so already.
If you have cURL installed, run the following:

curl -s https://getcomposer.org/installer | php

Or, you can download composer . phar from the Composer website”’.

Then simply type the following line in your terminal from your installation directory to install the CakePHP application
skeleton in the ems directory of the current working directory:

php composer.phar create-project --prefer-dist cakephp/app:4.* cms

If you downloaded and ran the Composer Windows Installer’!, then type the following line in your terminal from your
installation directory (ie. C:\wamp\www\dev):

composer self-update && composer create-project --prefer-dist cakephp/app:4.* cms

The advantage to using Composer is that it will automatically complete some important set up tasks, such as setting
the correct file permissions and creating your config/app.php file for you.

There are other ways to install CakePHP. If you cannot or don’t want to use Composer, check out the /nstallation section.

Regardless of how you downloaded and installed CakePHP, once your set up is completed, your directory setup should
look something like the following:

/cms
/bin
/config
/logs
/plugins
/resources
/src
/templates
/tests
/tmp
/vendor
/webroot
.editorconfig
.gitignore
.htaccess
.travis.yml
composer. json
index.php
phpunit.xml.dist
README . md

Now might be a good time to learn a bit about how CakePHP’s directory structure works: check out the CakePHP
Folder Structure section.

If you get lost during this tutorial, you can see the finished result on GitHub?.

20 https://getcomposer.org/download/
21 https://getcomposer.org/Composer-Setup.exe
22 https://github.com/cakephp/cms-tutorial

16 Chapter 2. Quick Start Guide

https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
https://github.com/cakephp/cms-tutorial

CakePHP Book, Release 4.x

Checking our Installation

We can quickly check that our installation is correct, by checking the default home page. Before you can do that, you’ll
need to start the development server:

cd /path/to/our/app

bin/cake server

Note: For Windows, the command needs to be bin\cake server (note the backslash).

This will start PHP’s built-in webserver on port 8765. Open up http://localhost:8765 in your web browser to see
the welcome page. All the bullet points should be green chef hats other than CakePHP being able to connect to your
database. If not, you may need to install additional PHP extensions, or set directory permissions.

Next, we will build our Database and create our first model.

CMS Tutorial - Creating the Database

Now that we have CakePHP installed, let’s set up the database for our CMS application. If you haven’t already done
S0, create an empty database for use in this tutorial, with the name of your choice such as cake_cms. If you are using
MySQL/MariaDB, you can execute the following SQL to create the necessary tables:

USE cake_cms;

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created DATETIME,
modified DATETIME

);

CREATE TABLE articles (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created DATETIME,
modified DATETIME,
UNIQUE KEY (slug),
FOREIGN KEY user_key (user_id) REFERENCES users(id)
) CHARSET=utf8mb4;

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(191),
created DATETIME,
modified DATETIME,

(continues on next page)

CMS Tutorial - Creating the Database 17

CakePHP Book, Release 4.x

(continued from previous page)

UNIQUE KEY (title)
) CHARSET=utf8mb4;

CREATE TABLE articles_tags (
article_id INT NOT NULL,
tag_id INT NOT NULL,
PRIMARY KEY (article_id, tag_id),
FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),
FOREIGN KEY article_key(article_id) REFERENCES articles(id)

);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOWQ));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, '"First Post', 'first-post', 'This is the first post.', 1, NOW(), NOWQ));

If you are using PostgreSQL, connect to the cake_cms database and execute the following SQL instead:

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created TIMESTAMP,
modified TIMESTAMP

DE

CREATE TABLE articles (
id SERIAL PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (slug),
FOREIGN KEY (user_id) REFERENCES users(id)

);

CREATE TABLE tags (
id SERIAL PRIMARY KEY,
title VARCHAR(191),
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (title)

DE

CREATE TABLE articles_tags (
article_id INT NOT NULL,

(continues on next page)

18 Chapter 2. Quick Start Guide

CakePHP Book, Release 4.x

(continued from previous page)

tag_id INT NOT NULL,

PRIMARY KEY (article_id, tag_id),

FOREIGN KEY (tag_id) REFERENCES tags(id),

FOREIGN KEY (article_id) REFERENCES articles(id)
DE

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOWQ));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, 'First Post', 'first-post', 'This is the first post.', TRUE, NOW(), NOWQ));

You may have noticed that the articles_tags table used a composite primary key. CakePHP supports composite
primary keys almost everywhere, allowing you to have simpler schemas that don’t require additional id columns.

The table and column names we used were not arbitrary. By using CakePHP’s naming conventions, we can lever-
age CakePHP more effectively and avoid needing to configure the framework. While CakePHP is flexible enough to
accommodate almost any database schema, adhering to the conventions will save you time as you can leverage the
convention-based defaults CakePHP provides.

Database Configuration

Next, let’s tell CakePHP where our database is and how to connect to it. Replace the values in the Datasources.
default array in your config/app_local.php file with those that apply to your setup. A sample completed configuration
array might look something like the following:

<?php
return [
// More configuration above.
'Datasources' => [
'default' => [
'className' => 'Cake\Database\Connection',
// Replace Mysql with Postgres if you are using PostgreSQL
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~"',
'database' => 'cake_cms',
// Comment out the line below if you are using PostgreSQL
'encoding' => 'utf8mb4',
'timezone' => 'UTC',
'cacheMetadata' => true,
i
1,
// More configuration below.

1;

Once you’ve saved your config/app.php file, you should see that the ‘CakePHP is able to connect to the database’
section has a green chef hat.

CMS Tutorial - Creating the Database 19

CakePHP Book, Release 4.x

Note: If you have config/app_local.php in your app folder, you need to configure your database connection in that
file instead.

Creating our First Model

Models are the heart of CakePHP applications. They enable us to read and modify our data. They allow us to build
relations between our data, validate data, and apply application rules. Models provide the foundation necessary to
create our controller actions and templates.

CakePHP’s models are composed of Table and Entity objects. Table objects provide access to the collection of
entities stored in a specific table. They are stored in src/Model/Table. The file we’ll be creating will be saved to
src/Model/Table/ArticlesTable.php. The completed file should look like this:

<?php

// src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table

{
public function initialize(array $config): void
{
$this->addBehavior('Timestamp');
3
}

We’ve attached the Timestamp behavior, which will automatically populate the created and modified columns of
our table. By naming our Table object ArticlesTable, CakePHP can use naming conventions to know that our model
uses the articles table. CakePHP also uses conventions to know that the id column is our table’s primary key.

Note: CakePHP will dynamically create a model object for you if it cannot find a corresponding file in
src/Model/Table. This also means that if you accidentally name your file wrong (i.e. articlestable.php or Arti-
cleTable.php), CakePHP will not recognize any of your settings and will use the generated model instead.

We’ll also create an Entity class for our Articles. Entities represent a single record in the database and provide row-level
behavior for our data. Our entity will be saved to sre/Model/Entity/Article.php. The completed file should look like
this:

<?php
// src/Model/Entity/Article.php
namespace App\Model\Entity;

use Cake\ORM\Entity;

class Article extends Entity
{
protected $_accessible = [
'*' => true,
'id' => false,
(continues on next page)

20 Chapter 2. Quick Start Guide

CakePHP Book, Release 4.x

(continued from previous page)
'slug' => false,
1;

Right now, our entity is quite slim; we’ve only set up the _accessible property, which controls how properties can
be modified by Mass Assignment.

We can’t do much with our models yet. Next, we’ll create our first Controller and Template to allow us to interact with
our model.

CMS Tutorial - Creating the Articles Controller

With our model created, we need a controller for our articles. Controllers in CakePHP handle HTTP requests and
execute business logic contained in model methods, to prepare the response. We’ll place this new controller in a file
called ArticlesController.php inside the src/Controller directory. Here’s what the basic controller should look like:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController
{
}

Now, let’s add an action to our controller. Actions are controller methods that have routes connected to them. For exam-
ple, when a user requests www.example.com/articles/index (which is also the same as www.example.com/articles),
CakePHP will call the index method of your ArticlesController. This method should query the model layer, and
prepare a response by rendering a Template in the View. The code for that action would look like this:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController

{
public function index()
{
$this->loadComponent ('Paginator');
$articles = $this->Paginator->paginate($this->Articles->find(Q));
$this->set(compact('articles'));
}
}

By defining function index() in our ArticlesController, users can now access the logic there by requesting
www.example.com/articles/index. Similarly, if we were to define a function called foobar (), users would be able to
access that at www.example.com/articles/foobar. You may be tempted to name your controllers and actions in a way
that allows you to obtain specific URLs. Resist that temptation. Instead, follow the CakePHP Conventions creating
readable, meaningful action names. You can then use Routing to connect the URLs you want to the actions you’ve
created.

CMS Tutorial - Creating the Articles Controller 21

CakePHP Book, Release 4.x

Our controller action is very simple. It fetches a paginated set of articles from the database, using the Articles Model
that is automatically loaded via naming conventions. It then uses set () to pass the articles into the Template (which
we’ll create soon). CakePHP will automatically render the template after our controller action completes.

Create the Article List Template

Now that we have our controller pulling data from the model, and preparing our view context, let’s create a view
template for our index action.

CakePHP view templates are presentation-flavored PHP code that is inserted inside the application’s layout. While
we’ll be creating HTML here, Views can also generate JSON, CSV or even binary files like PDFs.

A layout is presentation code that is wrapped around a view. Layout files contain common site elements like headers,
footers and navigation elements. Your application can have multiple layouts, and you can switch between them, but for
now, let’s just use the default layout.

CakePHP’s template files are stored in templates inside a folder named after the controller they correspond to. So we’ll
have to create a folder named ‘Articles’ in this case. Add the following code to your application:

<l-- File: templates/Articles/index.php -->

<hl>Articles</hl>
<table>
<tr>
<th>Title</th>
<th>Created</th>
</tr>

<!-- Here is where we iterate through our $articles query object, printing out.
—article info -->

<?php foreach ($articles as $article): ?>

<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
</tr>
<?php endforeach; ?>
</table>

In the last section we assigned the ‘articles’ variable to the view using set(). Variables passed into the view are
available in the view templates as local variables which we used in the above code.

You might have noticed the use of an object called $this->Html. This is an instance of the CakePHP HrmlHelper.
CakePHP comes with a set of view helpers that make tasks like creating links, forms, and pagination buttons. You can
learn more about Helpers in their chapter, but what’s important to note here is that the 1ink () method will generate
an HTML link with the given link text (the first parameter) and URL (the second parameter).

When specifying URLs in CakePHP, it is recommended that you use arrays or named routes. These syntaxes allow you
to leverage the reverse routing features CakePHP offers.

22 Chapter 2. Quick Start Guide

CakePHP Book, Release 4.x

At this point, you should be able to point your browser to http://localhost:8765/articles/index. You should see your
list view, correctly formatted with the title and table listing of the articles.

Create the View Action

If you were to click one of the ‘view’ links in our Articles list page, you’d see an error page saying that action hasn’t
been implemented. Lets fix that now:

// Add to existing src/Controller/ArticlesController.php file

public function view($slug = null)

{
$article = $this->Articles->findBySlug($slug)->firstOrFail();
$this->set(compact('article'));

¥

While this is a simple action, we’ve used some powerful CakePHP features. We start our action off by using
findBySlug() which is a Dynamic Finder. This method allows us to create a basic query that finds articles by a
given slug. We then use firstOrFail () to either fetch the first record, or throw a NotFoundException.

Our action takes a $slug parameter, but where does that parameter come from? If a user requests /articles/view/
first-post, then the value ‘first-post’ is passed as $slug by CakePHP’s routing and dispatching layers. If we reload
our browser with our new action saved, we’d see another CakePHP error page telling us we’re missing a view template;
let’s fix that.

Create the View Template

Let’s create the view for our new ‘view’ action and place it in templates/Articles/view.php

<!-- File: templates/Articles/view.php -->

<h1><?= h(farticle->title) ?></hl>

<p><?= h($article->body) ?7></p>

<p><small>Created: <?= $article->created->format(DATE_RFC850) 7></small></p>
<p><?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) ?></p>

You can verify that this is working by trying the links at /articles/index or manually requesting an article by
accessing URLs like /articles/view/first-post.

Adding Articles

With the basic read views created, we need to make it possible for new articles to be created. Start by creating an add ()
action in the ArticlesController. Our controller should now look like:

<?php
// src/Controller/ArticlesController.php
namespace App\Controller;

use App\Controller\AppController;
class ArticlesController extends AppController

{

(continues on next page)

CMS Tutorial - Creating the Articles Controller 23

CakePHP Book, Release 4.x

(continued from previous page)

public function initialize(): void

{
parent::initialize();
$this->loadComponent ('Paginator');
$this->loadComponent('Flash'); // Include the FlashComponent
3
public function index()
{
$articles = $this->Paginator->paginate($this->Articles->find());
$this->set(compact('articles'));
3
public function view($slug)
{
$article = $this->Articles->findBySlug($slug)->firstOrFail(Q);
$this->set(compact('article'));
3
public function add()
{
$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity($article, $this->request->getData());
// Hardcoding the user_id is temporary, and will be removed later
// when we build authentication out.
$article->user_id = 1;
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));
}
$this->set('article', $article);
3

Note: You need to include the Flash component in any controller where you will use it. Often it makes sense to
include it in your AppController.

Here’s what the add () action does:
* If the HTTP method of the request was POST, try to save the data using the Articles model.

* If for some reason it doesn’t save, just render the view. This gives us a chance to show the user validation errors
or other warnings.

Every CakePHP request includes a request object which is accessible using $this->request. The request object
contains information regarding the request that was just received. We use the Cake\Http\ServerRequest::is()
method to check that the request is a HTTP POST request.

24 Chapter 2. Quick Start Guide

CakePHP Book, Release 4.x

Our POST data is available in $this->request->getData(). You can use the pr() or debug () functions to print
it out if you want to see what it looks like. To save our data, we first ‘marshal’ the POST data into an Article Entity.
The Entity is then persisted using the ArticlesTable we created earlier.

After saving our new article we use FlashComponent’s success () method to set a message into the session. The
success method is provided using PHP’s magic method features’’. Flash messages will be displayed on the
next page after redirecting. In our layout we have <?= $this->Flash->render() 7> which displays flash mes-
sages and clears the corresponding session variable. Finally, after saving is complete, we use Cake\Controller\
Controller: :redirect to send the user back to the articles list. The param ['action' => 'index'] translates to
URL /articlesi.ethe index action of the ArticlesController. You canrefer to Cake\Routing\Router: :url()

function on the API’* to see the formats in which you can specify a URL for various CakePHP functions.

Create Add Template

Here’s our add view template:

<!-- File: templates/Articles/add.php -->

<h1>Add Article</hl1>
<?php
echo $this->Form->create($article);
// Hard code the user for now.
echo $this->Form->control('user_id', ['type' => 'hidden', 'value' => 1]);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

We use the FormHelper to generate the opening tag for an HTML form. Here’s the HTML that
$this->Form->create() generates:

<form method="post" action="/articles/add">

Because we called create() without a URL option, FormHelper assumes we want the form to submit back to the
current action.

The $this->Form->control () method is used to create form elements of the same name. The first parameter tells
CakePHP which field they correspond to, and the second parameter allows you to specify a wide array of options - in
this case, the number of rows for the textarea. There’s a bit of introspection and conventions used here. The control ()
will output different form elements based on the model field specified, and use inflection to generate the label text. You
can customize the label, the input or any other aspect of the form controls using options. The $this->Form->end()
call closes the form.

Now let’s go back and update our templates/Articles/index.php view to include a new “Add Article” link. Before the
<table>, add the following line:

<?= $this->Html->1link('Add Article', ['action' => 'add']) ?>

23 https://php.net/manual/en/language.oop5.overloading php#object.call
24 https://api.cakephp.org

CMS Tutorial - Creating the Articles Controller 25

https://php.net/manual/en/language.oop5.overloading.php#object.call
https://api.cakephp.org

CakePHP Book, Release 4.x

Adding Simple Slug Generation

If we were to save an Article right now, saving would fail as we are not creating a slug attribute, and the column is NOT
NULL. Slug values are typically a URL-safe version of an article’s title. We can use the beforeSave() callback of the
ORM to populate our slug:

<?php
// in src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;

// the Text class

use Cake\Utility\Text;

// the EventInterface class
use Cake\Event\EventInterface;

// Add the following method.

public function beforeSave(EventInterface $event, $entity, $options)

{
if (Sentity->isNew() && !S$entity->slug) {
$sluggedTitle = Text::slug($entity->title);
// trim slug to maximum length defined in schema
$entity->slug = substr($sluggedTitle, 0, 191);

}

This code is simple, and doesn’t take into account duplicate slugs. But we’ll fix that later on.

Add Edit Action

Our application can now save articles, but we can’t edit them. Lets rectify that now. Add the following action to your
ArticlesController:

// in src/Controller/ArticlesController.php
// Add the following method.

public function edit($slug)
{
$article = $this->Articles
->findBySlug($slug)
->firstOrFail();

if ($this->request->is(['post', 'put'])) {
$this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));
return $this->redirect(['action' => 'index']);
}

$this->Flash->error(__('Unable to update your article.'));

(continues on next page)

26 Chapter 2. Quick Start Guide

CakePHP Book, Release 4.x

(continued from previous page)

$this->set('article', $article);

This action first ensures that the user has tried to access an existing record. If they haven’t passed in an $s1ug parameter,
or the article does not exist, a NotFoundException will be thrown, and the CakePHP ErrorHandler will render the
appropriate error page.

Next the action checks whether the request is either a POST or a PUT request. If it is, then we use the POST/PUT data
to update our article entity by using the patchEntity() method. Finally, we call save(), set the appropriate flash
message, and either redirect or display validation errors.

Create Edit Template

The edit template should look like this:

<l-- File: templates/Articles/edit.php -->

<h1>Edit Article</hl>
<?php
echo $this->Form->create($article);
echo $this->Form->control('user_id', ['type' => 'hidden']);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

This template outputs the edit form (with the values populated), along with any necessary validation error messages.

You can now update your index view with links to edit specific articles:

<!-- File: templates/Articles/index.php (edit links added) -->

<hl>Articles</hl>
<p><?= $this->Html->1ink("Add Article", ['action' => 'add']) ?></p>
<table>
<tr>
<th>Title</th>
<th>Created</th>
<th>Action</th>
</tr>

<l-- Here's where we iterate through our $articles query object, printing out article.
—~info -->

<?php foreach ($articles as $article): ?>
<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>

(continues on next page)

CMS Tutorial - Creating the Articles Controller 27

CakePHP Book, Release 4.x

(continued from previous page)

<?= $article->created->format (DATE_RFC850) 7>

</td>

<td>
<?= $this->Html->link('Edit', ['action' => 'edit', $article->slug]l) ?>

</td>

</tr>
<?php endforeach; 7>

</table>

Update Validation Rules for Articles

Up until this point our Articles had no input validation done. Lets fix that by using a validator:

// src/Model/Table/ArticlesTable.php

// add this use statement right below the namespace declaration to import
// the Validator class
use Cake\Validation\Validator;

// Add the following method.
public function validationDefault(Validator $validator): Validator

{
$validator
->notEmptyString('title")
->minLength('title', 10)
->maxLength('title', 255)
->notEmptyString('body"')
->minLength('body', 10);
return $validator;
}

The validationDefault () method tells CakePHP how to validate your data when the save() method is called.
Here, we’ve specified that both the title, and body fields must not be empty, and have certain length constraints.

CakePHP’s validation engine is powerful and flexible. It provides a suite of frequently used rules for tasks like email
addresses, IP addresses etc. and the flexibility for adding your own validation rules. For more information on that
setup, check the Validation documentation.

Now that your validation rules are in place, use the app to try to add an article with an empty title or body to see how
it works. Since we’ve used the Cake\View\Helper\FormHelper: :control () method of the FormHelper to create
our form elements, our validation error messages will be shown automatically.

28 Chapter 2. Quick Start Guide

CakePHP Book, Release 4.x

Add Delete Action

Next, let’s make a way for users to delete articles. Start with a delete() action in the ArticlesController:

// src/Controller/ArticlesController.php
// Add the following method.

public function delete($slug)

{
$this->request->allowMethod(['post', 'delete']);
$article = $this->Articles->findBySlug($slug)->firstOrFail();
if ($this->Articles->delete($article)) {
$this->Flash->success(__('The {0} article has been deleted.', $article->title));
return $this->redirect(['action' => 'index']);
}
}

This logic deletes the article specified by $slug, and uses $this->Flash->success() to show the user a confir-
mation message after redirecting them to /articles. If the user attempts to delete an article using a GET request,
allowMethod () will throw an exception. Uncaught exceptions are captured by CakePHP’s exception handler, and a
nice error page is displayed. There are many built-in Exceptions that can be used to indicate the various HTTP errors
your application might need to generate.

Warning: Allowing content to be deleted using GET requests is very dangerous, as web crawlers could accidentally
delete all your content. That is why we used allowMethod () in our controller.

Because we’re only executing logic and redirecting to another action, this action has no template. You might want to
update your index template with links that allow users to delete articles:

<!-- File: templates/Articles/index.php (delete links added) -->

<hl>Articles</hl1>
<p><?= $this->Html->1ink("Add Article", ['action' => 'add']) ?></p>
<table>
<tr>
<th>Title</th>
<th>Created</th>
<th>Action</th>
</tr>

<!-- Here's where we iterate through our $articles query object, printing out article.
—info -->

<?php foreach ($articles as S$article): 7>
<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>

(continues on next page)

CMS Tutorial - Creating the Articles Controller 29

CakePHP Book, Release 4.x

(continued from previous page)

<?= $article->created->format (DATE_RFC850) 7>
</td>
<td>
<?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) ?>
<?= $this->Form->postLink(
'Delete’,
['"action' => 'delete', $article->slug],
['confirm' => 'Are you sure?'])
7>
</td>
</tr>
<?php endforeach; ?>

</table>

Using postLink () will create a link that uses JavaScript to do a POST request deleting our article.

Note: This view code also uses the FormHelper to prompt the user with a JavaScript confirmation dialog before they
attempt to delete an article.

With a basic articles management setup, we’ll create the basic actions for our Tags and Users tables.

30 Chapter 2. Quick Start Guide

CHAPTER 3

Migration Guides

Migration guides contain information regarding the new features introduced in each version and the migration path
between 3.x and 4.x.

4.0 Upgrade Guide

First, check that your application is running on latest CakePHP 3.x version.

Note: The upgrade tool only works on applications running on latest CakePHP 3.x. You cannot run the upgrade tool
after updating to CakePHP 4.0.

Fix Deprecation Warnings

Once your application is running on latest CakePHP 3.x, enable deprecation warnings in config/app.php:

'"Error' => [
'errorLevel' => E_ALL,

]

Now that you can see all the warnings, make sure these are fixed before proceeding with the upgrade.

31

CakePHP Book, Release 4.x

Upgrade to PHP 8.0

If you are not running on PHP 8.0 or higher, you will need to upgrade PHP before updating CakePHP.

Note: Although CakePHP 4.0 requires a minimum of PHP 7.2, the upgrade tool requires a minimum of PHP 8.0.

Use the Upgrade Tool

Because CakePHP 4 adopts strict mode and uses more typehinting, there are many backwards incompatible changes
concerning method signatures and file renames. To help expedite fixing these tedious changes there is an upgrade CLI
tool:

Warning: The file_rename command and rector rules for cakephp40, and phpunit80 are intended to be run
before you update your application’s dependencies to 4.0. The cakephp4® rector rules will not run correctly if
your application already has its dependencies updated to 4.x or PHPUnit8.

Install the upgrade tool

git clone https://github.com/cakephp/upgrade
cd upgrade

git checkout 4.x

composer install --no-dev

With the upgrade tool installed you can now run it on your application or plugin:

Rename locale files
bin/cake upgrade file_rename locales <path/to/app>

Rename template files
bin/cake upgrade file_rename templates <path/to/app>

Once you’ve renamed your template and locale files, make sure you update App.paths.locales and App.paths.
templates paths in /config/app.php. If needed, refer to the skeleton app config”.

Applying Rector Refactorings

Next use the rector command to automatically fix many deprecated CakePHP and PHPUnit method calls. It is im-
portant to apply rector before you upgrade your dependencies:

bin/cake upgrade rector --rules phpunit80 <path/to/app/tests>
bin/cake upgrade rector --rules cakephp4® <path/to/app/src>

You can also use the upgrade tool to apply new rector rules for each minor version of CakePHP:

Run the rector rules for the 4.0 -> 4.1 upgrade.
bin/cake upgrade rector --rules cakephp4l <path/to/app/src>

25 https://github.com/cakephp/app/blob/4.x/config/app.php

32 Chapter 3. Migration Guides

https://github.com/cakephp/app/blob/4.x/config/app.php

CakePHP Book, Release 4.x

Update CakePHP Dependency

After applying rector refactorings, upgrade CakePHP and PHPUnit with the following composer commands:

php composer.phar require --dev --update-with-dependencies "phpunit/phpunit:A8.0"
php composer.phar require --update-with-dependencies "cakephp/cakephp:4.0.*"

Application.php
Next, ensure your src/Application.php has been updated to have the same method signatures as the one found in
cakephp/app. You can find the current Application.php’® on GitHub.

If you are providing some kind of REST API, don’t forget to include the body-parser-middleware. Finally, you
should consider upgrading to the new AuthenticationMiddleware and AuthorizationMiddleware, if you are still using
AuthComponent.

4.0 Migration Guide

CakePHP 4.0 contains breaking changes, and is not backwards compatible with 3.x releases. Before attempting to
upgrade to 4.0, first upgrade to 3.8 and resolve all deprecation warnings.

Refer to the 4.0 Upgrade Guide for step by step instructions on how to upgrade to 4.0.

Deprecated Features Removed

All methods, properties and functionality that were emitting deprecation warnings as of 3.8 have been removed.

Authentication functionality has been split into standalone plugins Authentication’’ and Authorization’®. The former
RssHelper can be found as standalone Feed plugin® with similar functionality.

Deprecations

The following is a list of deprecated methods, properties and behaviors. These features will continue to function in 4.x
and will be removed in 5.0.0.

Component
* AuthComponent and related classes have been deprecated and will be removed in 5.0.0. You should use the
authentication and authorization libs mentioned above instead.

e SecurityComponent is deprecated. Instead use the FormProtectionComponent for form tampering protec-
tion and the HTTPS Enforcer Middleware for requireSecure feature.

26 https://github.com/cakephp/app/blob/4 x/src/ Application.php
27 https://github.com/cakephp/authentication

28 https://github.com/cakephp/authorization

29 https://github.com/dereuromark/cakephp-feed

4.0 Migration Guide 33

https://github.com/cakephp/app/blob/4.x/src/Application.php
/authentication/2/en/index.html
/authorization/2/en/index.html
https://github.com/cakephp/authentication
https://github.com/cakephp/authorization
https://github.com/dereuromark/cakephp-feed

CakePHP Book, Release 4.x

Filesystem

» This package is deprecated and will be removed in 5.0. It has a number of design problems and fixing this
infrequently used package does not seem worth the effort when there are a great selection of packages already.

ORM

e Using Entity: :isNew() as a setter is deprecated. Use setNew() instead.
e Entity: :unsetProperty() has been renamed to Entity: :unset () to match the other methods.
¢ TableSchemaInterface: :primaryKey () hasbeenrenamed to TableSchemaInterface: :getPrimaryKey().

e Entity::_properties has been renamed to Entity::_fields.

View

e The _serialize, _jsonOptions and _jsonp special view variables of JsonView are now deprecated. Instead
you should use viewBuilder () ->setOption($optionName, $optionValue) to set these options.

e The _serialize, _rootNode and _xmlOptions special view variables of XmlView are now deprecated. In-
stead you should use viewBuilder () ->setOption($optionName, $optionValue) to set these options.

e HtmlHelper::tableHeaders() now prefers header cells with attributes to be defined as a nested list. e.g
['Title', ['class' => 'special']l].

e ContextInterface: :primaryKey () has been renamed to ContextInterface: :getPrimaryKey().
Mailer

e The Cake\Mailer\Email class has been deprecated. Use Cake\Mailer\Mailer instead.

App

* App::path() has been deprecated for class paths. Use \Cake\Core\App: :classPath() instead.

Breaking Changes

In addition to the removal of deprecated features there have been breaking changes made:

Cache

¢ Cake\Cache\Cache: :read() returns null instead of false if the data doesn’t exist.

* Cake\Cache\CacheEngine: :gc() and all implementations of this method have been removed. This method
was a no-op in most cache drivers and was only used in file caching.

34 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Controller
* Cake\Controller\Controller: :referer() now defaults the local parameter to true, instead of false. This
makes using referer headers safer as they will be constrained to your application’s domain by default.

 Controller method name matching when invoking actions is now case sensitive. For example if your controller
method is forgotPassword() then using string forgotpassword in URL will not match as action name.

Console

e Consolelo::styles() has been split into a getStyle() and setStyle(). This also reflects in
ConsoleOutput.

Component

* Cake\Controller\Component\RequestHandlerComponent now sets isAjax as a request attribute in-
stead of request param. Hence you should now use $request->getAttribute('isAjax') instead of
$request->getParam('isAjax"').

* The request body parsing features of RequestHandlerComponent have been removed. You should use the
body-parser-middleware instead.

¢ Cake\Controller\Component\PaginatorComponent now sets paging params info as request attribute in-
stead of request param. Hence you should now use $request->getAttribute('paging') instead of
$request->getParam('paging').

CSRF Middleware

* Generated tokens now contain an HMAC signed with Security.salt. This ensures the tokens were generated by
the same application that receives them. CSRF tokens generated in previous versions will now be rejected by
4.0.6+ as they do not contain the HMAC.

Database
* Type mapping classes in Cake\Database\TypeInterface no longer inherit from Type, and leverage
BatchCastingInterface features now.

» Cake\Database\Type: :map() only functions as a setter now. You must use Type: :getMap () to inspect type
instances.

* Date, Time, Timestamp, and Datetime column types now return immutable time objects by default now.

* BoolType no longer marshals non-empty string values to true and empty string to false. Instead non-boolean
string values are converted to null.

* DecimalType now uses strings to represent decimal values instead of floats. Using floats caused loss in precision.
* JsonType now preserves null when preparing values for database context. In 3.x it would emit 'null’.
e StringType now marshals array values to null instead of an empty string.

* Cake\Database\Connection::setLogger() no longer accepts null to disable logging. Instead pass an
instance of Psr\Log\NullLogger to disable logging.

e The internals of Database\Log\LoggingStatement, Database\QueryLogger and Database\Log\
LoggedQuery have changed. If you extend these classes you will need to update your code.

4.0 Migration Guide 35

CakePHP Book, Release 4.x

e The internals of Cake\Database\Log\LoggingStatement, Cake\Database\QueryLogger and Cake\
Database\Log\LoggedQuery have changed. If you extend these classes you will need to update your code.

e The internals of Cake\Database\Schema\CacheCollection and Cake\Database\SchemaCache have
changed. If you extend these classes you will need to update your code.

* Cake\Database\QueryCompiler now quotes aliases in SELECT clause only when auto-quoting is enabled.
Quoting is retained for Postgres to avoid identifiers being auto-casted to lowercase.

* The database schemas now map CHAR columns to the new char type instead of string.
* SqlServer datetime columns now map to ‘datetime’ types instead of ‘timestamp’ to match names.

* The MySQL, PostgreSQL and SqlServer database schemas now map columns that support fractional seconds to
the new abstract fractional types.

- MySQL
1. DATETIME(1-6) => datetimefractional
2. TIMESTAMP(1-6) => timestampfractional
— PostgreSQL
1. TIMESTAMP => timestampfractional
2. TIMESTAMP(1-6) => timestampfractional
— SqlServer
1. DATETIME2 => datetimefractional
2. DATETIME2(1-7) => "~ “datetimefractional

¢ PostgreSQL schema now maps columns that support time zones to the new abstract time zone types. Specifying
(0) precision does not change the type mapping like it does with regular fractional types above.

— PostgreSQL
1. TIMESTAMPTZ => timestamptimezone
2. TIMESTAMPTZ(0-6) => timestamptimezone
3. TIMESTAMP WITH TIME ZONE => timestamptimezone
4. TIMESTAMP(0-6) WITH TIME ZONE => timestamptimezone

Datasources

* ModelAwareTrait: :$modelClass is now protected.

Error
¢ The internals of error handler classes BaseErrorHandler, ErrorHandler and ConsoleErrorHandler have
changed. If you have extended these classes you should update them accordingly.

* ErrorHandlerMiddleware now takes an error handler class name or instance as constructor argument instead
of exception render class name or instance.

36 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Event

* Calling getSubject () on an event with no subject will now raise an exception.

Http
e Cake\Http\ServerRequest::referer() now defaults the local parameter to true, instead of false. This
makes using referer headers safer as they will be constrained to your application’s domain by default.

¢ The default value of Cake\Http\ServerRequest: :getParam() when a parameter is missing is now null
and not false.

e Cake\Http\Client\Request: :body () has been removed. Use getBody () or withBody () instead.
e Cake\Http\Client\Response: :isO0k() now returns true for all 2xx and 3xx response codes.

* Cake\Http\Cookie\Cookie::getExpiresTimestamp() now returns an integer. This makes it type match
the one used in setcookie().

e Cake\Http\ServerRequest::referer() now returns null when the current request has no referer. Previ-
ously it would return /.

* Cake\Cookie\CookieCollection::get() now throws an exception when accessing a cookie that doesn’t
exist. Use has () to check for cookie existence.

* The signature of Cake\Http\ResponseEmitter: :emit() has changed, it no longer has the 2nd argument.

* The default value of App.uploadedFilesAsObjects is now true. If your application uses file uploads you
can set this flag to false to retain compatibility with the behavior in 3.x.

* The keys of array returned by Cake\Http\Response::getCookie() have changed. expire is changed to
expires and httpOnly to httponly.

HttpSession
* The Session cookie name is no longer set to CAKEPHP by default. Instead the default cookie name defined in your
php.ini file is used. You can use the Session.cookie configuration option to set the cookie name.

» Session cookies now have SameSite attribute set to Lax by default. Check Session Configuration section for
more info.

118n

* JSON encoding Cake\I18n\Date and Cake\I18n\FrozenDate objects now results in strings with only the
date part, in format yyyy-MM-dd instead of earlier format yyyy-MM-dd'T'HH:mm: SSXXX.

Mailer

e Email::set() has been removed. Use Email: :setViewVars() instead.
e Email::createView() has been removed.

e Email::viewOptions() hasbeenremoved. Use $email->getRenderer()->viewBuilder()->setOptions()
instead.

4.0 Migration Guide 37

CakePHP Book, Release 4.x

ORM

* Table: :newEntity() now requires an array as input and enforces validation to prevent accidental saves without

validation being triggered. This means you must use Table: :newEmptyEntity() to create entities without
input.

» Using condition like ['name' => null] for Query: :where() will now raise an exception. In 3.x it would

generate condition like name = NULL in SQL which will always matches 0 rows, thus returning incorrect results.
When comparing with null you must use the IS operator like ['name IS' => null].

 Stopping the Model.beforeSave event with a non-false, non-entity result will now raise an exception. This
change ensures that Table: : save () always returns an entity or false.

 Table will now throw an exception when aliases generated for the table name and column would be truncated by
the database. This warns the user before hidden errors occur when CakePHP cannot match the alias in the result.

e TableLocator: :get() and TableRegistry: :get() now expect that alias names are always CamelCased
by your code. Passing incorrectly cased aliases will result in table and entity classes not being loaded correctly.

* IsUnique rule no longer accepts allowMultipleNulls option which was enabled by default. This was re-
added in 4.2 but disabled by default.

Router

* Routing prefixes created through Router: :prefix() and $routes->prefix() are now CamelCased instead
of under_scored. Instead of my_admin, you need to use MyAdmin. This change normalizes prefixes with other
routing parameters and removes inflection overhead.

* RouteBuilder: :resources() now inflects resource names to dasherized form instead of underscored by de-
fault in URLs. You can retain underscored inflection by using 'inflect' => 'underscore' in $options
argument.

* Router: :plugin() and Router: :prefix() now use plugin/prefix name in dasherized form in URL by de-
fault. You can retain underscored from (or any other custom path) by using 'path' key in $options argument.

* Router maintains reference to only a single instance of request now instead of a stack of re-
quests. Router::pushRequest(), Router: :setRequestInfo() and Router::setRequestContext()
have been removed, use Router::setRequest() instead. Router::popRequest() has been removed.
Router: :getRequest () no longer has a $current argument.

* Router::url() and all routes generation methods (HtmlHelper::1ink(), UrlHelper: :build(), ...) will

not automatically move unknown variables to ? query. Router::url(['_name' => 'route', 'c' =>
1234]) should be rewritten to Router: :url(['_name' => 'route', '?' => ['c' => 1234]1]).
TestSuite

* Cake\TestSuite\TestCase::$fixtures cannot be a comma separated string anymore. It must be an array.

38

Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Utility

e Cake\Utility\Xml: :fromArray() now requires an array for the $options parameter.

e Cake\Filesystem\Folder::copy($to, array $options = []) and Cake\Filesystem\
Folder: :move($to, array $options = []) have now the target path extracted as first argument.

* The readFile option of Xml: :build() is no longer true by default. Instead you must enable readFile to read
local files.

e Inflector::pluralize() now inflects index to indexes instead of indices. This reflects the technical
usage of this plural in the core as well as the ecosystem.

View

» Templates have been moved from src/Template/ to templates/ folder on app and plugin root. With this
change the src folder now only contains files with classes that are autoloaded via composer’s autoloader.

* Special templates folders like Cell, Element, Email, Layout and P1lugin have be renamed to lower case cell,
element, email, layout and plugin respectively. This provides better visual distinction between special
folders and the folders corresponding to your app’s controller names which are in CamelCase form.

* The template extension has also been changed from . ctp to . php. The special extension provided no real benefit
and instead required editors/IDEs to be configured to recognise files with . ctp extension as PHP files.

* You can no longer use false as argument for ViewBuilder::setLayout() or View::setLayout()
to set View::$layout property to false. Instead use ViewBuilder::disableAutoLayout() and
View: :disableAutoLayout () to render a view template without a layout.

e Cake\View\View will re-render views if render () is called multiple times instead of returning null.

e Constants View::NAME_ELEMENT and View::NAME_LAYOUT have been removed. You can use
View: :TYPE_ELEMENT and View: : TYPE_LAYOUT.

Helper

e Cake\View\Helper\PaginatorHelper::hasPage() has had its arguments reversed. This makes it consis-
tent with other paginator methods where the ‘model’ is the second argument.

* Cake\View\Helper\UrlHelper: :build() no longer accepts a boolean for the second parameter. You must
use ['fullBase' => true] instead.

* You must now only use null as 1st argument of FormHelper: :create() to create a form without context.
Passing any other value for which context cannot be inferred will result in an exception being thrown.

e Cake\View\Helper\FormHelper and Cake\View\Helper\HtmlHelper now use HTML data attribute
data-confirm-message to hold the confirmation message for methods which have the confirm option.

e Cake\View\Helper\FormHelper: :button() now HTML entity encodes the button text and HTML attributes
by default. A new option escapeTitle has been added to allow controlling escaping the title separately from
other HTML attributes.

* Cake\View\Helper\SecureFieldTokenTrait has been removed. Its form token data building functionality
is now included in the internal class FormProtector.

e HtmlHelper: :docType () method has been removed. HTML4 and XHTML are now defunct and doctype for
HTMLS5 is short to type out directly.

* The safe option for HtmlHelper: :scriptBlock() and HtmlHelper: :scriptStart() has been removed.
When enabled it generated CDATA tags which are only required for XHTML which is now defunct.

4.0 Migration Guide 39

CakePHP Book, Release 4.x

Log

* Logging related methods like Cake\Log\LogTrait::log(), Cake\Log\Log: :write() etc. now only accept

string for $message argument. This change was necessary to align the API with PSR-3*" standard.

Miscellaneous

Your app’s config/bootstrap.php should now contain a call to Router: : fullBaseUrl (). Consult the latest
skeleton app’s bootstrap.php and update accordingly.

App: :path() now uses $type and templates instead of Template to get templates path. Similarly locales
is used instead of Locale to get path to locales folder.

ObjectRegistry::get() now throws exception if object with provided name is not loaded. You
should use ObjectRegistry::has() to ensure that the object exists in registry. —The magic getter
ObjectRegistry::__get() will continue to return null if object with given name is not loaded.

Locale files have been moved from src/Locale to resources/locales.

The cacert . pem file that was bundled in CakePHP has been replaced by a dependency on composer/ca-bundle®'.

New Features

Console

Core

* Command classes can implement the defaul tName () method to overwrite the conventions based CLI name.

e InstanceConfigTrait::getConfigOrFail() and StaticConfigTrait::getConfigOrFail() were

added. Like other orFail methods these methods will raise an exception when the requested key doesn’t exist
or has a null value.

Database

If your database’s timezone does not match PHP timezone then you can use
DateTime: :setDatabaseTimezone (). See DateTime Type for details.

DateTime: : setKeepDatabaseTimezone () allows you to keep the database time zone in the DateTime objects
created by queries.

Cake\Database\Log\LoggedQuery now implements JsonSerializable.

Cake\Database\Connection now allows using any PSR-3 logger. As a result those using the standalone
database package are no longer forced to use the cakephp/log package for logging.

Cake\Database\Connection now allows using any PSR-16 cacher. As a result those using the stan-
dalone database package are no longer forced to use the cakephp/cache package for caching. New meth-
ods Cake\Database\Connection: :setCacher() and Cake\Database\Connection: :getCacher() have
been added.

30 https://www.php-fig.org/pst/psr-3/
31 https://packagist.org/packages/composer/ca-bundle

40

Chapter 3. Migration Guides

https://www.php-fig.org/psr/psr-3/
https://packagist.org/packages/composer/ca-bundle

CakePHP Book, Release 4.x

e Cake\Database\ConstraintsInterface was extracted from Cake\Datasource\FixturelInterface.
This interface should be implemented by fixture implementations that support constraints, which from our expe-
rience is generally relational databases.

* The char abstract type was added. This type handles fixed length string columns.

e Thedatetimefractional and timestampfractional abstract types were added. These types handle column
data types with fractional seconds.

* SqlServer schemas now support default values with functions in them like SYSDATETIME().

* The datetimetimezone and timestamptimezone abstract types were added. These types handle column data
types with time zone support.

Error

* If an error is raised by a controller action in a prefixed route, ErrorController will attempt to use a prefixed
error template if one is available. This behavior is only applied when debug is off.

Http

* You can use cakephp/http without including the entire framework.

+ CakePHP now supports the PSR-15: HTTP Server Request Handlers*” specification. As a consequence the mid-
dlewares now implement Psr\Http\Server\MiddlewareInterface. CakePHP 3.x style invokable double
pass middlewares are still supported for backwards compatibility.

 Cake\Http\Client now follows PSR-18: HTTP Client* specifications.

e Cake\Http\Client\Response: :isSuccess() was added. This method returns true if the response status
code is 2xx.

* CspMiddleware was added to make defining Content Security Policy headers simpler.
* HttpsEnforcerMiddleware was added. This replaced the requireSecure feature of SecurityComponent.

* Cookies now support the SameSite attribute.

118n

* Date and FrozenDate now respect the time zone parameter for various factory helpers like today('Asia/
Tokyo').

Mailer

* Email message generation responsibility has now been transferred to Cake\Mailer\Renderer. This is mainly
an architectural change and doesn’t impact how Email class is used. The only difference is that you now need to
use Email::setViewVars() instead of Email::set () to set template variables.

32 https://www.php-fig.org/pst/pst- 15/
33 https://www.php-fig.org/pst/pst- 18/

4.0 Migration Guide 41

https://www.php-fig.org/psr/psr-15/
https://www.php-fig.org/psr/psr-18/

CakePHP Book, Release 4.x

ORM

Table: :saveManyOrFail () method has been added that will throw PersistenceFailedException with
the specific entity that failed in case of an error. The entities are saved transaction safe.

Table: :deleteMany() and Table::deleteManyOrFail() methods have been added for removing many
entities at once including callbacks. The entities are removed transaction safe.

Table: :newEmptyEntity () has been added to create a new and empty entity object. This does not trigger any
field validation. The entity can be persisted without validation error as an empty record.

Cake\ORM\RulesChecker: :isLinkedTo() and isNotLinkedTo() were added. These new application rules
allow you to ensure an association has or doesn’t have related records.

A new type class DateTimeFractionalType has been added for datetime types with microsecond precision.
You can opt into using this type by adding it to the TypeFactory as the default datetime type or re-mapping
individual columns. See the Database migration notes for how this type is automatically mapped to database

types.
A new type class DateTimeTimezoneType has been added for datetime types with time zone support. You can

opt into using this type by adding it to the TypeFactory as the default datetime type or re-mapping individual
columns. See the Database migration notes for how this type is automatically mapped to database types.

Routing

Cake\Routing\Asset was added. This class exposes asset URL generation in a static interface similar to
Router::url(). See Generating Asset URLs for more information.

TestSuite

TestSuite\EmailTrait::assertMailContainsAttachment () was added.

Utility

Hash: :sort () now accepts the SORT_ASC and SORT_DESC constants in the direction parameter.

Validation

View

Validation: :dateTime () now accepts values with microseconds.

FormHelper now generates HTMLS5 validation messages for fields marked as “notEmpty” in an entity’s ORM
table class. This feature can be toggled with the autoSetCustomValidity class configuration option.

FormHelper now generates native HTMLS input tags for datetime fields. Check the Form Helper page for more
details. If you need to retain the former markup, a shimmed FormHelper can be found in Shim plugin®** with the
old behavior/generation (4.x branch).

FormHelper now sets the default step size to seconds for datetime widgets with a time component. The default
is milliseconds if the field is from the new datetimefractional or timestampfractional database types.

34 https://github.com/dereuromark/cakephp-shim

42

Chapter 3. Migration Guides

https://github.com/dereuromark/cakephp-shim

CakePHP Book, Release 4.x

4.1 Migration Guide

CakePHP 4.1 is an API compatible upgrade from 4.0. This page outlines the deprecations and features added in 4.1.

Upgrading to 4.1.0

You can use composer to upgrade to CakePHP 4.1.0:

php composer.phar require --update-with-dependencies "cakephp/cakephp:4.1.x"

Deprecations

4.1 introduces a few deprecations. All of these features will continue for the duration of 4.x but will be removed in 5.0.
You can use the upgrade tool to automate updating deprecated features:

bin/cake upgrade rector --rules cakephp4l <path/to/app/src>

Note: This only updates CakePHP 4.1 changes. Make sure you apply CakePHP 4.0 changes first.

Controller

* The sortWhitelist option of PaginatorComponent has been deprecated. Use sortableFields instead.

e The whitelist option of PaginatorComponent has been deprecated. Use allowedParameters instead.

Database

e TableSchema: :getPrimary () was deprecated. Use getPrimaryKey () instead.
e Cake\Database\Schema\BaseSchema was renamed to Cake\Database\Schema\SchemaDialect.

¢ Cake\Database\Schema\MysqlSchema was renamed to Cake\Database\Schema\MysqlSchemaDialect
and marked as internal.

¢ Cake\Database\Schema\SqliteSchema was renamed to Cake\Database\Schema\
SqgliteSchemaDialect and marked as internal.

¢ Cake\Database\Schema\SglserverSchema was renamed to Cake\Database\Schema\
SglserverSchemaDialect and marked as internal.

* Cake\Database\Schema\PostgresSchema was renamed to Cake\Database\Schema\
PostgresSchemaDialect and marked as internal.

* DateTimeType: :setTimezone () was deprecated. use setDatabaseTimezone() instead.

e The magic method signature for FunctionBuilder::cast([...]) 1is deprecated. Use
FunctionBuilder::cast('field', 'type') instead.

e Cake\Database\Expression\Comparison was renamed to Cake\Database\Expression\
ComparisonExpression.

4.1 Migration Guide 43

CakePHP Book, Release 4.x

Datasource

* The sortWhitelist option of Paginator has been deprecated. Use sortableFields instead.

e The whitelist option of Paginator has been deprecated. Use allowedParameters instead.

Form

e Form: :schema() has been deprecated. Use Form: : getSchema() or Form: : setSchema () instead.

Http

e CsrfProtectionMiddleware::whitelistCallback() has been deprecated. Use skipCheckCallback()
instead.

* ServerRequest::input() is deprecated. Use (string) $request->getBody() to get the raw PHP input
as string; use BodyParserMiddleware to parse the request body so that it’s available as array/object through
$request->getParsedBody ()

e The httpOnly option for CsrfProtectionMiddleware is now httponly to improve consistency with cookie
creation elsewhere in the framework.

ORM
e QueryExpression::or_() and QueryExpression: :and_() have been deprecated. Use or() and and()
instead.
Routing
* Cake\Routing\Exception\RedirectException 1is deprecated. Use Cake\Http\Exception\

RedirectException instead.

View

e Form/ContextInterface: :primaryKey() was deprecated. Use getPrimaryKey () instead.

Behavior Changes

While the following changes do not change the signature of any methods they do change the semantics or behavior of
methods.

44 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Database

Http

ORM

MySQL: The display widths for integers now are ignored except for TINYINT (1) which still maps to boolean
type. Display widths are deprecated in MySQL 8.

Uploaded file normalization has been moved from ServerRequest to ServerRequestFactory. This
could impact your tests if you are creating request objects that use nested file upload arrays. Tests using
IntegrationTestCaseTrait should not need to change.

Cake\ORM\TableRegistry has been deprecated. Use Cake\ORM\Locator\
LocatorAwareTrait::getTableLocator() or Cake\Datasource\FactoryLocator::get('Table"')
to get the table locator instance instead. Classes like Controller, Command, TestCase al-

ready use Cake\ORM\Locator\LocatorAwareTrait so in those classes you can simply use
$this->getTableLocator()->get('ModelName').

BelongsToMany associations now respect the bindingKey set in the junction table’s BelongsTo association. Pre-
viously, the target table’s primary key was always used instead.

Association names are now properly case-sensitive and must match when referenced in functions like
Query: :contain() and Table: :hasMany().

Cake\ORM\AssociationCollection no longer lower cases association names to generate keys for the object
map it maintains internally.

TestSuite

View

TestCase: :setAppNamespace () now returns the previous app namespace for easier save and restore.

GroupsFixture was renamed to SectionsFixture due to MySQL reserved keyword changes.

FormHelper now has its default value sources set to data, context instead of context. If you use
setValueSources() to changes the value sources you may need to update your code.

The FormHelper Context classes provided by CakePHP no longer take a $request object in their constructor
anymore.

New Features

Datasource

EntityInterface::getAccessible() has been added.

4.1 Migration Guide 45

CakePHP Book, Release 4.x

Console
* When the NO_COLOR environment variable is set all output will not include ANSI escape codes for colours. See
no-color.org® for more information.

e Commands now have the same possibility to disable interactive mode Shells had using
$io->setInteractivate(false). Here prompting will be avoided where applicable and the defaults
used. Using --quiet/-q can now also invoke this directly for all existing commands.

Database

* MySQL 8 is supported and tested.

* AggregateExpression was added to represent aggregate SQL functions.
FunctionsBuilder: :aggregate() can be used to wrap new aggregate SQL functions.

* Window function support was added for any aggregate expression. AggregateExpression wraps the window
expression for call chaining.

* Aggregate functions now support FILTER (WHERE ...) clauses.

* Postgres and SQLServer now support HAVING conditions on aggregate functions with aliases.

e FunctionsBuilder: :cast() was added.

e Common Table Expression (CTE) support was added. CTEs can be attached to a query using Query: :with().

* Query: :orderAsc() and Query: :orderDesc() now accept Closure’s as their field enabling you to use build
complex order expressions with the provided QueryExpression object.

Error

¢ debug() and Debugger: :printVar () now emit HTML in web contexts, and ANSI styled output in CLI con-
texts. Output of cyclic structures and repeated objects is much simpler. Cyclic objects are only dumped once and
use reference ids to point back to the full value.

* Debugger: :addEditor () and Debugger: :setEditor () have been added. These methods let you add addi-
tional editor formats and set your preferred editor respectively.

* The Debugger.editor configure value has been added. This value is used as the preferred editor link format.

e ErrorHandlerMiddleware now handles Http\Exception\RedirectException and converts those excep-
tions into HTTP redirect responses.

* BaseErrorHandler now uses the configured error logger to log PHP warnings and errors.

* ErrorLoggerInterface was added to formalize the interface required for custom error loggers.

35 https://no-color.org/

46 Chapter 3. Migration Guides

https://no-color.org/

CakePHP Book, Release 4.x

Form

e Form::set() was added. This method lets you add additional data to the form object similar to how
View::set() or Controller::set() works.

Http
* BaseApplication::addOptionalPlugin() was added. This method handles loading plugins, and handling
errors for plugins that may not exist because they are dev dependencies.

e Cake\Http\Exception\RedirectException was added. This exception replaces the RedirectException
in the Routing package and can be raised anywhere in your application to signal to the error handling middleware
to create a redirect response.

e CsrfProtectionMiddleware can now create cookies with the samesite attribute set.
* Session::read() now allows default values to be set with the second parameter.

* Session::readOrFail () has been added as convenience wrapper around read () operations where you want
an exception when the key is missing.

118n
* The setJsonEncodeFormat method on Time, FrozenTime, Date and FrozenDate now accepts a callable that
can be used to return a custom string.

* Lenient parsing can be disabled for parseDateTime () and parseDate() using disableLenientParsing().
The default is enabled - the same as IntIDateFormatter.

Log

* Log messages can now contain {foo} style placeholders. These placeholders will be replaced by values from
the $context parameter if available.

ORM
e The ORM now triggers an Model .afterMarshal event which is triggered after each entity is marshaled from
request data.

* You can use the locale finder option to modify the locale of a single find call when using the
TranslateBehavior.

* Query::clearResult() was added. This method lets you remove the result from a query so you can re-execute
it.

* Table::delete() will now abort a delete operation and return false if a dependent association fails to delete
during cascadeCallback operations.

* Table: :saveMany () will now trigger the Model .afterSaveCommit event on entities that are saved.

4.1 Migration Guide 47

CakePHP Book, Release 4.x

Routing

* A convenience function urlArray() has been introduced to quickly generate URL arrays from a route path
string.

TestSuite

* FixtureManager: :unload() no longer truncates tables at the end of a test whilst fixtures are unloaded. Tables
will still be truncated during fixture setup. You should see faster test suite runs as fewer truncation operations
are being done.

* Email body assertions now include the email contents in their failure messages making tests easier to debug.

* TestCase::addFixture() has been added to allow chainable fixture setup, that is also auto-completable in
IDEs.

View

e Added TextHelper: :slug(). This method delegates to Cake\Utility\Text::slug().
* Added ViewBuilder: :addHelper () as chainable wrapper method to add helpers.

¢ Added HtmlHelper: :linkFromPath() and UrlHelper: :urlFromPath() to build links and URLs from
route paths more easily and with IDE support in the View layer.

Utility

* Hash::combine () now accepts null for the $keyPath parameter. Providing null will result in a numerically
indexed output array.

4.2 Migration Guide

CakePHP 4.2 is an API compatible upgrade from 4.0. This page outlines the deprecations and features added in 4.2.

Upgrading to 4.2.0

You can use composer to upgrade to CakePHP 4.2.0:

php composer.phar require --update-with-dependencies "cakephp/cakephp:4.2.x"

Deprecations

4.2 introduces a few deprecations. All of these features will continue for the duration of 4.x but will be removed in 5.0.
You can use the upgrade tool to automate updating usage of deprecated features:

bin/cake upgrade rector --rules cakephp42 <path/to/app/src>

48 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Note: This only updates CakePHP 4.2 changes. Make sure you apply CakePHP 4.1 changes first.

A new configuration option has been added to disable deprecations on a path by path basis. See Deprecation Warnings
for more information.

Core
* Exception: :responseHeader () is now deprecated. Users must use HttpException: : setHeaders() when

setting HTTP response headers. Application and plugin exceptions that set response headers should be updated
to subclass HttpException.

e Cake\Core\Exception\Exception was renamed to Cake\Core\Exception\CakeException.
Controller

e Controller::setAction() is deprecated. Either update your code to use redirects, or call the required action
as a method.

Database

¢ Cake\Database\Exception was renamed to Cake\Database\Exception\DatabaseException.

ORM

* TableLocator::allowFallbackClass() was added. This method lets you disable automatically generated
fallback table classes. Disabling is currently opt-in, but will become the default in the future.

* ORM\Behavior: :getTable() has been deprecated. Use table() instead. This change makes method names
dissimilar between ORM\Table as the return value of these methods is different.

Behavior Changes

While the following changes do not change the signature of any methods they do change the semantics or behavior of
methods.

Collection

e Collection: :groupBy() and Collection: : indexBy () now throw an exception when the path does not exist
or the path contains a null value. Users who need to support null should use a callback to return a default value
instead.

4.2 Migration Guide 49

CakePHP Book, Release 4.x

Controller

* Controller::$components was marked protected. It was previously documented as protected. This should
not impact most application code as implementations can change the visibility to public.

Component

* FlashComponent: :set() now sets the element option to error by default when used with an Exception
instance.

Database

e The TimeType will now correctly marshall values in the H: i format. Previously these values would be cast to
null after validation.

* Sqlserver driver will retry connect after receiving “Azure Sql Database pausd” errors.
Error
* ExceptionRenderer now uses the exception code as the HTTP status code for HttpException

only. Other exceptions that should return a non-500 HTTP code are controlled by
ExceptionRenderer: :$exceptionHttpCodes.

Note: If you need to restore the previous behavior until your exceptions are updated, you can create a cus-
tom ExceptionRenderer and override the getHttpCode () function. See Custom ExceptionRenderer for more
information.

* ConsoleErrorHandler now uses the exception code as the exit code for ConsoleException only.

Validation

e Validation::time() will now reject a string if minutes are missing. Previously, this would accept hours-only
digits although the api documentation showed minutes were required.

e Validation: :comparison() (and as a result other comparison methods which use it) now only work for
numeric string. Earlier it relied on pretty brittle behavior of casting any given value to float for comparison
which could lead of incorrect results for non-numeric strings.

Breaking Changes

Behind the API, some breaking changes are necessary moving forward. They usually only affect tests.

50 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

118n

* The dependency on Aura.Intl*® package has been removed as it is no longer maintained. If your app/plugin

has custom translation loaders then they need to now return a Cake\I18n\Package instance instead of Aura\
Intl\Package. Both the classes are API compatible so you won’t need to change anything else.

Testing
¢ The fixture names around UUIDs have been consolidated (UuidItemsFixture, BinaryUuidItemsFixture).

If you use any of them, make sure you updated these names. The UuidportfoliosFixture was unused in core
and removed now.

New Features

We’re adding a new process to enable us to ship features, collect feedback from the community and evolve those features.
We’re calling this process Experimental Features.

Core

» Experimental support for a /development/dependency-injection container was added.

Console
e Consolelo: :comment() was added. This method formats text with a blue foreground like comments in the
generated help text.

* TableHelper now supports a <text-right> formatting tag, which aligns cell content with the right edge
instead of the left.

Database

* SqlServer now creates client-side buffered cursors for prepared statements by default. This was changed to fix
significant performance issues with server-side SCROLL cursors. Users should see a performance boost with
most results sets.

Warning: For users with large query results, this may cause an error allocating the client-side buffer
unless Query: :disableBufferedResults() is called. The maximum buffer size can be configured in
php.ini with pdo_sqlsrv.client_buffer_max_kb_size. See https://docs.microsoft.com/en-us/sql/
connect/php/cursor-types-pdo-sqlsrv-driver?view=sql-server-ver 1 5#pdo_sqlsrv-and-client-side-cursors for
more information.

* Query::isResultsCastingEnabled() was added to get the current result casting mode.
» StringExpression was added to use string literals with collation.

e IdentifierExpression now supports collation.

36 https://github.com/auraphp/Aura.Intl

4.2 Migration Guide 51

https://github.com/auraphp/Aura.Intl
https://docs.microsoft.com/en-us/sql/connect/php/cursor-types-pdo-sqlsrv-driver?view=sql-server-ver15#pdo_sqlsrv-and-client-side-cursors
https://docs.microsoft.com/en-us/sql/connect/php/cursor-types-pdo-sqlsrv-driver?view=sql-server-ver15#pdo_sqlsrv-and-client-side-cursors

CakePHP Book, Release 4.x

Http

e Cake\Http\Middleware\SessionCsrfProtectionMiddleware was added. Instead of storing CSRF tokens
in a cookie, this middleware stores tokens in the session. This makes CSRF tokens user scoped and time based
with the session, offering enhanced security over cookie based CSRF tokens. This middleware is a drop in
replacement for the CsrfProtectionMiddleware.

e The hal+json, hal+xml, and jsonld types were added to Response making them usable with withType().

e Client::createFromUrl() was added. This method can be used to create HTTP clients scoped to specific
domains including a base path.

* A new utility class Cake\Http\FlashMessage was added whose instance is available through
ServerRequest::getFlash(). The class similar to the FlashComponent allows you to set flash mes-
sages. It can be particularly useful for setting flash messages from middlewares.

ORM

e Table: :subquery() and Query: : subquery () were added. These methods lets you create query objects that
don’t have automatic aliasing. This helps reduce overhead and complexity of building subqueries and common
table expressions.

¢ IsUnique rule now accepts the allowMultipleNulls option that was available in 3.x. This is disabled by
default unlike in 3.x.

TestSuite

e EmailTrait::assertMailSubjectContains() and assertMailSubjectContainsAt () were added.

e mockService() was added to ConsoleIntegrationTestTrait and IntegrationTestCaseTrait. This
method enables services injected with the /development/dependency-injection container to be replaced with mock
or stub objects.

View

* Context classes now include the comment, null, and defaul t metadata options in the results of attributes().
* ViewBuilder: :addHelper () now accepts an $options parameter to pass options into helper constructors.

* The assetUrlClassName option was added to UrlHelper. This option lets you replace the default asset URL
resolver with an application specific one. This can be useful if you need to customize asset cache busting param-
eters.

4.3 Migration Guide

CakePHP 4.3 is an API compatible upgrade from 4.0. This page outlines the deprecations and features added in 4.3.

52 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Upgrading to 4.3.0

You can can use composer to upgrade to CakePHP 4.3.0:

php composer.phar require --update-with-dependencies "cakephp/cakephp:+4.3"

Deprecations

4.3 introduces a few deprecations. All of these features will continue for the duration of 4.x but will be removed in 5.0.
You can use the upgrade tool to automate updating usage of deprecated features:

bin/cake upgrade rector --rules cakephp43 <path/to/app/src>

Note: This only updates CakePHP 4.3 changes. Make sure you apply CakePHP 4.2 changes first.

A new configuration option has been added to disable deprecations on a path by path basis. See Deprecation Warnings
for more information.

Connection

e Connection: :supportsDynamicConstraints() was deprecated now that fixtures don’t try to dynamically
drop and create constraints.

Controller

e The components’ Controller.shutdown event callback has been renamed from shutdown to afterFilter
to match the controller one. This makes the callbacks more consistent.

Database

» Using mutable datetime classes with DateTimeType and other time related type classes is deprecated. Hence
methods DateTimeType: :useMutable(), DateTimeType: :useImmutable () and similar methods in other
type classes are deprecated.

e DriverInterface: :supportsQuoting() and DriverInterface::supportSavepoints() are now
deprecated in favor of DriverInterface::supports() which accepts feature constants defined in
DriverInterface.

e DriverInterface: :supportsDynamicConstraints() was deprecated now that fixtures don’t try to dynam-
ically drop and create constraints.

4.3 Migration Guide 53

CakePHP Book, Release 4.x

118n
* The datetime classes Time and Date are deprecated. Use their immutable alternatives FrozenTime and
FrozenDate instead.
Log
* FileLog moved the dateFormat config option to Defaul tFormatter.
¢ ConsoleLog moved the dateFormat config option to DefaultFormatter.
* SyslogLog moved the format config option to LegacySyslogFormatter. Defaults to DefaultFormatter
Now.
Middleware

“Double pass” middlewares, i.e. classes with __invoke($request, $response, $next) method are dep-
recated. Instead use Closure with signature function($request, S$handler) or classes which implement
Psr\Http\Server\MiddlewareInterface instead.

Network

ORM

Socket: : $connected is deprecated. Use isConnected() instead.
Socket: :$description is deprecated.
Socket: :$encrypted is deprecated. Use isEncrypted() instead.

Socket: :$lastError is deprecated. Use lastError () instead.

ModelAwareTrait::loadModel () is deprecated. Use the new LocatorAwareTrait::fetchTable()
instead. For example, in controllers you can do $this->fetchTable() to get the default ta-
ble instance or use $this->fetchTable('Foos') for a non-default table. You can set the
LocatorAwareTrait::$defaultTable property to specify the default table alias for fetchTable().
But be aware that LocatorAwareTrait: : fetchTable() does not create a property with the name of the table
alias on the calling object, e.g. $this->Articles, as ModelAwareTrait::loadModel () does.

Query proxying all Resul tSetInterface methods (including "CollectionInterface), which forces fetch-
ing results and calls the proxied method on the results, is now deprecated. An example of the deprecated us-
age is $query->combine('id', 'title');. This should be updated to $query->all()->combine('id’,
'title'); instead.

Passing a validator object to Table: : save () viathe validate option is deprecated. Define the validator within
the table class or use setValidator () instead.

Association: :setName() is deprecated. Association names should be defined when the association is.

QueryExpression: :addCase() is deprecated. Use case() instead. The ['value' => 'literal'] and
['column' => 'identifier'] syntax is not supported in the new fluent case builder, inserting raw SQL or
identifiers requires to explicitly use expressions.

54

Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Routing

* Colon prefixed route placeholders like :controller are deprecated. Use braced placeholders like
{controller}?} instead.

TestSuite

e TestFixture::$fields and TestFixture: :$import are deprecated. You should convert your application
to the new fixture system.

* TestCase::$dropTables is deprecated. Dropping tables during a test run is not compatible with the new
migration/schema dump based fixtures and will be removed in 5.0.

View

» FormHelper methods’ non-associative options (for example, ['disabled']) are now deprecated.

e Second argument $merge of ViewBuilder::setHelpers() has been deprecated in favor of dedicated
ViewBuilder: :addHelpers() method to cleanly separate merge from overwrite operation.

Behavior Changes

While the following changes do not change the signature of any methods they do change the semantics or behavior of
methods.

Collection

* Renamed $preserveKeys parameter to $keepKeys with same implementation.

Command

e cake i18n extract no longer has a --relative-paths option. This option is on by default now.

Core

e Configure: :load() will now raise an exception when an invalid configuration engine is used.

Database
* ComparisonExpression no longer wraps generated IdentifierExpression sql in (). This affects
Query: :where() and anywhere else a ComparisonExpression is generated.

* The SQLite implementation of 1istTables() now returns tables and views. This change aligns SQLite with
other database dialects.

4.3 Migration Guide 55

CakePHP Book, Release 4.x

Datasource

¢ Switched ConnectionManager::alias() $alias and $source parameter names to match what they are.
This only affects documentation and named parameters.

Http

e Http\Client now uses ini_get ('user_agent') with ‘CakePHP’ as a fallback for its user-agent.

ORM
e Aligned Entity::isEmpty() and Entity::hasValue() to treat ‘0’ as a non-empty value. This aligns the
behavior with documentation and original intent.

* TranslateBehavior entity validation errors are now set in the _translations.{lang} path instead of
{lang}. This normalizes the entity error path with the fields used for request data. If you have forms that
modify multiple translations at once, you may need to update how you render validation errors.

» The types specified in function expressions now take precedence over default types set for columns when selecting
columns. For example, using $query->select(['id"' => $query->func()->min('id"')]) the value for id
in fetched entity will be float instead of integer.

Routing

* Router::connect(),Router: :prefix(),Router: :plugin() and Router: : scope () are deprecated. Use
the corresponding non-static RouteBuilder methods instead.

* RouteBuilder: :resources() now generates routes that use ‘braced’ placeholders.
TestSuite

* TestCase: :deprecated() now asserts that at least one deprecation warning was triggered by the callback.

Validation

e Validator: :setProvider() now raises an exception when a non-object, non-string provider name is used.
Previously there would be no error, but the provider would also not work.

View

* The $vars parameter of ViewBuilder: :build() is deprecated. Use setVar () instead.

e HtmlHelper: :script() and HtmlHelper: :css() now escape absolute URLs that include a scheme.

56 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Breaking Changes

Behind the API, some breaking changes are necessary moving forward. They usually only affect tests.

Log

* BaseLog::_getFormattedDate() and dateFormat config were removed since the message formatting logic
was moved into log formatters.

View

e TimeHelper: :fromString() now returns an instance of FrozenTime instead of Time.

New Features

Controller

e Controller::middleware() was added which allows you to define middleware for a single controller only.
See Controller Middleware for more information.

* Controllers now support action parameters with £loat, int, bool or array type declarations. Boolean passed
parameters must be either @ or 1.

Core

* deprecationWWarning() no longer emits duplicate notices. Instead only the first instance of a deprecation will
be displayed. This improves the readability of test output, and visual noise in an HTML context. You can restore
duplicate notice output by setting the Error.allowDuplicateDeprecations to true in your app_local.

php.

» CakePHP’s dependency on league/container was bumped to A4.1.1. While the DI container is marked as
experimental, this upgrade could require you to upgrade your service provider definitions.

Database

* Database mapping types can now implement Cake\Database\Type\ColumnSchemaAwareInterface to
specify column sql generation and column schema reflection. This allows custom types handle non-standard
columns.

* Logged queries now use TRUE and FALSE for postgres, sqlite and mysql drivers. This makes it easier to copy
queries and run them in an interactive prompt.

* The DateTimeType can now convert request data from the user’s timezone to the application timezone. See
Converting Request Data from the User’s Timezone for more information.

e JsonType: :setEncodingOptions() was added. This method lets you define json_encode() options for
when the ORM serializes JSON when persisting data.

¢ Added DriverInterface: : supports() which consolidates all feature checks into one function. Drivers can
support custom feature names or any of the feature constants:

— FEATURE_CTE
— FEATURE_JSON

4.3 Migration Guide 57

CakePHP Book, Release 4.x

— FEATURE_QUOTE

— FEATURE_SAVEPOINT

— FEATURE_WINDOW
e Added DriverInterface::inTransaction() which reflects the status returned by PDO: : inTranaction().
¢ A fluent builder for CASE, WHEN, THEN statements has been added.

* The listTablesWithoutViews () was added to SchemaCollection and Driver Dialects. This method returns
the list of tables excluding views. This is primarily used to truncate tables in tests.

Form
e Form: :execute() now accepts an $options parameter. This parameter can be used to choose which validator
is applied or disable validation.

* Form::validate() now accepts a $validator parameter which chooses the validation set to be applied.

Http
* The CspMiddleware now sets the cspScriptNonce and cspStyleNonce request attributes which streamlines
the adoption of strict content-security-policy rules.

e Client: :addMockResponse() and clearMockResponses() were added.

* Log engines now use formatters to format the message string before writing. This can be configured with the
formatter config option. See the Logging Formatters section for more details.

* JsonFormatter was added and can be set as the formatter option for any log engine.

ORM

* Queries that contain() HasMany and BelongsToMany associations now propagate the status of result casting.
This ensures that results from all associations are either cast with type mapping objects or not at all.

e Table now includes 1abel in the list of fields that are candidates for displayField defaults.

¢ Added Query: :whereNotInListOrNull() and QueryExpression: :notInOrNull () for nullable columns
since null != value is always false and the NOT IN test will always fail when the column is null.

e LocatorAwareTrait::fetchTable() was added. This allows you to use $this->fetchTable() to get a
table instance in classes which use the trait, like controllers, commands, mailers and cells. You can set the
LocatorAwareTrait::$defaultTable property to specify the default table alias.

58 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

TestSuite

e IntegrationTestTrait: :enableCsrfToken() now lets you use custom CSRF cookie/session key names.
e HttpClientTrait was added to make writing HTTP mocks easier. See 7esting for more information.

* A new fixture system has been introduced. This fixture system separates schema and data enabling you to re-use
your existing migrations to define test schema. The Fixture Upgrade guide covers how to upgrade.

View

e HtmlHelper::script() and HtmlHelper::css() now add the nonce attribute to generated tags when the
cspScriptNonce and cspStyleNonce request attributes are present.

* FormHelper: :control() will now populate the aria-invalid, aria-required, and aria-describedby
attributes based on metadata from the validator. The aria-1label attribute will be set if you disable the automatic
label element and provide a placeholder.

e ViewBuilder: :addHelpers () has been added to cleanly separate merge from overwrite operation.

4.4 Migration Guide

CakePHP 4.4 is an API compatible upgrade from 4.0. This page outlines the deprecations and features added in 4.4.

Upgrading to 4.4.0

You can can use composer to upgrade to CakePHP 4.4.0:

php composer.phar require --update-with-dependencies "cakephp/cakephp:+4.4"

Note: CakePHP 4.4 requires PHP 7.4 or greater.

Deprecations

4.4 introduces a few deprecations. All of these features will continue for the duration of 4.x but will be removed in 5.0.

You can use the upgrade tool to automate updating usage of deprecated features:

bin/cake upgrade rector --rules cakephp44 <path/to/app/src>

Note: This only updates CakePHP 4.4 changes. Make sure you apply CakePHP 4.3 changes first.

A new configuration option has been added to disable deprecations on a path by path basis. See Deprecation Warnings
for more information.

4.4 Migration Guide 59

CakePHP Book, Release 4.x

Controller

* The paginator option for Controller: :paginate() is deprecated. Instead use the className option.

* The paginator option for PaginatorComponent is deprecated. Instead use the className option.

Datasource
* FactoryLocator: :add() no longer accepts closure factory functions. Instead you must pass an instance of the
LocatorInterface.

e Cake\Datasource\Paging\Paginator has been renamed to Cake\Datasource\Paging\
NumericPaginator.

ErrorHandler & ConsoleErrorHandler

The ErrorHandler and ConsoleErrorHandler classes are now deprecated. They have been replaced by the
new ExceptionTrap and ErrorTrap classes. The trap classes provide a more extensible and consistent error &
exception handling framework. To upgrade to the new system you can replace the usage of ErrorHandler and
ConsoleErrorHandler (such as in your config/bootstrap.php) with:

use Cake\Error\ErrorTrap;
use Cake\Error\ExceptionTrap;

(new ErrorTrap(Configure::read('Error')))->register();
(new ExceptionTrap(Configure::read('Error')))->register();
If you have defined the Error.errorLogger configure value, you will need to use Error.logger instead.

See the Error & Exception Handling for more detailed documentation. Additionally the following methods related to
the deprecated error handling system are deprecated:

¢ Debugger: :outputError ()

* Debugger: :getOutputFormat ()

¢ Debugger: :setOutputFormat ()

¢ Debugger: :addFormat ()

* Debugger: :addRenderer ()

e ErrorLoggerInterface::log(). Implement logException() instead.

* ErrorLoggerInterface: :logMessage(). Implement logError() instead.

RequestHandlerComponent
The RequestHandlerComponent has been soft-deprecated. Like AuthComponent using RequestHandler will not
trigger runtime deprecations but it will be removed in 5.0.

* Replace accepts() with $this->request->accepts().

* Replace requestedWith() with a custom request detector (for example, $this->request->is('json")).

* Replace prefers() with ContentTypeNegotiation. See Content Type Negotiation.

* Replace renderAs () with controller content negotiation features on Controller.

60 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

* Replace checkHttpCache option with Checking HTTP Cache.
» Use Content Type Negotiation instead of defining view class mappings in RequestHandlerComponent.

The automatic view switching for ‘ajax’ requests offered by RequestHandlerComponent is deprecated. Instead you
can either handle this in a controller action or Controller.beforeRender callback with:

// In a controller action, or in beforeRender.
if ($this->request->is('ajax')) {
$this->viewBuilder()->setClassName('Ajax');

¥

Alternatively, you can have the HTML view class switch to the ajax layout as required in your controller actions or
view templates.

PaginatorComponent

The PaginatorComponent is deprecated and will be removed in 5.0. Use the Controller: : $paginate property or
the $settings parameter of Controller: :paginate() method to specify required paging settings.

ORM

e SaveOptionsBuilder was deprecated. Use an array for options instead.

Plugins

* Plugin class names should now match the plugin name with a “Plugin” suffix. For example, the plugin class for
ADmad/I18n plugin would be ADmad\I18n\I18nPlugin instead of ADmad\I18n\Plugin, as was the case for
CakePHP 4.3 and below. The old style name for existing majors should be kept to avoid BC breaks. The new
naming convention should be followed when developing a new plugin or when doing a major release.

Routing

* Cached route files have been deprecated. There are a number of edge cases that are impossible to resolve with
cached routes. Because the feature of cached routes is non-functional for many use cases it will be removed in
5.x

TestSuite
* ConsoleIntegrationTestTrait was moved to the console package along with dependencies to allow testing
console applications without requiring the full cakephp/cakephp package.

— Cake\TestSuite\ConsoleIntegrationTestTrait moved to Cake\Console\TestSuite\
ConsoleIntegrationTestTrait

— Cake\TestSuite\Constraint\Console* moved to Cake\Console\TestSuite\Constraint*
— Cake\TestSuite\Stub\ConsoleInput moved to Cake\Console\TestSuite\StubConsoleInput
— Cake\TestSuite\Stub\ConsoleOutput movedto Cake\Console\TestSuite\StubConsoleOutput

— Cake\TestSuite\Stub\MissingConsoleInputException moved to Cake\Console\TestSuite\
MissingConsoleInputException

4.4 Migration Guide 61

CakePHP Book, Release 4.x

e ContainerStubTrait was moved to the core package to allow testing console applications without requiring
the full cakephp/cakephp package.

— Cake\TestSuite\ContainerStubTrait moved to Cake\Core\TestSuite\ContainerStubTrait

e HttpClientTrait was moved to the http package to allow testing http applications without requiring the full
cakephp/cakephp package.

— Cake\TestSuite\HttpClientTrait moved to Cake\Http\TestSuite\HttpClientTrait

Behavior Changes

While the following changes do not change the signature of any methods they do change the semantics or behavior of
methods.

ORM
* Table::saveMany() now triggers the Model.afterSaveCommit event with entities that are still ‘dirty’

and contain the original field values. This aligns the event payload for Model.afterSaveCommit with
Table::save().

Routing

e Router: :parseRequest() now raises BadRequestException instead of InvalidArgumentException
when an invalid HTTP method is used by a client.

New Features

Cache

¢ RedisEngine now supports deleteAsync() and clearBlocking () methods. These methods use the UNLINK
operation in redis to mark data for removal later by Redis.

Command

* bin/cake routes now highlights collisions in route templates.

* Command: :getDescription() allows you to set a custom description. See Setting Command Description
Controller

e Controller::viewClasses() was added. This method should be implemented by controllers that need to

perform content-type negotiation. View classes will need to implement the static method contentType() to
participate in content-type negotiation.

62 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Core

* The previously experimental API for the /development/dependency-injection container, introduced in CakePHP
4.2, is now considered stable.

Database

* The SQLite driver now supports shared in memory databases in PHPS.1+.
¢ Query: :expr() was added as an alternative to Query: :newExpr().

e The QueryExpression: :case() builder now supports inferring the type from expressions passed to then()
and else() that implement \Cake\Database\TypedResultInterface.

Error

e ErrorTrap and ExceptionTrap were added. These classes form the foundation of an updated error handling
system for applications. Read more about these classes in Error & Exception Handling.

Http

* Response: :checkNotModified() was deprecated. Use Response: :isNotModified() instead.
e BaseApplication: :handle() now adds the $request into the service container all the time.

e HttpsEnforcerMiddleware now has an hsts option that allows you to configure the
Strict-Transport-Security header.

Mailer

* Mailer now accepts a autoLayout config which disabled auto layout in the ViewBuilder if set to false.

ORM

¢ The cascadeCallbacks option was added to TreeBehavior. When enabled, TreeBehavior will iterate a
£ind Q) result and delete records individually. This enables ORM callbacks to be used when deleting tree nodes.

Plugins

¢ Plugin classes should now be named to match the plugin name instead of just Plugin. For example, you should
now use ADmad\I18n\I18nPlugin instead of ADmad\I18n\Plugin.

4.4 Migration Guide 63

CakePHP Book, Release 4.x

Routing

* RoutingMiddleware now sets the “route” request attribute with the matched Route instance.

View

e View::contentType() was added. Views should implement this method in order to participate in content-type
negotiation.

e View: :TYPE_MATCH_ALL was added. This special content-type allows you to build fallback views for when
content-type negotiation provides no matches.

4.5 Migration Guide

CakePHP 4.5 is an API compatible upgrade from 4.0. This page outlines the deprecations and features added in 4.5.

Upgrading to 4.5.0

You can can use composer to upgrade to CakePHP 4.5.0:

php composer.phar require --update-with-dependencies '"cakephp/cakephp:4.5.x"

Note: CakePHP 4.5 requires PHP 7.4 or greater.

Deprecations

4.5 introduces a few deprecations. All of these features will continue for the duration of 4.x but will be removed in 5.0.

You can use the upgrade tool to automate updating usage of deprecated features:

bin/cake upgrade rector --rules cakephp45 <path/to/app/src>

Note: This only updates CakePHP 4.5 changes. Make sure you apply CakePHP 4.4 changes first.

A new configuration option has been added to disable deprecations on a path by path basis. See Deprecation Warnings
for more information.

ORM Query API deprecations
There are some potentially impactful changes to the ORM coming in 5.x. To make querybuilding more typesafe and
have fewer silent errors 5.x will be transitioning to separate query objects for each type of query. The new classes are:
e Cake\ORM\Query\DeleteQuery Used for building delete queries.
* Cake\ORM\Query\InsertQuery Used for building insert queries.
e Cake\ORM\Query\SelectQuery Used for building select queries.
* Cake\ORM\Query\UpdateQuery Used for building update queries.

64 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Each of these classes lack methods that don’t make sense for that query type. For example, DeleteQuery has no
select() clause, and InsertQuery has no limit() method. 5.x will also offer new *query () methods on Table
to replace query ().

The 4.5 release also introduces these new query classes and methods on Table to provide an opt-in upgrade path. In
4.5, the new query classes are sub-classes of ORM\Query and have full backwards compatibility, but they also emit
deprecations from all methods that will not be present in 5.x.

When upgrading you can upgrade to the new query classes by replacing calls to Table: :query(). Replacing it are
new methods on Table. The deleteQuery(), insertQuery(), selectQuery(), updateQuery() methods will
returrn the new query instances which will emit deprecations if you are using the new classes incorrectly.

Our hope is that these methods will allow you to incrementally adopt the new APIs that will exist in the future.

Http

* Calling ServerRequest: :is() with an unknown detector will now raise an exception.

e HTTP Digest authentication in Client now supports SHA-256, SHA-512-256 and -sess algorithms.

Log

* FileLog will now create missing directories even when debug mode is false.

ORM

In CakePHP 5 EntityTrait::has() will return true when an attribute exists and is set to null. Depending on
your application this can lead to unexpected behavior with your existing code. Use EntityTrait: :hasValue()
to check if a field contains a ‘non-empty’ value.

e Table::_initializeSchema() is deprecated. Override getSchema() instead, or re-map columns in
initialize(Q).

* QueryInterface: :repository() is deprecated. Use setRepository() instead.

* Query::selectAlso() was added.

Routing

* The _ssl option for Router: :url() has been deprecated. Use _https instead. HTTPs is no longer entirely
based on ssl, and this rename aligns the CakePHP parameters with the broader web.

* Router: :routes() and RouteCollection: :routes() return routes in a different order than previous ver-
sions of CakePHP. If your application uses these methods and then accesses specific indexes you will need to
update your code.

4.5 Migration Guide 65

CakePHP Book, Release 4.x

Validation

e Validator: :isArray() is deprecated. Use Validator: :array() instead.

View

e It is recommended to replace loadHelper() with new addHelper() method to add helpers in
View::initialize().

New Features

Cache

* Cache: :write() will now throw an exception on error.

Console

* ConsoleOptionParser now treats all input after a -- as positional arguments. This allows console commands
to accept positional arguments that begin with a - such as date values like -1 day.

* bin/cake cache clear_group <name> was added. This command gives a CLI interface to clearing a spe-
cific cache group. See Using Groups for how to use cache groups.

Controller

* ComponentRegistry is now automatically added to your application’s DI container.

e Controller::addViewClasses() was added. This method lets you build a controller’s view classes progra-
matically.

Console

* Using -- on the command line to separate options and positional arguments is now supported.

Core

* The current container instance is now registered in the DI container and available as dependency for application
services or controllers/commands.

Database
* ConnectionManager now supports read and write connection roles. Roles can be configured with read and
write keys in the connection config that override the shared config.
¢ ConnectionManager: :aliases() was added.

¢ SelectQuery: :setConnectionRole(), SelectQuery: :useReadRole(), and
SelectQuery: :useliriteRole() were added to let you switch a query to a specific connection role.

66 Chapter 3. Migration Guides

CakePHP Book, Release 4.x

Datasource

* ModelAwareTrait: :loadModel() is no longer deprecated. This method is used extensively in user-land ap-
plications and had no real replacement. Usage of dynamic-properties & loadModel () will continue to emit
deprecation errors though.

¢ ModelAwareTrait: : fetchModel () was added. This method works similar to 1loadModel () but does not set
the model as an attribute.

* NumericPaginator no longer applies all pagination options as query options. Instead pagination specific op-
tions will be unset from the options data that is passed to ORM queries.

Error
* The development error page design has been improved. It now renders chained exceptions and makes navigating
stack traces easier as each frame can be collapsed individually.
» Console exception messages now include stack traces for chained exceptions.

* Listeners of the Exception.beforeRender event can now replace the trapped exception or override the ren-
dering step by returning a Response object.

e Listeners of the Error.beforeRender event can now replace the rendering step for an error by returning the
desired output.

Http
* The HttpsEnforcerMiddleware now supports a trustedProxies option that lets you define which proxies
your application trusts.

* MiddlewareQueue can now resolve services from the DI container when creating middleware based on class-
names.

e SessionCsrfMiddleware: :replaceToken() was added to enable scenarios where CSRF tokens need to be
rotated.

118n

* Plugins can now use multiple domain files for translations. You can load reference additional translation domains
with plugin_name.domain. For example __d('DebugKit.errors', 'oh no').

ORM

EntityTrait::$_hasAllowsNull was added. This property allows you to incrementally opt-in to a breaking change
present in 5.x for EntityTrait: :has(). When set to true, this property will make has() and related methods use
array_key_exists instead of isset to decide if fields are ‘defined’ in an entity. This will affect code like:

if (Suser->has('name')) {
// More logic

In 4.x this condition would fail if name was null. However, in 5.0, this will condition will now pass. You can prepare
your application for this change by incrementally setting $_hasAllowsNull.

4.5 Migration Guide 67

CakePHP Book, Release 4.x

TestSuite

e Cake\TestSuite\Fixture\Schemaloader::loadInternalFile() is no longer an internal method. This
method is now available to plugin authors as a path to migrate off of defining schema in fixture classes where
migrations are not already in use.

e IntegrationTestTrait::assertCookieIsSet () was added.
Utility
* Hash::normalize() now has a $default parameter that is used for the value of keys that had numeric keys
in the input array.
View

* View: :addHelper () was added. This method compliments addBehavior () and addComponent ().

* FormHelper now supports a requiredClass template. This template defines the required classname used
when generating controls.

68 Chapter 3. Migration Guides

CHAPTER 4

Tutorials & Examples

In this section, you can walk through typical CakePHP applications to see how all of the pieces come together.

Alternatively, you can refer to the non-official CakePHP plugin repository CakePackages®’ and the Bakery*® for existing
applications and components.

Content Management Tutorial

This tutorial will walk you through the creation of a simple CMS application. To start with, we’ll be installing CakePHP,
creating our database, and building simple article management.

Here’s what you’ll need:

1. A database server. We're going to be using MySQL server in this tutorial. You’ll need to know enough about
SQL in order to create a database, and run SQL snippets from the tutorial. CakePHP will handle building all the
queries your application needs. Since we’re using MySQL, also make sure that you have pdo_mysql enabled in
PHP.

2. Basic PHP knowledge.

Before starting you should make sure that you have got an up to date PHP version:
php -v

You should at least have got installed PHP 7.4 (CLI) or higher. Your webserver’s PHP version must also be of 7.4 or
higher, and should be the same version your command line interface (CLI) PHP is.

37 https://plugins.cakephp.org/
38 https://bakery.cakephp.org/

69

https://plugins.cakephp.org/
https://bakery.cakephp.org/

CakePHP Book, Release 4.x

Getting CakePHP

The easiest way to install CakePHP is to use Composer. Composer is a simple way of installing CakePHP from your
terminal or command line prompt. First, you’ll need to download and install Composer if you haven’t done so already.
If you have cURL installed, run the following:

curl -s https://getcomposer.org/installer | php

Or, you can download composer . phar from the Composer website™.

Then simply type the following line in your terminal from your installation directory to install the CakePHP application
skeleton in the ems directory of the current working directory:

php composer.phar create-project --prefer-dist cakephp/app:4.* cms

If you downloaded and ran the Composer Windows Installer*’, then type the following line in your terminal from your
installation directory (ie. C:\wamp\www\dev):

composer self-update && composer create-project --prefer-dist cakephp/app:4.* cms

The advantage to using Composer is that it will automatically complete some important set up tasks, such as setting
the correct file permissions and creating your config/app.php file for you.

There are other ways to install CakePHP. If you cannot or don’t want to use Composer, check out the /nstallation section.

Regardless of how you downloaded and installed CakePHP, once your set up is completed, your directory setup should
look something like the following:

/cms
/bin
/config
/logs
/plugins
/resources
/src
/templates
/tests
/tmp
/vendor
/webroot
.editorconfig
.gitignore
.htaccess
.travis.yml
composer. json
index.php
phpunit.xml.dist
README . md

Now might be a good time to learn a bit about how CakePHP’s directory structure works: check out the CakePHP
Folder Structure section.

If you get lost during this tutorial, you can see the finished result on GitHub*'.

39 https://getcomposer.org/download/
40 https://getcomposer.org/Composer-Setup.exe
41 https://github.com/cakephp/cms-tutorial

70 Chapter 4. Tutorials & Examples

https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
https://github.com/cakephp/cms-tutorial

CakePHP Book, Release 4.x

Checking our Installation

We can quickly check that our installation is correct, by checking the default home page. Before you can do that, you’ll
need to start the development server:

cd /path/to/our/app

bin/cake server

Note: For Windows, the command needs to be bin\cake server (note the backslash).

This will start PHP’s built-in webserver on port 8765. Open up http://localhost:8765 in your web browser to see
the welcome page. All the bullet points should be green chef hats other than CakePHP being able to connect to your
database. If not, you may need to install additional PHP extensions, or set directory permissions.

Next, we will build our Database and create our first model.

CMS Tutorial - Creating the Database

Now that we have CakePHP installed, let’s set up the database for our CMS application. If you haven’t already done
S0, create an empty database for use in this tutorial, with the name of your choice such as cake_cms. If you are using
MySQL/MariaDB, you can execute the following SQL to create the necessary tables:

USE cake_cms;

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created DATETIME,
modified DATETIME

);

CREATE TABLE articles (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created DATETIME,
modified DATETIME,
UNIQUE KEY (slug),
FOREIGN KEY user_key (user_id) REFERENCES users(id)
) CHARSET=utf8mb4;

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(191),
created DATETIME,
modified DATETIME,

(continues on next page)

CMS Tutorial - Creating the Database 71

CakePHP Book, Release 4.x

(continued from previous page)

UNIQUE KEY (title)
) CHARSET=utf8mb4;

CREATE TABLE articles_tags (
article_id INT NOT NULL,
tag_id INT NOT NULL,
PRIMARY KEY (article_id, tag_id),
FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),
FOREIGN KEY article_key(article_id) REFERENCES articles(id)

);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOWQ));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, '"First Post', 'first-post', 'This is the first post.', 1, NOW(), NOWQ));

If you are using PostgreSQL, connect to the cake_cms database and execute the following SQL instead:

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created TIMESTAMP,
modified TIMESTAMP

DE

CREATE TABLE articles (
id SERIAL PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (slug),
FOREIGN KEY (user_id) REFERENCES users(id)

);

CREATE TABLE tags (
id SERIAL PRIMARY KEY,
title VARCHAR(191),
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (title)

DE

CREATE TABLE articles_tags (
article_id INT NOT NULL,

(continues on next page)

72 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

tag_id INT NOT NULL,

PRIMARY KEY (article_id, tag_id),

FOREIGN KEY (tag_id) REFERENCES tags(id),

FOREIGN KEY (article_id) REFERENCES articles(id)
DE

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOWQ));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, 'First Post', 'first-post', 'This is the first post.', TRUE, NOW(), NOWQ));

You may have noticed that the articles_tags table used a composite primary key. CakePHP supports composite
primary keys almost everywhere, allowing you to have simpler schemas that don’t require additional id columns.

The table and column names we used were not arbitrary. By using CakePHP’s naming conventions, we can lever-
age CakePHP more effectively and avoid needing to configure the framework. While CakePHP is flexible enough to
accommodate almost any database schema, adhering to the conventions will save you time as you can leverage the
convention-based defaults CakePHP provides.

Database Configuration

Next, let’s tell CakePHP where our database is and how to connect to it. Replace the values in the Datasources.
default array in your config/app_local.php file with those that apply to your setup. A sample completed configuration
array might look something like the following:

<?php
return [
// More configuration above.
'Datasources' => [
'default' => [
'className' => 'Cake\Database\Connection',
// Replace Mysql with Postgres if you are using PostgreSQL
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~"',
'database' => 'cake_cms',
// Comment out the line below if you are using PostgreSQL
'encoding' => 'utf8mb4',
'timezone' => 'UTC',
'cacheMetadata' => true,
i
1,
// More configuration below.

1;

Once you’ve saved your config/app.php file, you should see that the ‘CakePHP is able to connect to the database’
section has a green chef hat.

CMS Tutorial - Creating the Database 73

CakePHP Book, Release 4.x

Note: If you have config/app_local.php in your app folder, you need to configure your database connection in that
file instead.

Creating our First Model

Models are the heart of CakePHP applications. They enable us to read and modify our data. They allow us to build
relations between our data, validate data, and apply application rules. Models provide the foundation necessary to
create our controller actions and templates.

CakePHP’s models are composed of Table and Entity objects. Table objects provide access to the collection of
entities stored in a specific table. They are stored in src/Model/Table. The file we’ll be creating will be saved to
src/Model/Table/ArticlesTable.php. The completed file should look like this:

<?php

// src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table

{
public function initialize(array $config): void
{
$this->addBehavior('Timestamp');
3
}

We’ve attached the Timestamp behavior, which will automatically populate the created and modified columns of
our table. By naming our Table object ArticlesTable, CakePHP can use naming conventions to know that our model
uses the articles table. CakePHP also uses conventions to know that the id column is our table’s primary key.

Note: CakePHP will dynamically create a model object for you if it cannot find a corresponding file in
src/Model/Table. This also means that if you accidentally name your file wrong (i.e. articlestable.php or Arti-
cleTable.php), CakePHP will not recognize any of your settings and will use the generated model instead.

We’ll also create an Entity class for our Articles. Entities represent a single record in the database and provide row-level
behavior for our data. Our entity will be saved to sre/Model/Entity/Article.php. The completed file should look like
this:

<?php
// src/Model/Entity/Article.php
namespace App\Model\Entity;

use Cake\ORM\Entity;

class Article extends Entity
{
protected $_accessible = [
'*' => true,
'id' => false,
(continues on next page)

74 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)
'slug' => false,
1;

Right now, our entity is quite slim; we’ve only set up the _accessible property, which controls how properties can
be modified by Mass Assignment.

We can’t do much with our models yet. Next, we’ll create our first Controller and Template to allow us to interact with
our model.

CMS Tutorial - Creating the Articles Controller

With our model created, we need a controller for our articles. Controllers in CakePHP handle HTTP requests and
execute business logic contained in model methods, to prepare the response. We’ll place this new controller in a file
called ArticlesController.php inside the src/Controller directory. Here’s what the basic controller should look like:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController
{
}

Now, let’s add an action to our controller. Actions are controller methods that have routes connected to them. For exam-
ple, when a user requests www.example.com/articles/index (which is also the same as www.example.com/articles),
CakePHP will call the index method of your ArticlesController. This method should query the model layer, and
prepare a response by rendering a Template in the View. The code for that action would look like this:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController

{
public function index()
{
$this->loadComponent ('Paginator');
$articles = $this->Paginator->paginate($this->Articles->find(Q));
$this->set(compact('articles'));
}
}

By defining function index() in our ArticlesController, users can now access the logic there by requesting
www.example.com/articles/index. Similarly, if we were to define a function called foobar (), users would be able to
access that at www.example.com/articles/foobar. You may be tempted to name your controllers and actions in a way
that allows you to obtain specific URLs. Resist that temptation. Instead, follow the CakePHP Conventions creating
readable, meaningful action names. You can then use Routing to connect the URLs you want to the actions you’ve
created.

CMS Tutorial - Creating the Articles Controller 75

CakePHP Book, Release 4.x

Our controller action is very simple. It fetches a paginated set of articles from the database, using the Articles Model
that is automatically loaded via naming conventions. It then uses set () to pass the articles into the Template (which
we’ll create soon). CakePHP will automatically render the template after our controller action completes.

Create the Article List Template

Now that we have our controller pulling data from the model, and preparing our view context, let’s create a view
template for our index action.

CakePHP view templates are presentation-flavored PHP code that is inserted inside the application’s layout. While
we’ll be creating HTML here, Views can also generate JSON, CSV or even binary files like PDFs.

A layout is presentation code that is wrapped around a view. Layout files contain common site elements like headers,
footers and navigation elements. Your application can have multiple layouts, and you can switch between them, but for
now, let’s just use the default layout.

CakePHP’s template files are stored in templates inside a folder named after the controller they correspond to. So we’ll
have to create a folder named ‘Articles’ in this case. Add the following code to your application:

<l-- File: templates/Articles/index.php -->

<hl>Articles</hl>
<table>
<tr>
<th>Title</th>
<th>Created</th>
</tr>

<!-- Here is where we iterate through our $articles query object, printing out.
—article info -->

<?php foreach ($articles as $article): ?>

<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
</tr>
<?php endforeach; ?>
</table>

In the last section we assigned the ‘articles’ variable to the view using set(). Variables passed into the view are
available in the view templates as local variables which we used in the above code.

You might have noticed the use of an object called $this->Html. This is an instance of the CakePHP HrmlHelper.
CakePHP comes with a set of view helpers that make tasks like creating links, forms, and pagination buttons. You can
learn more about Helpers in their chapter, but what’s important to note here is that the 1ink () method will generate
an HTML link with the given link text (the first parameter) and URL (the second parameter).

When specifying URLs in CakePHP, it is recommended that you use arrays or named routes. These syntaxes allow you
to leverage the reverse routing features CakePHP offers.

76 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

At this point, you should be able to point your browser to http://localhost:8765/articles/index. You should see your
list view, correctly formatted with the title and table listing of the articles.

Create the View Action

If you were to click one of the ‘view’ links in our Articles list page, you’d see an error page saying that action hasn’t
been implemented. Lets fix that now:

// Add to existing src/Controller/ArticlesController.php file

public function view($slug = null)

{
$article = $this->Articles->findBySlug($slug)->firstOrFail();
$this->set(compact('article'));

¥

While this is a simple action, we’ve used some powerful CakePHP features. We start our action off by using
findBySlug() which is a Dynamic Finder. This method allows us to create a basic query that finds articles by a
given slug. We then use firstOrFail () to either fetch the first record, or throw a NotFoundException.

Our action takes a $slug parameter, but where does that parameter come from? If a user requests /articles/view/
first-post, then the value ‘first-post’ is passed as $slug by CakePHP’s routing and dispatching layers. If we reload
our browser with our new action saved, we’d see another CakePHP error page telling us we’re missing a view template;
let’s fix that.

Create the View Template

Let’s create the view for our new ‘view’ action and place it in templates/Articles/view.php

<!-- File: templates/Articles/view.php -->

<h1><?= h(farticle->title) ?></hl>

<p><?= h($article->body) ?7></p>

<p><small>Created: <?= $article->created->format(DATE_RFC850) 7></small></p>
<p><?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) ?></p>

You can verify that this is working by trying the links at /articles/index or manually requesting an article by
accessing URLs like /articles/view/first-post.

Adding Articles

With the basic read views created, we need to make it possible for new articles to be created. Start by creating an add ()
action in the ArticlesController. Our controller should now look like:

<?php
// src/Controller/ArticlesController.php
namespace App\Controller;

use App\Controller\AppController;
class ArticlesController extends AppController

{

(continues on next page)

CMS Tutorial - Creating the Articles Controller 77

CakePHP Book, Release 4.x

(continued from previous page)

public function initialize(): void

{
parent::initialize();
$this->loadComponent ('Paginator');
$this->loadComponent('Flash'); // Include the FlashComponent
3
public function index()
{
$articles = $this->Paginator->paginate($this->Articles->find());
$this->set(compact('articles'));
3
public function view($slug)
{
$article = $this->Articles->findBySlug($slug)->firstOrFail(Q);
$this->set(compact('article'));
3
public function add()
{
$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity($article, $this->request->getData());
// Hardcoding the user_id is temporary, and will be removed later
// when we build authentication out.
$article->user_id = 1;
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));
}
$this->set('article', $article);
3

Note: You need to include the Flash component in any controller where you will use it. Often it makes sense to
include it in your AppController.

Here’s what the add () action does:
* If the HTTP method of the request was POST, try to save the data using the Articles model.

* If for some reason it doesn’t save, just render the view. This gives us a chance to show the user validation errors
or other warnings.

Every CakePHP request includes a request object which is accessible using $this->request. The request object
contains information regarding the request that was just received. We use the Cake\Http\ServerRequest::is()
method to check that the request is a HTTP POST request.

78 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Our POST data is available in $this->request->getData(). You can use the pr() or debug () functions to print
it out if you want to see what it looks like. To save our data, we first ‘marshal’ the POST data into an Article Entity.
The Entity is then persisted using the ArticlesTable we created earlier.

After saving our new article we use FlashComponent’s success () method to set a message into the session. The
success method is provided using PHP’s magic method features*’. Flash messages will be displayed on the
next page after redirecting. In our layout we have <?= $this->Flash->render() 7> which displays flash mes-
sages and clears the corresponding session variable. Finally, after saving is complete, we use Cake\Controller\
Controller: :redirect to send the user back to the articles list. The param ['action' => 'index'] translates to
URL /articlesi.ethe index action of the ArticlesController. You canrefer to Cake\Routing\Router: :url()

function on the API*® to see the formats in which you can specify a URL for various CakePHP functions.

Create Add Template

Here’s our add view template:

<!-- File: templates/Articles/add.php -->

<h1>Add Article</hl1>
<?php
echo $this->Form->create($article);
// Hard code the user for now.
echo $this->Form->control('user_id', ['type' => 'hidden', 'value' => 1]);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

We use the FormHelper to generate the opening tag for an HTML form. Here’s the HTML that
$this->Form->create() generates:

<form method="post" action="/articles/add">

Because we called create() without a URL option, FormHelper assumes we want the form to submit back to the
current action.

The $this->Form->control () method is used to create form elements of the same name. The first parameter tells
CakePHP which field they correspond to, and the second parameter allows you to specify a wide array of options - in
this case, the number of rows for the textarea. There’s a bit of introspection and conventions used here. The control ()
will output different form elements based on the model field specified, and use inflection to generate the label text. You
can customize the label, the input or any other aspect of the form controls using options. The $this->Form->end()
call closes the form.

Now let’s go back and update our templates/Articles/index.php view to include a new “Add Article” link. Before the
<table>, add the following line:

<?= $this->Html->1link('Add Article', ['action' => 'add']) ?>

42 https://php.net/manual/en/language.oop5.overloading. php#object.call
43 https://api.cakephp.org

CMS Tutorial - Creating the Articles Controller 79

https://php.net/manual/en/language.oop5.overloading.php#object.call
https://api.cakephp.org

CakePHP Book, Release 4.x

Adding Simple Slug Generation

If we were to save an Article right now, saving would fail as we are not creating a slug attribute, and the column is NOT
NULL. Slug values are typically a URL-safe version of an article’s title. We can use the beforeSave() callback of the
ORM to populate our slug:

<?php
// in src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;

// the Text class

use Cake\Utility\Text;

// the EventInterface class
use Cake\Event\EventInterface;

// Add the following method.

public function beforeSave(EventInterface $event, $entity, $options)

{
if (Sentity->isNew() && !S$entity->slug) {
$sluggedTitle = Text::slug($entity->title);
// trim slug to maximum length defined in schema
$entity->slug = substr($sluggedTitle, 0, 191);

}

This code is simple, and doesn’t take into account duplicate slugs. But we’ll fix that later on.

Add Edit Action

Our application can now save articles, but we can’t edit them. Lets rectify that now. Add the following action to your
ArticlesController:

// in src/Controller/ArticlesController.php
// Add the following method.

public function edit($slug)
{
$article = $this->Articles
->findBySlug($slug)
->firstOrFail();

if ($this->request->is(['post', 'put'])) {
$this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));
return $this->redirect(['action' => 'index']);
}

$this->Flash->error(__('Unable to update your article.'));

(continues on next page)

80 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

$this->set('article', $article);

This action first ensures that the user has tried to access an existing record. If they haven’t passed in an $s1ug parameter,
or the article does not exist, a NotFoundException will be thrown, and the CakePHP ErrorHandler will render the
appropriate error page.

Next the action checks whether the request is either a POST or a PUT request. If it is, then we use the POST/PUT data
to update our article entity by using the patchEntity() method. Finally, we call save(), set the appropriate flash
message, and either redirect or display validation errors.

Create Edit Template

The edit template should look like this:

<l-- File: templates/Articles/edit.php -->

<h1>Edit Article</hl>
<?php
echo $this->Form->create($article);
echo $this->Form->control('user_id', ['type' => 'hidden']);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

This template outputs the edit form (with the values populated), along with any necessary validation error messages.

You can now update your index view with links to edit specific articles:

<!-- File: templates/Articles/index.php (edit links added) -->

<hl>Articles</hl>
<p><?= $this->Html->1ink("Add Article", ['action' => 'add']) ?></p>
<table>
<tr>
<th>Title</th>
<th>Created</th>
<th>Action</th>
</tr>

<l-- Here's where we iterate through our $articles query object, printing out article.
—~info -->

<?php foreach ($articles as $article): ?>
<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>

(continues on next page)

CMS Tutorial - Creating the Articles Controller 81

CakePHP Book, Release 4.x

(continued from previous page)

<?= $article->created->format (DATE_RFC850) 7>

</td>

<td>
<?= $this->Html->link('Edit', ['action' => 'edit', $article->slug]l) ?>

</td>

</tr>
<?php endforeach; 7>

</table>

Update Validation Rules for Articles

Up until this point our Articles had no input validation done. Lets fix that by using a validator:

// src/Model/Table/ArticlesTable.php

// add this use statement right below the namespace declaration to import
// the Validator class
use Cake\Validation\Validator;

// Add the following method.
public function validationDefault(Validator $validator): Validator

{
$validator
->notEmptyString('title")
->minLength('title', 10)
->maxLength('title', 255)
->notEmptyString('body"')
->minLength('body', 10);
return $validator;
}

The validationDefault () method tells CakePHP how to validate your data when the save() method is called.
Here, we’ve specified that both the title, and body fields must not be empty, and have certain length constraints.

CakePHP’s validation engine is powerful and flexible. It provides a suite of frequently used rules for tasks like email
addresses, IP addresses etc. and the flexibility for adding your own validation rules. For more information on that
setup, check the Validation documentation.

Now that your validation rules are in place, use the app to try to add an article with an empty title or body to see how
it works. Since we’ve used the Cake\View\Helper\FormHelper: :control () method of the FormHelper to create
our form elements, our validation error messages will be shown automatically.

82 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Add Delete Action

Next, let’s make a way for users to delete articles. Start with a delete() action in the ArticlesController:

// src/Controller/ArticlesController.php
// Add the following method.

public function delete($slug)

{
$this->request->allowMethod(['post', 'delete']);
$article = $this->Articles->findBySlug($slug)->firstOrFail();
if ($this->Articles->delete($article)) {
$this->Flash->success(__('The {0} article has been deleted.', $article->title));
return $this->redirect(['action' => 'index']);
}
}

This logic deletes the article specified by $slug, and uses $this->Flash->success() to show the user a confir-
mation message after redirecting them to /articles. If the user attempts to delete an article using a GET request,
allowMethod () will throw an exception. Uncaught exceptions are captured by CakePHP’s exception handler, and a
nice error page is displayed. There are many built-in Exceptions that can be used to indicate the various HTTP errors
your application might need to generate.

Warning: Allowing content to be deleted using GET requests is very dangerous, as web crawlers could accidentally
delete all your content. That is why we used allowMethod () in our controller.

Because we’re only executing logic and redirecting to another action, this action has no template. You might want to
update your index template with links that allow users to delete articles:

<!-- File: templates/Articles/index.php (delete links added) -->

<hl>Articles</hl1>
<p><?= $this->Html->1ink("Add Article", ['action' => 'add']) ?></p>
<table>
<tr>
<th>Title</th>
<th>Created</th>
<th>Action</th>
</tr>

<!-- Here's where we iterate through our $articles query object, printing out article.
—info -->

<?php foreach ($articles as S$article): 7>
<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>

(continues on next page)

CMS Tutorial - Creating the Articles Controller 83

CakePHP Book, Release 4.x

(continued from previous page)

<?= $article->created->format (DATE_RFC850) 7>

<?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) ?>

<?= $this->Form->postLink(
'Delete’,
['"action' => 'delete', $article->slug],
['confirm' => 'Are you sure?'])

7>

</td>
</tr>
<?php endforeach; ?>

</table>

Using postLink () will create a link that uses JavaScript to do a POST request deleting our article.

Note: This view code also uses the FormHelper to prompt the user with a JavaScript confirmation dialog before they
attempt to delete an article.

With a basic articles management setup, we’ll create the basic actions for our Tags and Users tables.

CMS Tutorial - Tags and Users

With the basic article creation functionality built, we need to enable multiple authors to work in our CMS. Previously,
we built all the models, views and controllers by hand. This time around we’re going to use Bake Console to create our
skeleton code. Bake is a powerful code generation CLI (Command Line Interface) tool that leverages the conventions
CakePHP uses to create skeleton CRUD (Create, Read, Update, Delete) applications very efficiently. We’re going to
use bake to build our users code:

cd /path/to/our/app

You can overwrite any existing files.
bin/cake bake model users
bin/cake bake controller users
bin/cake bake template users
These 3 commands will generate:

* The Table, Entity, Fixture files.

¢ The Controller

e The CRUD templates.

* Test cases for each generated class.

Bake will also use the CakePHP conventions to infer the associations, and validation your models have.

84 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Adding Tagging to Articles

With multiple users able to access our small CMS it would be nice to have a way to categorize our content. We’ll use
tags and tagging to allow users to create free-form categories and labels for their content. Again, we’ll use bake to
quickly generate some skeleton code for our application:

Generate all the code at once.
bin/cake bake all tags

Once you have the scaffold code created, create a few sample tags by going to http://localhost:8765/tags/add.

Now that we have a Tags table, we can create an association between Articles and Tags. We can do so by adding the
following to the initialize method on the ArticlesTable:

public function initialize(array $config): void
{
$this->addBehavior (' Timestamp');
$this->belongsToMany('Tags'); // Add this line
}

This association will work with this simple definition because we followed CakePHP conventions when creating our
tables. For more information, read Associations - Linking Tables Together.

Updating Articles to Enable Tagging

Now that our application has tags, we need to enable users to tag their articles. First, update the add action to look like:

<?php
// in src/Controller/ArticlesController.php
namespace App\Controller;

use App\Controller\AppController;

class ArticlesController extends AppController
{
public function add()
{
$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity(Sarticle, $this->request->getData());

// Hardcoding the user_id is temporary, and will be removed later
// when we build authentication out.
$article->user_id = 1;

if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));
}
// Get a list of tags.
$tags = $this->Articles->Tags->find('list')->all(Q);
(continues on next page)

CMS Tutorial - Tags and Users 85

CakePHP Book, Release 4.x

}

(continued from previous page)

// Set tags to the view context
$this->set('tags', $tags);

$this->set('article', $article);

}

// Other actions

The added lines load a list of tags as an associative array of id => title. This format will let us create a new tag
input in our template. Add the following to the PHP block of controls in templates/Articles/add.php:

echo $this->Form->control('tags._ids', ['options' => $tags]);

This will render a multiple select element that uses the $tags variable to generate the select box options. You should
now create a couple new articles that have tags, as in the following section we’ll be adding the ability to find articles
by tags.

You should also update the edit method to allow adding or editing tags. The edit method should now look like:

public function edit($slug)

{

¥

$article = $this->Articles
->findBySlug($slug)
->contain('Tags') // load associated Tags
->firstOrFail();
if ($this->request->is(['post', 'put'l)) {
$this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));
return $this->redirect(['action' => 'index']);
}

$this->Flash->error(__('Unable to update your article.'));

}

// Get a list of tags.
$tags = $this->Articles->Tags->find('list')->all(Q);

// Set tags to the view context
$this->set('tags', $tags);

$this->set('article', $article);

Remember to add the new tags multiple select control we added to the add.php template to the tem-
plates/Articles/edit.php template as well.

86

Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Finding Articles By Tags
Once users have categorized their content, they will want to find that content by the tags they used. For this feature
we’ll implement a route, controller action, and finder method to search through articles by tag.

Ideally, we’d have a URL that looks like http://localhost:8765/articles/tagged/funny/cat/gifs. This would let us find
all the articles that have the ‘funny’, ‘cat’ or ‘gifs’ tags. Before we can implement this, we’ll add a new route. Your
config/routes.php (with the baked comments removed) should look like:

<?php
use Cake\Routing\Route\DashedRoute;
use Cake\Routing\RouteBuilder;

$routes->setRouteClass(DashedRoute: :class);

$routes->scope('/', function (RouteBuilder S$builder) {

$builder->connect('/', ['controller' => 'Pages', 'action' => 'display', 'home']);
$builder->connect('/pages/*', ['controller' => 'Pages', 'action' => 'display']);
// Add this

// New route we're adding for our tagged action.

// The trailing “*° tells CakePHP that this action has

// passed parameters.

$builder->scope('/articles', function (RouteBuilder $builder) {
$builder->connect('/tagged/*', ['controller' => 'Articles', 'action' => 'tags']);

b

$builder->fallbacksQ;
19K

The above defines a new ‘route’ which connects the /articles/tagged/ path, to ArticlesController::tags(Q).
By defining routes, you can isolate how your URLs look, from how they are implemented. If we were to visit
http://localhost:8765/articles/tagged, we would see a helpful error page from CakePHP informing you that the con-
troller action does not exist. Let’s implement that missing method now. In sr¢/Controller/ArticlesController.php add
the following:

public function tags()

{
// The 'pass' key is provided by CakePHP and contains all
// the passed URL path segments in the request.
$tags = $this->request->getParam('pass');
// Use the ArticlesTable to find tagged articles.
$articles = $this->Articles->find('tagged', [
'tags' => $tags
D
->allQ);
// Pass variables into the view template context.
$this->set ([
'articles' => $articles,
'tags' => $tags
D;
}

CMS Tutorial - Tags and Users 87

CakePHP Book, Release 4.x

To access other parts of the request data, consult the Request section.

Since passed arguments are passed as method parameters, you could also write the action using PHP’s variadic argu-
ment:

public function tags(...$tags)
{
// Use the ArticlesTable to find tagged articles.
$articles = $this->Articles->find('tagged', [
'tags' => $tags
D
->allQ);

// Pass variables into the view template context.
$this->set ([

'articles' => $articles,

'tags' => $tags
D

Creating the Finder Method

In CakePHP we like to keep our controller actions slim, and put most of our application’s logic in the model layer. If
you were to visit the /articles/tagged URL now you would see an error that the findTagged () method has not been
implemented yet, so let’s do that. In src/Model/Table/ArticlesTable.php add the following:

// add this use statement right below the namespace declaration to import
// the Query class
use Cake\ORM\Query;

// The $query argument is a query builder instance.

// The $options array will contain the 'tags' option we passed

// to find('tagged') in our controller action.

public function findTagged(Query S$query, array $options)

{

$columns = [

'Articles.id', 'Articles.user_id', 'Articles.title',
'Articles.body', 'Articles.published', 'Articles.created',
'"Articles.slug’,

1;

$query = $query
->select($columns)
->distinct($columns);

if (empty(S$options['tags'])) {
// If there are no tags provided, find articles that have no tags.
$query->leftJoinWith('Tags"')
->where(['Tags.title IS' => null]);
} else {
// Find articles that have one or more of the provided tags.
$query->innerJoinWith('Tags")
->where(['Tags.title IN' => $options['tags']l]);
(continues on next page)

88 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

}

return $query->group(['Articles.id']);

We just implemented a custom finder method. This is a very powerful concept in CakePHP that allows you to package
up re-usable queries. Finder methods always get a Query Builder object and an array of options as parameters. Finders
can manipulate the query and add any required conditions or criteria. When complete, finder methods must return a
modified query object. In our finder we’ve leveraged the distinct() and leftJoin() methods which allow us to
find distinct articles that have a ‘matching’ tag.

Creating the View

Now if you visit the /articles/tagged URL again, CakePHP will show a new error letting you know that you have not
made a view file. Next, let’s build the view file for our tags() action:

<l-- In templates/Articles/tags.php -->
<h1l>
Articles tagged with
<?= $this->Text->toList(h($tags), 'or') ?>

</h1>
<section>
<?php foreach ($articles as $article): ?>
<article>
<!-- Use the HtmlHelper to create a link -->
<h4><?= $this->Html->1link(
$article->title,
['controller' => 'Articles', 'action' => 'view', S$article->slug]
) ?></h4>
<?= h($article->created) ?>
</article>
<?php endforeach; ?>
</section>

In the above code we use the Hrml and Text helpers to assist in generating our view output. We also use the h shortcut
function to HTML encode output. You should remember to always use h() when outputting data to prevent HTML
injection issues.

The tags.php file we just created follows the CakePHP conventions for view template files. The convention is to have
the template use the lower case and underscored version of the controller action name.

You may notice that we were able to use the $tags and $articles variables in our view template. When we use
the set () method in our controller, we set specific variables to be sent to the view. The View will make all passed
variables available in the template scope as local variables.

You should now be able to visit the /articles/tagged/funny URL and see all the articles tagged with “funny’.

CMS Tutorial - Tags and Users 89

CakePHP Book, Release 4.x

Improving the Tagging Experience

Right now, adding new tags is a cumbersome process, as authors need to pre-create all the tags they want to use. We
can improve the tag selection Ul by using a comma separated text field. This will let us give a better experience to our
users, and use some more great features in the ORM.

Adding a Computed Field

Because we’ll want a simple way to access the formatted tags for an entity, we can add a virtual/computed field to the
entity. In src/Model/Entity/Article.php add the following:

// add this use statement right below the namespace declaration to import
// the Collection class
use Cake\Collection\Collection;

// Update the accessible property to contain ‘tag_string’
protected $_accessible = [

//other fields...

'tag_string' => true

1;
protected function _getTagString()
{
if (isset($this->_fields['tag_string'])) {
return $this->_fields['tag_string'];
1
if (empty($this->tags)) {
return '';
1
$tags = new Collection($this->tags);
$str = $tags->reduce(function ($string, $tag) {
return $string . $tag->title . ', ';
PO
return trim($str, ', ');
}

This will let us access the $article->tag_string computed property. We'll use this property in controls later on.

Updating the Views

With the entity updated we can add a new control for our tags. In templates/Articles/add.php and tem-
plates/Articles/edit.php, replace the existing tags._ids control with the following:

echo $this->Form->control('tag_string', ['type' => 'text']);

We’ll also need to update the article view template. In templates/Articles/view.php add the line as shown:

<l-- File: templates/Articles/view.php -->

<h1><?= h($article->title) ?></hl>

<p><?= h($article->body) ?></p>

// Add the following line

<p>Tags: <?= h($article->tag_string) 7></p>

90 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

You should also update the view method to allow retrieving existing tags:

// src/Controller/ArticlesController.php file

public function view($slug = null)
{
// Update retrieving tags with contain()
$article = $this->Articles
->findBySlug($slug)
->contain('Tags')
->firstOrFail(Q);
$this->set(compact('article'));

Persisting the Tag String

Now that we can view existing tags as a string, we’ll want to save that data as well. Because we marked the tag_string
as accessible, the ORM will copy that data from the request into our entity. We can use a beforeSave () hook method
to parse the tag string and find/build the related entities. Add the following to src/Model/Table/ArticlesTable.php:

public function beforeSave(EventInterface $event, $entity, $options)
{
if ($entity->tag_string) {
$entity->tags = $this->_buildTags($entity->tag_string);
1

// Other code
}

protected function _buildTags($tagString)
{
// Trim tags
$newTags = array_map('trim', explode(',', $tagString));
// Remove all empty tags
$newTags = array_filter($newTags);
// Reduce duplicated tags
$newTags = array_unique($newTags);

$out = [1;

$tags = $this->Tags->find()
->where(['Tags.title IN' => $newTags])
->allQ);

// Remove existing tags from the list of new tags.
foreach ($tags->extract('title') as S$existing) {
$index = array_search($existing, $newTags);
if ($index !== false) {
unset ($newTags[$index]);
}
}
// Add existing tags.
foreach ($tags as $tag) {

(continues on next page)

CMS Tutorial - Tags and Users 91

CakePHP Book, Release 4.x

(continued from previous page)
$out[] = $tag;
}
// Add new tags.
foreach ($newTags as $tag) {
$out[] = $this->Tags->newEntity(['title' => $tagl);
}

return $out;

}

If you now create or edit articles, you should be able to save tags as a comma separated list of tags, and have the tags
and linking records automatically created.

While this code is a bit more complicated than what we’ve done so far, it helps to showcase how powerful the ORM
in CakePHP is. You can manipulate query results using the Collections methods, and handle scenarios where you are
creating entities on the fly with ease.

Auto-populating the Tag String

Before we finish up, we’ll need a mechanism that will load the associated tags (if any) whenever we load an article.

In your src/Model/Table/ArticlesTable.php, change:

public function initialize(array $config): void

{
$this->addBehavior (' Timestamp');
// Change this line
$this->belongsToMany('Tags', [
'joinTable' => 'articles_tags',
'dependent' => true
D;
3

This will tell the Articles table model that there is a join table associated with tags. The ‘dependent’ option tells the
table to delete any associated records from the join table if an article is deleted.

Lastly, update the findBySlug() method calls in src/Controller/ArticlesController.php:

public function edit($slug)

{
// Update this line
$article = $this->Articles
->findBySlug($slug)
->contain('Tags"')
->firstOrFail();
}

public function view($slug = null)
{
// Update this line
$article = $this->Articles
->findBySlug($slug)
->contain('Tags')
(continues on next page)

92 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

->firstOrFail();
$this->set(compact('article'));

The contain() method tells the ArticlesTable object to also populate the Tags association when the article is
loaded. Now when tag_string is called for an Article entity, there will be data present to create the string!

Next we’ll be adding authentication.

CMS Tutorial - Authentication

Now that our CMS has users, we can enable them to login using the cakephp/authentication** plugin. We’ll start off by
ensuring passwords are stored securely in our database. Then we are going to provide a working login and logout, and
enable new users to register.

Installing Authentication Plugin

Use composer to install the Authentication Plugin:

composer require "cakephp/authentication:A2.4"

Adding Password Hashing

You need to have created the Controller, Table, Entity and templates for the users table in your database. You
can do this manually like you did before for the ArticlesController, or you can use the bake shell to generate the classes
for you using:

bin/cake bake all users

If you create or update a user with this setup, you might notice that the passwords are stored in plain text. This is really
bad from a security point of view, so lets fix that.

This is also a good time to talk about the model layer in CakePHP. In CakePHP, we use different classes to operate on
collections of records and single records. Methods that operate on the collection of entities are put in the Table class,
while features belonging to a single record are put on the Entity class.

For example, password hashing is done on the individual record, so we’ll implement this behavior on the entity object.
Because we want to hash the password each time it is set, we’ll use a mutator/setter method. CakePHP will call a
convention based setter method any time a property is set in one of your entities. Let’s add a setter for the password.
In src/Model/Entity/User.php add the following:

<?php
namespace App\Model\Entity;

use Authentication\PasswordHasher\DefaultPasswordHasher; // Add this line
use Cake\ORM\Entity;

class User extends Entity

{

(continues on next page)

4 https://book.cakephp.org/authentication/2

CMS Tutorial - Authentication 93

https://book.cakephp.org/authentication/2

CakePHP Book, Release 4.x

(continued from previous page)

// Code from bake.

// Add this method
protected function _setPassword(string $password) : ?string
{
if (strlen($password) > 0) {
return (new DefaultPasswordHasher())->hash($password);

}

Now, point your browser to http://localhost:8765/users to see a list of users. Remember you’ll need to have your local
server running. Start a standalone PHP server using bin/cake server.

You can edit the default user that was created during /nstallation. If you change that user’s password, you should see a
hashed password instead of the original value on the list or view pages. CakePHP hashes passwords with berypt* by
default. We recommend bcerypt for all new applications to keep your security standards high. This is the recommended
password hash algorithm for PHP*®.

Note: Create a hashed password for at least one of the user accounts now! It will be needed in the next steps. After
updating the password, you’ll see a long string stored in the password column. Note berypt will generate a different
hash even for the same password saved twice.

Adding Login

Now it’s time to configure the Authentication Plugin. The Plugin will handle the authentication process using 3 different
classes:

e Application will use the Authentication Middleware and provide an AuthenticationService, holding all the
configuration we want to define how are we going to check the credentials, and where to find them.

e AuthenticationService will be a utility class to allow you configure the authentication process.

e AuthenticationMiddleware will be executed as part of the middleware queue, this is before your Controllers
are processed by the framework, and will pick the credentials and process them to check if the user is authenti-
cated.

If you remember, we used AuthComponent before to handle all these steps. Now the logic is divided into specific
classes and the authentication process happens before your controller layer. First it checks if the user is authenticated
(based on the configuration you provided) and injects the user and the authentication results into the request for further
reference.

In sre/Application.php, add the following imports:

// In src/Application.php add the following imports

use Authentication\AuthenticationService;

use Authentication\AuthenticationServiceInterface;

use Authentication\AuthenticationServiceProviderInterface;
use Authentication\Middleware\AuthenticationMiddleware;
use Cake\Routing\Router;

use Psr\Http\Message\ServerRequestInterface;

45 https://codahale.com/how-to-safely-store-a-password/
46 https://www.php.net/manual/en/function.password-hash.php

94 Chapter 4. Tutorials & Examples

https://codahale.com/how-to-safely-store-a-password/
https://www.php.net/manual/en/function.password-hash.php
https://www.php.net/manual/en/function.password-hash.php

CakePHP Book, Release 4.x

Then implement the authentication interface on your Application class:

// in src/Application.php
class Application extends BaseApplication
implements AuthenticationServiceProviderInterface

{

Then add the following:

// src/Application.php
public function middleware(MiddlewareQueue S$middlewareQueue): MiddlewareQueue
{
$middlewareQueue
// ... other middleware added before
->add(new RoutingMiddleware($this))
->add(new BodyParserMiddleware())
// Add the AuthenticationMiddleware. It should be after routing and body parser.
->add(new AuthenticationMiddleware($this));

return $middlewareQueue;

}

public function getAuthenticationService(ServerRequestInterface $request):.
—AuthenticationServiceInterface

{
$authenticationService = new AuthenticationService([
"unauthenticatedRedirect' => Router::url('/users/login'),
'queryParam' => 'redirect',
D;
// Load identifiers, ensure we check email and password fields
$authenticationService->loadIdentifier('Authentication.Password', [
"fields' => [
'username' => 'email',
'password' => 'password',
]
D;
// Load the authenticators, you want session first
$authenticationService->loadAuthenticator('Authentication.Session');
// Configure form data check to pick email and password
$authenticationService->loadAuthenticator('Authentication.Form', [
"fields' => [
'username' => 'email',
'password' => 'password',
i
'loginUrl' => Router::url('/users/login'),
D;
return $authenticationService;
}

In your AppController class add the following code:

CMS Tutorial - Authentication 95

CakePHP Book, Release 4.x

// src/Controller/AppController.php
public function initialize(): void
{
parent::initialize();
$this->loadComponent('Flash');

// Add this line to check authentication result and lock your site
$this->loadComponent ('Authentication.Authentication');

Now, on every request, the AuthenticationMiddleware will inspect the request session to look for an authenticated
user. If we are loading the /users/login page, it will also inspect the posted form data (if any) to extract the cre-
dentials. By default the credentials will be extracted from the username and password fields in the request data. The
authentication result will be injected in a request attribute named authentication. You can inspect the result at any
time using $this->request->getAttribute('authentication') from your controller actions. All your pages
will be restricted as the AuthenticationComponent is checking the result on every request. When it fails to find any
authenticated user, it will redirect the user to the /users/login page. Note at this point, the site won’t work as we
don’t have a login page yet. If you visit your site, you’ll get an “infinite redirect loop” so let’s fix that.

Note: If your application serves from both SSL and non-SSL protocols, then you might have problems with sessions
being lost, in case your application is on non-SSL protocol. You need to enable access by setting session.cookie_secure
to false in your config config/app.php or config/app_local.php. (See CakePHP'’s defaults on session.cookie_secure)

In your UsersController, add the following code:

public function beforeFilter(\Cake\Event\EventInterface $event)

{
parent: :beforeFilter($event);
// Configure the login action to not require authentication, preventing
// the infinite redirect loop issue
$this->Authentication->addUnauthenticatedActions(['login']);

}

public function login()
{
$this->request->allowMethod(['get', 'post'l);
$result = $this->Authentication->getResult();
// regardless of POST or GET, redirect if user is logged in
if ($result && $result->isValid(Q)) {
// redirect to /articles after login success
$redirect = $this->request->getQuery('redirect', [
'controller' => 'Articles',
'action' => 'index',

D

return $this->redirect($redirect);
}
// display error if user submitted and authentication failed
if ($this->request->is('post') && !$result->isValid()) {
$this->Flash->error(__('Invalid username or password'));

}

Add the template logic for your login action:

96 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

<l-- in /templates/Users/login.php -->
<div class="users form'">
<?= $this->Flash->render() ?>

<h3>Login</h3>
<?= $this->Form->create() 7>
<fieldset>
<legend><?= __('Please enter your username and password') ?></legend>

<?= $this->Form->control('email', ['required' => true]) ?>
<?= $this->Form->control('password', ['required' => true]) 7>
</fieldset>
<?= $this->Form->submit(__('Login')); 7>
<?= $this->Form->end() ?>

<?= $this->Html->1ink("Add User", ['action' => 'add']) ?>
</div>

Now login page will allow us to correctly login into the application. Test it by requesting any page of your site. After
being redirected to the /users/login page, enter the email and password you picked previously when creating your
user. You should be redirected successfully after login.

We need to add a couple more details to configure our application. We want all view and index pages accessible
without logging in so we’ll add this specific configuration in AppController:

// in src/Controller/AppController.php
public function beforeFilter(\Cake\Event\EventInterface $event)

{
parent: :beforeFilter($event);
// for all controllers in our application, make index and view
// actions public, skipping the authentication check
$this->Authentication->addUnauthenticatedActions(['index', 'view']);
3
Note: If you don't have a user with a hashed password yet, comment the

$this->loadComponent ('Authentication.Authentication') line in your AppController and all other
lines where Authentication is used. Then go to /users/add to create a new user picking email and password.
Afterward, make sure to uncomment the lines we just temporarily commented!

Try it out by visiting /articles/add before logging in! Since this action is not allowed, you will be redirected to the
login page. After logging in successfully, CakePHP will automatically redirect you back to /articles/add.

Logout

Add the logout action to the UsersController class:

// in src/Controller/UsersController.php
public function logout()
{
$result = $this->Authentication->getResult();
// regardless of POST or GET, redirect if user is logged in
if ($result && $result->isValid(Q)) {
$this->Authentication->logout();

(continues on next page)

CMS Tutorial - Authentication 97

CakePHP Book, Release 4.x

(continued from previous page)

return $this->redirect(['controller' => 'Users', 'action' => 'login']);

Now you can visit /users/logout to log out. You should then be sent to the login page.

Enabling Registrations

If you try to visit /users/add without being logged in, you will be redirected to the login page. We should fix that as
we want to allow people to sign up for our application. In the UsersController fix the following line:

// Add to the beforeFilter method of UsersController
$this->Authentication->addUnauthenticatedActions(['login', 'add']);

The above tells AuthenticationComponent that the add() action of the UsersController does not require au-
thentication or authorization. You may want to take the time to clean up the Users/add.php and remove the misleading
links, or continue on to the next section. We won’t be building out user editing, viewing or listing in this tutorial, but
that is an exercise you can complete on your own.

Now that users can log in, we’ll want to limit users to only edit articles that they created by applying authorization
policies.

CMS Tutorial - Authorization

With users now able to login to our CMS, we want to apply authorization rules to ensure that each user only edits the
posts they own. We’ll use the authorization plugin*’ to do this.

Installing Authorization Plugin

Use composer to install the Authorization Plugin:

composer require "cakephp/authorization:/2.0"

Load the plugin by adding the following statement to the bootstrap() method in src/Application.php:

$this->addPlugin('Authorization');

Enabling the Authorization Plugin

The Authorization plugin integrates into your application as a middleware layer and optionally a component to make
checking authorization easier. First, lets apply the middleware. In src/Application.php add the following to the class
imports:

use Authorization\AuthorizationService;

use Authorization\AuthorizationServiceInterface;

use Authorization\AuthorizationServiceProviderInterface;
use Authorization\Middleware\AuthorizationMiddleware;
use Authorization\Policy\OrmResolver;

47 https://book.cakephp.org/authorization/2

98 Chapter 4. Tutorials & Examples

https://book.cakephp.org/authorization/2

CakePHP Book, Release 4.x

Add the AuthorizationServiceProviderInterface to the implemented interfaces on your application:

class Application extends BaseApplication
implements AuthenticationServiceProviderInterface,
AuthorizationServiceProviderInterface

Then add the following to your middleware () method:

// Add authorization **after** authentication
$middlewareQueue->add(new AuthorizationMiddleware($this));

The AuthorizationMiddleware will call a hook method on your application when it starts handling the request.
This hook method allows your application to define the AuthorizationService it wants to use. Add the following
method your src/Application.php:

public function getAuthorizationService(ServerRequestInterface $request):.
—AuthorizationServiceInterface

{

$resolver = new OrmResolver();

return new AuthorizationService($resolver);

The OrmResolver lets the authorization plugin find policy classes for ORM entities and queries. Other resolvers can
be used to find policies for other resources types.

Next, lets add the AuthorizationComponent to AppController. In src/Controller/AppController.php add the
following to the initialize () method:

$this->loadComponent ('Authorization.Authorization');

Lastly we’ll mark the add, login, and logout actions as not requiring authorization by adding the following to
src/Controller/UsersController.php:

// In the add, login, and logout methods
$this->Authorization->skipAuthorization();

The skipAuthorization() method should be called in any controller action that should be accessible to all users
even those who have not logged in yet.

Creating our First Policy

The Authorization plugin models authorization and permissions as Policy classes. These classes implement the logic
to check whether or not a identity is allowed to perform an action on a given resource. Our identity is going to be
our logged in user, and our resources are our ORM entities and queries. Lets use bake to generate a basic policy:

bin/cake bake policy --type entity Article

This will generate an empty policy class for our Article entity. You can find the generated policy in
src/Policy/ArticlePolicy.php. Next update the policy to look like the following:

<?php
namespace App\Policy;

(continues on next page)

CMS Tutorial - Authorization 99

CakePHP Book, Release 4.x

(continued from previous page)

use App\Model\Entity\Article;
use Authorization\IdentityInterface;

class ArticlePolicy

{
public function canAdd(IdentityInterface S$user, Article S$article)
{
// All logged in users can create articles.
return true;
}
public function canEdit(IdentityInterface S$user, Article S$article)
{
// logged in users can edit their own articles.
return $this->isAuthor($user, S$article);
}
public function canDelete(IdentityInterface $user, Article S$article)
{
// logged in users can delete their own articles.
return $this->isAuthor($user, $article);
3
protected function isAuthor(IdentityInterface S$user, Article S$article)
{
return farticle->user_id === $user->getldentifier();
3
}

While we’ve defined some very simple rules, you can use as complex logic as your application requires in your policies.

Checking Authorization in the ArticlesController

With our policy created we can start checking authorization in each controller action. If we forget to check or skip
authorization in an controller action the Authorization plugin will raise an exception letting us know we forgot to apply
authorization. In src/Controller/ArticlesController.php add the following to the add, edit and delete methods:

public function add()

{
$article = $this->Articles->newEmptyEntity();
$this->Authorization->authorize($article);
// Rest of the method
}
public function edit($slug)
{
$article = $this->Articles
->findBySlug($slug)
->contain('Tags') // load associated Tags
->firstOrFail();

$this->Authorization->authorize($article);
(continues on next page)

100 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

// Rest of the method.

}
public function delete($slug)
{
$this->request->allowMethod(['post', 'delete']);
$article = $this->Articles->findBySlug($slug)->firstOrFail();
$this->Authorization->authorize($article);
// Rest of the method.
}

The AuthorizationComponent::authorize() method will use the current controller action name to generate the
policy method to call. If you’d like to call a different policy method you can call authorize with the operation name:

$this->Authorization->authorize($article, 'update');

Lastly add the following to the tags, view, and index methods on the ArticlesController:

// View, index and tags actions are public methods
// and don't require authorization checks.
$this->Authorization->skipAuthorization() ;

Fixing the Add & Edit Actions

While we’ve blocked access to the edit action, we’re still open to users changing the user_id attribute of articles during
edit. We will solve these problems next. First up is the add action.

When creating articles, we want to fix the user_id to be the currently logged in user. Replace your add action with
the following:

// in src/Controller/ArticlesController.php

public function add()

{
$article = $this->Articles->newEmptyEntity();
$this->Authorization->authorize($article);

if ($this->request->is('post')) {
$article = $this->Articles->patchEntity($article, $this->request->getData());

// Changed: Set the user_id from the current user.
$article->user_id = $this->request->getAttribute('identity')->getIdentifier();

if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));
1
$tags = $this->Articles->Tags->find('list')->all(Q);
(continues on next page)

CMS Tutorial - Authorization 101

CakePHP Book, Release 4.x

(continued from previous page)
$this->set(compact('article', 'tags'));

¥

Next we’ll update the edit action. Replace the edit method with the following:

// in src/Controller/ArticlesController.php

public function edit($slug)

{
$article = $this->Articles
->findBySlug($slug)
->contain('Tags') // load associated Tags
->firstOrFail(Q);
$this->Authorization->authorize($article);
if ($this->request->is(['post', 'put'])) {
$this->Articles->patchEntity($article, $this->request->getData(), [
// Added: Disable modification of user_id.
'accessibleFields' => ['user_id' => false]
D;
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to update your article.'));
}
$tags = $this->Articles->Tags->find('list')->all(Q);
$this->set(compact('article', 'tags'));
3

Here we’re modifying which properties can be mass-assigned, via the options for patchEntity(). See the
Changing Accessible Fields section for more information. Remember to remove the user_id control from tem-
plates/Articles/edit.php as we no longer need it.

Wrapping Up

We’ve built a simple CMS application that allows users to login, post articles, tag them, explore posted articles by
tag, and applied basic access control to articles. We’ve also added some nice UX improvements by leveraging the
FormHelper and ORM capabilities.

Thank you for taking the time to explore CakePHP. Next, you should learn more about the Database Access & ORM,
or you peruse the /topics.

102 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Bookmarker Tutorial

This tutorial will walk you through the creation of a simple bookmarking application (bookmarker). To start with, we’ll
be installing CakePHP, creating our database, and using the tools CakePHP provides to get our application up fast.

Here’s what you’ll need:

1. A database server. We're going to be using MySQL server in this tutorial. You’ll need to know enough about
SQL in order to create a database: CakePHP will be taking the reins from there. Since we’re using MySQL, also
make sure that you have pdo_mysql enabled in PHP.

2. Basic PHP knowledge.

Before starting you should make sure that you have got an up to date PHP version:
php -v

You should at least have got installed PHP 7.4 (CLI) or higher. Your webserver’s PHP version must also be of 7.4 or
higher, and should best be the same version your command line interface (CLI) PHP version is of. If you’d like to see
the completed application, checkout cakephp/bookmarker*®. Let’s get started!

Getting CakePHP

The easiest way to install CakePHP is to use Composer. Composer is a simple way of installing CakePHP from your
terminal or command line prompt. First, you’ll need to download and install Composer if you haven’t done so already.
If you have cURL installed run the following:

curl -s https://getcomposer.org/installer | php

Or, you can download composer .phar from the Composer website*’.

Then simply type the following line in your terminal from your installation directory to install the CakePHP application
skeleton in the bookmarker directory:

php composer.phar create-project --prefer-dist cakephp/app:4.* bookmarker

If you downloaded and ran the Composer Windows Installer’’, then type the following line in your terminal from your
installation directory (ie. C:\wamp\www\dev\cakephp3):

composer self-update && composer create-project --prefer-dist cakephp/app:4.* bookmarker

The advantage to using Composer is that it will automatically complete some important set up tasks, such as setting
the correct file permissions and creating your config/app.php file for you.

There are other ways to install CakePHP. If you cannot or don’t want to use Composer, check out the /nstallation section.

Regardless of how you downloaded and installed CakePHP, once your set up is completed, your directory setup should
look something like the following:

/bookmarker
/bin
/config
/logs

(continues on next page)

48 https://github.com/cakephp/bookmarker-tutorial
49 https://getcomposer.org/download/
30 https://getcomposer.org/Composer-Setup.exe

Bookmarker Tutorial 103

https://github.com/cakephp/bookmarker-tutorial
https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe

CakePHP Book, Release 4.x

(continued from previous page)
/plugins
/src
/tests
/tmp
/vendor
/webroot
.editorconfig
.gitignore
.htaccess
.travis.yml
composer. json
index.php
phpunit.xml.dist
README . md

Now might be a good time to learn a bit about how CakePHP’s directory structure works: check out the CakePHP
Folder Structure section.

Checking our Installation

We can quickly check that our installation is correct, by checking the default home page. Before you can do that, you’ll
need to start the development server:

bin/cake server

Note: For Windows, the command needs to be bin\cake server (note the backslash).

This will start PHP’s built-in webserver on port 8765. Open up http://localhost:8765 in your web browser to see the
welcome page. All the bullet points should be checkmarks other than CakePHP being able to connect to your database.
If not, you may need to install additional PHP extensions, or set directory permissions.

Creating the Database

Next, let’s set up the database for our bookmarking application. If you haven’t already done so, create an empty database
for use in this tutorial, with the name of your choice such as cake_bookmarks. You can execute the following SQL to
create the necessary tables:

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT s
password VARCHAR(255) NOT ,
created DATETIME,
modified DATETIME

);

CREATE TABLE bookmarks (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT s
title VARCHAR(50),

(continues on next page)

104 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

description TEXT,

url TEXT,

created DATETIME,

modified DATETIME,

FOREIGN KEY user_key (user_id) REFERENCES users(id)

);

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(191),
created DATETIME,
modified DATETIME,
UNIQUE KEY (title)
DE

CREATE TABLE bookmarks_tags (
bookmark_id INT NOT s
tag_id INT NOT ,
PRIMARY KEY (bookmark_id, tag_id),
FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),
FOREIGN KEY bookmark_key(bookmark_id) REFERENCES bookmarks(id)

);
If you are using PostgreSQL, connect to cake_bookmarks database and execute the following SQL instead:

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created TIMESTAMP,
modified TIMESTAMP

);

CREATE TABLE bookmarks (
id SERIAL PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(50),
description TEXT,
url TEXT,
created TIMESTAMP,
modified TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES users(id)

);

CREATE TABLE tags (
id SERIAL PRIMARY KEY,
title VARCHAR(255),
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (title)

(continues on next page)

Bookmarker Tutorial 105

CakePHP Book, Release 4.x

(continued from previous page)

CREATE TABLE bookmarks_tags (
bookmark_id INT NOT NULL,
tag_id INT NOT NULL,
PRIMARY KEY (bookmark_id, tag_id),
FOREIGN KEY (tag_id) REFERENCES tags(id),
FOREIGN KEY (bookmark_id) REFERENCES bookmarks(id)

);

You may have noticed that the bookmarks_tags table used a composite primary key. CakePHP supports composite
primary keys almost everywhere, making it easier to build multi-tenanted applications.

The table and column names we used were not arbitrary. By using CakePHP’s naming conventions, we can leverage
CakePHP better and avoid having to configure the framework. CakePHP is flexible enough to accommodate even
inconsistent legacy database schemas, but adhering to the conventions will save you time.

Database Configuration

Next, let’s tell CakePHP where our database is and how to connect to it. For many, this will be the first and last time
you will need to configure anything.

The configuration should be pretty straightforward: just replace the values in the Datasources.default array in the
config/app.php file with those that apply to your setup. A sample completed configuration array might look something
like the following:

return [
// More configuration above.
'Datasources' => [
'default' => [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~',
'database' => 'cake_bookmarks',
'encoding' => 'utf8',
'timezone' => 'UTC',
'cacheMetadata' => true,
Jg
1,
// More configuration below.

i

Once you’ve saved your config/app.php file, you should see that ‘CakePHP is able to connect to the database’ section
have a checkmark.

Note: A copy of CakePHP’s default configuration file is found in config/app.default.php.

106 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Generating Scaffold Code

Because our database is following the CakePHP conventions, we can use the bake console application to quickly gen-
erate a basic application. In your command line run the following commands:

// On Windows you'll need to use bin\cake instead.
bin/cake bake all users

bin/cake bake all bookmarks

bin/cake bake all tags

This will generate the controllers, models, views, their corresponding test cases, and fixtures for our users, bookmarks
and tags resources. If you’ve stopped your server, restart it and go to http://localhost:8765/bookmarks.

You should see a basic but functional application providing data access to your application’s database tables. Once
you’re at the list of bookmarks, add a few users, bookmarks, and tags.

Adding Password Hashing

When you created your users (by visiting http://localhost:8765/users), you probably noticed that the passwords were
stored in plain text. This is pretty bad from a security point of view, so let’s get that fixed.

This is also a good time to talk about the model layer in CakePHP. In CakePHP, we separate the methods that operate
on a collection of objects, and a single object into different classes. Methods that operate on the collection of entities
are put in the Table class, while features belonging to a single record are put on the Entity class.

For example, password hashing is done on the individual record, so we’ll implement this behavior on the entity object.
Because, we want to hash the password each time it is set, we’ll use a mutator/setter method. CakePHP will call
convention based setter methods any time a property is set in one of your entities. Let’s add a setter for the password.
In sre/Model/Entity/User.php add the following:

namespace App\Model\Entity;

use Cake\Auth\DefaultPasswordHasher; //include this line
use Cake\ORM\Entity;

class User extends Entity

{
// Code from bake.
protected function _setPassword($value)
{
$hasher = new DefaultPasswordHasher();
return $hasher->hash($value);
}
}

Now update one of the users you created earlier, if you change their password, you should see a hashed password instead
of the original value on the list or view pages. CakePHP hashes passwords with berypt®! by default. You can also use
shal or md5 if you're working with an existing database.

Note: If the password doesn’t get hashed, make sure you followed the same case for the password member of the class
while naming the setter function

31 https://codahale.com/how- to- safely- store-a- password/

Bookmarker Tutorial 107

https://codahale.com/how-to-safely-store-a-password/

CakePHP Book, Release 4.x

Getting Bookmarks with a Specific Tag

Now that we’re storing passwords safely, we can build out some more interesting features in our application. Once
you’ve amassed a collection of bookmarks, it is helpful to be able to search through them by tag. Next we’ll implement
a route, controller action, and finder method to search through bookmarks by tag.

Ideally, we’d have a URL that looks like http://localhost:8765/bookmarks/tagged/funny/cat/gifs. This would let us
find all the bookmarks that have the ‘funny’, ‘cat’ or ‘gifs’ tags. Before we can implement this, we’ll add a new route.
Your config/routes.php should look like:

<?php
use Cake\Routing\Route\DashedRoute;
use Cake\Routing\Router;

$routes->setRouteClass(DashedRoute: :class);

// New route we're adding for our tagged action.
// The trailing “*° tells CakePHP that this action has
// passed parameters.
$routes->scope(
' /bookmarks',
['controller' => 'Bookmarks'],
function ($routes) {
$routes->connect('/tagged/*', ['action' => 'tags']l);
}
E

$routes->scope('/', function ($routes) {
// Connect the default home and /pages/* routes.
$routes->connect('/', [
'controller' => 'Pages',

'action' => 'display', 'home'

D;

$routes->connect('/pages/*', [
'controller' => 'Pages',
'action' => 'display'

D

// Connect the conventions based default routes.
$routes->fallbacks();
};

The above defines a new ‘route’ which connects the /bookmarks/tagged/ path, to BookmarksController: :tagsQ).
By defining routes, you can isolate how your URLs look, from how they are implemented. If we were
to visit http://localhost:8765/bookmarks/tagged, we would see a helpful error page from CakePHP in-
forming you that the controller action does not exist. Let’s implement that missing method now. In
src/Controller/BookmarksController.php add the following:

public function tags()

{
// The 'pass' key is provided by CakePHP and contains all
// the passed URL path segments in the request.
$tags = $this->request->getParam('pass');

(continues on next page)

108 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

// Use the BookmarksTable to find tagged bookmarks.
$bookmarks = $this->Bookmarks->find('tagged', [
'tags' => $tags
D
->allQ);

// Pass variables into the view template context.
$this->set ([

'bookmarks' => $bookmarks,

'tags' => $tags
D;

To access other parts of the request data, consult the Request section.

Creating the Finder Method

In CakePHP we like to keep our controller actions slim, and put most of our application’s logic in the models. If you
were to visit the /bookmarks/tagged URL now you would see an error that the findTagged () method has not been
implemented yet, so let’s do that. In src/Model/Table/BookmarksTable.php add the following:

Vi
* The $query argument is a query builder instance.
* The $options array will contain the 'tags' option we passed
* to find('tagged') in our controller action
* @param \Cake\ORM\Query $query
* @param array $options
* @return \Cake\ORM\Query
-Modified query object.
% /
public function findTagged(Query $query, array $options)
{
if (empty($options['tags'])) {
$bookmarks = $query
->select(['Bookmarks.id', 'Bookmarks.url', 'Bookmarks.title', 'Bookmarks.
—description'])
->leftJoinWith('Tags"')
->where(['Tags.title IS' => null])
->group (['Bookmarks.id']);
} else {
$bookmarks = $query
->select(['Bookmarks.id', 'Bookmarks.url', 'Bookmarks.title', 'Bookmarks.
—description'])
->innerJoinWith('Tags"')
->where(['Tags.title IN ' => $options['tags']])
->group (['Bookmarks.id']);
}

return $query;

We just implemented a custom finder method. This is a very powerful concept in CakePHP that allows you to package
up re-usable queries. Finder methods always get a Query Builder object and an array of options as parameters. Finders

Bookmarker Tutorial 109

CakePHP Book, Release 4.x

can manipulate the query and add any required conditions or criteria. When complete, finder methods must return a
modified query object. In our finder we’ve leveraged the innerJoinWith(), where() and group () methods which
allow us to find distinct bookmarks that have a matching tag. When no tags are provided we use a leftJoinWith()
and modify the ‘where’ condition, finding bookmarks without tags.

Creating the View

Now if you visit the /bookmarks/tagged URL, CakePHP will show an error letting you know that you have not made
a view file. Next, let’s build the view file for our tags () action. In templates/Bookmarks/tags.php put the following
content:

<hl>
Bookmarks tagged with
<?= $this->Text->toList(h($tags)) 7>

</h1>
<section>
<?php foreach ($bookmarks as $bookmark): 7>
<article>
<!-- Use the HtmlHelper to create a link -->
<h4><?= $this->Html->1ink($bookmark->title, $bookmark->url) ?></h4>
<small><?= h($hookmark->url) ?></small>
<!-- Use the TextHelper to format text -->
<?= $this->Text->autoParagraph(h($bookmark->description)) 7>
</article>
<?php endforeach; ?>
</section>

In the above code we use the Hrml and Text helpers to assist in generating our view output. We also use the h shortcut
function to HTML encode output. You should remember to always use h() when outputting user data to prevent HTML
injection issues.

The tags.php file we just created follows the CakePHP conventions for view template files. The convention is to have
the template use the lower case and underscored version of the controller action name.

You may notice that we were able to use the $tags and $bookmarks variables in our view. When we use the set()
method in our controller, we set specific variables to be sent to the view. The view will make all passed variables
available in the templates as local variables.

You should now be able to visit the /bookmarks/tagged/funny URL and see all the bookmarks tagged with ‘funny’.

So far, we’ve created a basic application to manage bookmarks, tags and users. However, everyone can see everyone
else’s tags. In the next chapter, we’ll implement authentication and restrict the visible bookmarks to only those that
belong to the current user.

Now continue to Bookmarker Tutorial Part 2 to continue building your application or dive into the documentation to
learn more about what CakePHP can do for you.

110 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Bookmarker Tutorial Part 2

After finishing the first part of this tutorial you should have a very basic bookmarking application. In this chapter we’ll
be adding authentication and restricting the bookmarks each user can see/modify to only the ones they own.

Adding Login

In CakePHP, authentication is handled by Components. Components can be thought of as ways to create reusable
chunks of controller code related to a specific feature or concept. Components can also hook into the controller’s event
life-cycle and interact with your application that way. To get started, we’ll add the AuthComponent to our application.
We'll pretty much want every method to require authentication, so we’ll add AuthComponent in our AppController:

// In src/Controller/AppController.php
namespace App\Controller;

use Cake\Controller\Controller;

class AppController extends Controller
{
public function initialize(): void
{
$this->loadComponent('Flash');
$this->loadComponent ('Auth', [
'authenticate' => [
'Form' => [
'fields' => [
'username' => 'email',
'password' => 'password'

]
i[e
'loginAction' => [
'controller' => 'Users',
'action' => 'login'
iPp
'unauthorizedRedirect' => $this->referer() // If unauthorized, return them.,
—to page they were just on

D

// Allow the display action so our pages controller
// continues to work.
$this->Auth->allow(['display']);

We’ve just told CakePHP that we want to load the Flash and Auth components. In addition, we’ve customized the
configuration of AuthComponent, as our users table uses email as the username. Now, if you go to any URL you’ll
be kicked to /users/login, which will show an error page as we have not written that code yet. So let’s create the login
action:

// In src/Controller/UsersController.php
public function login()
(continues on next page)

Bookmarker Tutorial Part 2 111

CakePHP Book, Release 4.x

(continued from previous page)

if ($this->request->is('post')) {
$user = $this->Auth->identify(Q);
if (Suser) {
$this->Auth->setUser($user);
return $this->redirect($this->Auth->redirectUrl());

}

$this->Flash->error('Your username or password is incorrect.');
}

And in templates/Users/login.php add the following:

<h1>Login</h1>

<?= $this->Form->create() 7>

<?= $this->Form->control('email') ?>
<?= $this->Form->control ('password') ?>
<?= $this->Form->button('Login') 7>

<?= $this->Form->end() 7>

Now that we have a simple login form, we should be able to log in with one of the users that has a hashed password.

Note: If none of your users have hashed passwords, comment the 1oadComponent ('Auth') line. Then go and edit
the user, saving a new password for them.

Adding Logout

Now that people can log in, you’ll probably want to provide a way to log out as well. Again, in the UsersController,
add the following code:

public function initialize(): void

{
parent::initialize(Q);
$this->Auth->allow(['logout']);

3

public function logout()

{
$this->Flash->success('You are now logged out.');
return $this->redirect($this->Auth->logout());

}

This code configures the 1logout action as a public action and implements the logout method. Now you can visit
/users/logout to log out. You should then be sent to the login page.

112 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Enabling Registrations

If you aren’t logged in and you try to visit /users/add you will be kicked to the login page. We should fix that as we
want to allow people to sign up for our application. In the UsersController add the following:

public function initialize(): void

{
parent::initialize();
// Add the 'add' action to the allowed actions list.
$this->Auth->allow(['logout', 'add']);

}

The above tells AuthComponent that the add () action does not require authentication or authorization. You may want
to take the time to clean up the Users/add.php and remove the misleading links, or continue on to the next section.
We won’t be building out user editing, viewing or listing in this tutorial so they will not work as AuthComponent will
deny you access to those controller actions.

Restricting Bookmark Access

Now that users can log in, we’ll want to limit the bookmarks they can see to the ones they made. We’ll do this
using an ‘authorization’ adapter. Since our requirements are pretty simple, we can write some simple code in our
BookmarksController. But before we do that, we’ll want to tell the AuthComponent how our application is going
to authorize actions. In your AppController add the following

public function isAuthorized($user)
{
return false;

}

Also, add the following to the configuration for Auth in your AppController:

'authorize' => 'Controller',

Your initialize () method should now look like:

public function initialize(): void
{
$this->loadComponent('Flash');
$this->loadComponent('Auth', [
'authorize'=> 'Controller',//added this line
'authenticate' => [
'Form' => [
'fields' => [
'username' => 'email',
'password' => 'password'

1
ie
'loginAction' => [

'controller' => 'Users',

'action' => 'login'
ie
'unauthorizedRedirect' => $this->referer()

(continues on next page)

Bookmarker Tutorial Part 2 113

CakePHP Book, Release 4.x

(continued from previous page)

D;

// Allow the display action so our pages controller
// continues to work.
$this->Auth->allow(['display']);

b

We’ll default to denying access, and incrementally grant access where it makes sense. First, we’ll add the authorization
logic for bookmarks. In your BookmarksController add the following:

public function isAuthorized($user)

{

$action = $this->request->getParam('action');

// The add and index actions are always allowed.
if (in_array($action, ['index', 'add', 'tags'])) {
return true;

}

// All other actions require an id.
if (!$this->request->getParam('pass.0')) {
return false;

}

// Check that the bookmark belongs to the current user.
$id = $this->request->getParam('pass.0');
$bookmark = $this->Bookmarks->get($id);
if ($bookmark->user_id == $user['id']) {
return true;

}

return parent::isAuthorized(S$user);

}

Now if you try to view, edit or delete a bookmark that does not belong to you, you should be redirected back to the page
you came from. If no error message is displayed, add the following to your layout:

// In templates/layout/default.php
<?= $this->Flash->render() ?>

You should now see the authorization error messages.

Fixing List view and Forms

While view and delete are working, edit, add and index have a few problems:
1. When adding a bookmark you can choose the user.
2. When editing a bookmark you can choose the user.
3. The list page shows bookmarks from other users.

Let’s tackle the add form first. To begin with remove the control('user_id') from tem-
plates/Bookmarks/add.php. With that removed, we’ll also update the add() action from
src/Controller/BookmarksController.php to look like:

114 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

public function add()

{
$bookmark = $this->Bookmarks->newEntity();
if ($this->request->is('post')) {
$bookmark = $this->Bookmarks->patchEntity($bookmark, $this->request->getData());
$bookmark->user_id = $this->Auth->user('id');
if ($this->Bookmarks->save($bookmark)) {
$this->Flash->success('The bookmark has been saved.');
return $this->redirect(['action' => 'index']);
}
$this->Flash->error('The bookmark could not be saved. Please, try again.');
}
$tags = $this->Bookmarks->Tags->find('list')->all(Q);
$this->set(compact('bookmark', 'tags'));
$this->viewBuilder()->setOption('serialize', ['bookmark']);
}

By setting the entity property with the session data, we remove any possibility of the user modifying which
user a bookmark is for. We’ll do the same for the edit form and action. Your edit() action from
src/Controller/BookmarksController.php should look like:

public function edit($id = null)

{
$bookmark = $this->Bookmarks->get($id, [
'contain' => ['Tags']
D;
if ($this->request->is(['patch', 'post', 'put'])) {
$bookmark = $this->Bookmarks->patchEntity($bookmark, $this->request->getData());
$bookmark->user_id = $this->Auth->user('id');
if ($this->Bookmarks->save($bookmark)) {
$this->Flash->success('The bookmark has been saved.');
return $this->redirect(['action' => 'index']);
}
$this->Flash->error('The bookmark could not be saved. Please, try again.');
}
$tags = $this->Bookmarks->Tags->find('list')->all();
$this->set(compact('bookmark', 'tags'));
$this->viewBuilder()->setOption('serialize', ['bookmark']);
}
List View

Now, we only need to show bookmarks for the currently logged in user. We can do that by updating the call to
paginate(). Make your index() action from src/Controller/BookmarksController.php look like:

public function index()
{
$this->paginate = [
'conditions' => [
'Bookmarks.user_id' => $this->Auth->user('id'),
]
1;

(continues on next page)

Bookmarker Tutorial Part 2 115

CakePHP Book, Release 4.x

(continued from previous page)

$this->set('bookmarks', $this->paginate($this->Bookmarks));
$this->viewBuilder()->setOption('serialize', ['bookmarks']);

We should also update the tags () action and the related finder method, but we’ll leave that as an exercise you can
complete on your own.

Improving the Tagging Experience

Right now, adding new tags is a difficult process, as the TagsController disallows all access. Instead of allowing
access, we can improve the tag selection Ul by using a comma separated text field. This will let us give a better
experience to our users, and use some more great features in the ORM.

Adding a Computed Field

Because we’ll want a simple way to access the formatted tags for an entity, we can add a virtual/computed field to the
entity. In src/Model/Entity/Bookmark.php add the following:

use Cake\Collection\Collection;

protected function _getTagString()
{
if (isset($this->_fields['tag_string'])) {
return $this->_fields['tag_string'];
}
if (empty($this->tags)) {
return '';
}
$tags = new Collection($this->tags);
$str = $tags->reduce(function ($string, $tag) {
return $string . $tag->title . ', ';
PO

return trim($str, ', ');

This will let us access the $bookmark->tag_string computed property. We’ll use this property in controls later on.
Remember to add the tag_string property to the _accessible list in your entity, as we’ll want to ‘save’ it later on.

In src/Model/Entity/Bookmark.php add the tag_string to $_accessible this way:

protected $_accessible = [
'user_id' => true,
'title' => true,
'description’' => true,
'url' => true,
'user' => true,
'tags' => true,
'tag_string' => true,

116 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Updating the Views

With the entity updated we can add a new control for our tags. In templates/Bookmarks/add.php and tem-
plates/Bookmarks/edit.php, replace the existing tags._ids control with the following:

echo $this->Form->control('tag_string', ['type' => 'text']);

Persisting the Tag String

Now that we can view existing tags as a string, we’ll want to save that data as well. Because we marked the tag_string
as accessible, the ORM will copy that data from the request into our entity. We can use a beforeSave () hook method
to parse the tag string and find/build the related entities. Add the following to src/Model/Table/BookmarksTable.php:

public function beforeSave($event, $entity, $options)

{
if ($entity->tag_string) {
$entity->tags = $this->_buildTags($entity->tag_string);
}
}
protected function _buildTags($tagString)
{
// Trim tags
$newTags = array_map('trim', explode(',', $tagString));
// Remove all empty tags
$newTags = array_filter($newTags);
// Reduce duplicated tags
$newTags = array_unique($newTags);
$out = [];
$tags = $this->Tags->£find()
->where(['Tags.title IN' => $newTags])->all();
// Remove existing tags from the list of new tags.
foreach ($tags->extract('title') as S$existing) {
$index = array_search($existing, $newTags);
if ($index !'== false) {
unset ($newTags[$index]);
}
}
// Add existing tags.
foreach ($tags as $tag) {
$out[] = $tag;
}
// Add new tags.
foreach ($newTags as $tag) {
$out[] = $this->Tags->newEntity(['title' => $tag]l);
}
return fout;
}

While this code is a bit more complicated than what we’ve done so far, it helps to showcase how powerful the ORM
in CakePHP is. You can manipulate query results using the Collections methods, and handle scenarios where you are

Bookmarker Tutorial Part 2 117

CakePHP Book, Release 4.x

creating entities on the fly with ease.

Wrapping Up
We’ve expanded our bookmarking application to handle authentication and basic authorization/access control scenarios.
We’ve also added some nice UX improvements by leveraging the FormHelper and ORM capabilities.

Thanks for taking the time to explore CakePHP. Next, you can complete the Blog Tutorial, learn more about the
Database Access & ORM, or you can peruse the /topics.

Blog Tutorial

This tutorial will walk you through the creation of a simple blog application. We’ll be installing CakePHP, creating a
database, and creating enough application logic to list, add, edit, and delete blog articles.

Here’s what you’ll need:

1. A running web server. We’re going to assume you’re using Apache, though the instructions for using other
servers should be very similar. We might have to play a little with the server configuration, but most folks can
get CakePHP up and running without any configuration at all. Make sure you have PHP 7.4 or greater, and that
the mbstring and intl extensions are enabled in PHP.

2. A database server. We're going to be using MySQL server in this tutorial. You’ll need to know enough about
SQL in order to create a database: CakePHP will be taking the reins from there. Since we’re using MySQL, also
make sure that you have pdo_mysql enabled in PHP.

3. Basic PHP knowledge.

Let’s get started!

Getting CakePHP

The easiest way to install CakePHP is to use Composer. Composer is a simple way of installing CakePHP from your
terminal or command line prompt. First, you’ll need to download and install Composer if you haven’t done so already.
If you have cURL installed, it’s as easy as running the following:

curl -s https://getcomposer.org/installer | php

Or, you can download composer . phar from the Composer website™.

Then simply type the following line in your terminal from your installation directory to install the CakePHP application
skeleton in the directory that you wish to use it with. For this example we will be using “blog” but feel free to change
it to something else.:

php composer.phar create-project --prefer-dist cakephp/app:4.* blog
In case you’ve already got composer installed globally, you may instead type:

composer self-update && composer create-project --prefer-dist cakephp/app:4.* blog

The advantage to using Composer is that it will automatically complete some important set up tasks, such as setting
the correct file permissions and creating your config/app.php file for you.

There are other ways to install CakePHP. If you cannot or don’t want to use Composer, check out the /nstallation section.

52 https://getcomposer.org/download/

118 Chapter 4. Tutorials & Examples

https://getcomposer.org/download/

CakePHP Book, Release 4.x

Regardless of how you downloaded and installed CakePHP, once your set up is completed, your directory setup should
look something like the following:

/cake_install
/bin
/config
/logs
/plugins
/src
/tests
/tmp
/vendor
/webroot
.editorconfig
.gitignore
.htaccess
.travis.yml
composer. json
index.php
phpunit.xml.dist
README . md

Now might be a good time to learn a bit about how CakePHP’s directory structure works: check out the CakePHP
Folder Structure section.

Directory Permissions on tmp and logs

The tmp and logs directories need to have proper permissions to be writable by your webserver. If you used Composer
for the install, this should have been done for you and confirmed with a “Permissions set on <folder>" message. If you
instead got an error message or want to do it manually, the best way would be to find out what user your webserver runs
as (<?= “whoami’; ?7>) and change the ownership of these two directories to that user. The final command you run
(in *nix) might look something like this:

chown -R www-data tmp

chown -R www-data logs

If for some reason CakePHP can’t write to these directories, you’ll be informed by a warning while not in production
mode.

While not recommended, if you are unable to set the permissions to the same as your webserver, you can simply set
write permissions on the folder by running a command such as:

chmod -R 777 tmp
chmod -R 777 logs

Blog Tutorial 119

CakePHP Book, Release 4.x

Creating the Blog Database

Next, let’s set up the underlying MySQL database for our blog. If you haven’t already done so, create an empty database
for use in this tutorial with the name of your choice such as cake_blog. Right now, we’ll just create a single table to
store our articles.

First, create our articles table
CREATE TABLE articles (
id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(5S0),
body TEXT,
created DATETIME DEFAULT ,
modified DATETIME DEFAULT

)3
If you are using PostgreSQL, connect to cake_blog database and execute the following SQL instead:

-- First, create our articles table
CREATE TABLE articles (
id SERIAL PRIMARY KEY,
title VARCHAR(50),
body TEXT,
created TIMESTAMP DEFAULT NULL,
modified TIMESTAMP DEFAULT NULL

);

We’ll also throw in a few articles to use for testing purposes. Execute the following SQL statements into your database
(works for both MySQL and PostgreSQL):

Then insert some articles for testing:
INSERT INTO articles (title,body,created)
VALUES ('The title', 'This is the article body.', NOW(Q));
INSERT INTO articles (title,body,created)
VALUES ('A title once again', 'And the article body follows.', NOW(Q));
INSERT INTO articles (title,body,created)
VALUES ('Title strikes back', 'This is really exciting! Not.', NOWQ));

The choices on table and column names are not arbitrary. If you follow CakePHP’s database naming conventions, and
CakePHP’s class naming conventions (both outlined in CakePHP Conventions), you’ll be able to take advantage of a
lot of free functionality and avoid configuration. CakePHP is flexible enough to accommodate even inconsistent legacy
database schemas, but adhering to the conventions will save you time.

Check out CakePHP Conventions for more information, but it’s suffice to say that naming our table ‘articles’ automat-
ically hooks it to our Articles model, and having fields called ‘modified’ and ‘created’ will be automatically managed
by CakePHP.

120 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Database Configuration

Next, let’s tell CakePHP where our database is and how to connect to it. For many, this will be the first and last time
you will need to configure anything.

The configuration should be pretty straightforward: just replace the values in the Datasources.default array in the
config/app.php file with those that apply to your setup. A sample completed configuration array might look something
like the following:

return [
// More configuration above.
'Datasources' => [
'default' => [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cake_blog',
'password' => 'AngelF00dC4k3~"',
'database'’ => 'cake_blog',
'encoding' => 'utf8',
'timezone' => 'UTC'
Jg
1,
// More configuration below.

1l

Once you’ve saved your config/app.php file, you should be able to open your browser and see the CakePHP welcome
page. It should also tell you that your database connection file was found, and that CakePHP can successfully connect
to the database.

Note: A copy of CakePHP’s default configuration file is found in config/app.default.php.

Optional Configuration

There are a few other items that can be configured. Most developers complete these laundry-list items, but they’re not
required for this tutorial. One is defining a custom string (or “salt”) for use in security hashes.

The security salt is used for generating hashes. If you used Composer this too is taken care of for you during the install.
Else you’d need to change the default salt value by editing config/app.php. It doesn’t matter much what the new value
is, as long as it’s not guessable:

'Security' => [
'salt' => 'something long and containing lots of different values.',

1,

Blog Tutorial 121

CakePHP Book, Release 4.x

A Note on mod_rewrite

Occasionally new users will run into mod_rewrite issues. For example if the CakePHP welcome page looks a little
funny (no images or CSS styles). This probably means mod_rewrite is not functioning on your system. Please refer to
the URL Rewriting section to help resolve any issues you are having.

Now continue to Blog Tutorial - Part 2 to start building your first CakePHP application.

Blog Tutorial - Part 2

Create an Article Model

Models are the bread and butter of CakePHP applications. By creating a CakePHP model that will interact with our
database, we’ll have the foundation in place needed to do our view, add, edit, and delete operations later.

CakePHP’s model class files are split between Table and Entity objects. Table objects provide access to the col-
lection of entities stored in a specific table and go in src/Model/Table. The file we’ll be creating will be saved to
src/Model/Table/ArticlesTable.php. The completed file should look like this:

// src/Model/Table/ArticlesTable.php
namespace App\Model\Table;
use Cake\ORM\Table;

class ArticlesTable extends Table

{
public function initialize(array $config): void
{
$this->addBehavior('Timestamp');
3
}

Naming conventions are very important in CakePHP. By naming our Table object ArticlesTable, CakePHP can
automatically infer that this Table object will be used in the ArticlesController, and will be tied to a database table
called articles.

Note: CakePHP will dynamically create a model object for you if it cannot find a corresponding file in
src/Model/Table. This also means that if you accidentally name your file wrong (i.e. articlestable.php or Arti-
cleTable.php), CakePHP will not recognize any of your settings and will use the generated model instead.

For more on models, such as callbacks, and validation, check out the Darabase Access & ORM chapter of the Manual.

Note: If you completed Part I of the Blog Tutorial and created the articles table in our Blog database you can
leverage CakePHP’s bake console and its code generation capabilities to create the ArticlesTable model:

bin/cake bake model Articles

For more on bake and its code generation features please visit /bake/usage.

122 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Create the Articles Controller

Next, we’ll create a controller for our articles. The controller is where all interaction with articles will happen. In a
nutshell, it’s the place where you play with the business logic contained in the models and get work related to articles
done. We’ll place this new controller in a file called ArticlesController.php inside the src/Controller directory. Here’s
what the basic controller should look like:

// src/Controller/ArticlesController.php
namespace App\Controller;

class ArticlesController extends AppController
{
}

Now, let’s add an action to our controller. Actions often represent a single function or interface in an application. For

example, when users request www.example.com/articles/index (which is also the same as www.example.com/articles/),
they might expect to see a listing of articles. The code for that action would look like this:

// src/Controller/ArticlesController.php
namespace App\Controller;

class ArticlesController extends AppController

{
public function index()
{
$articles = $this->Articles->find()->all();
$this->set(compact('articles'));
1
3

By defining function index() in our ArticlesController, users can now access the logic there by requesting
www.example.com/articles/index. Similarly, if we were to define a function called foobar (), users would be able to
access that at www.example.com/articles/foobar.

Warning: You may be tempted to name your controllers and actions a certain way to obtain a certain URL.
Resist that temptation. Follow CakePHP Conventions (capitalization, plural names, etc.) and create readable,
understandable action names. You can map URLSs to your code using Routing covered later on.

The single instruction in the action uses set() to pass resultset from the controller to the view (which we’ll create
next). The find() method of the ArticlesTable object returns an instance of Cake\\ORM\\Query and calling its
all () method returns as instance of Cake\\Collection\\CollectionInterface which is set as a view variable
called ‘articles’.

Note: If you completed Part I of the Blog Tutorial and created the articles table in your Blog database you can
leverage CakePHP’s bake console and its code generation capabilities to create the ArticlesController class:

bin/cake bake controller Articles

For more on bake and its code generation features please visit /bake/usage.

Blog Tutorial - Part 2 123

CakePHP Book, Release 4.x

To learn more about CakePHP’s controllers, check out the Controllers chapter.

Creating Article Views

Now that we have our data flowing from our model, and our application logic is defined by our controller, let’s create
a view for the index action we created above.

CakePHP views are just presentation-flavored fragments that fit inside an application’s layout. For most applications,
they’re HTML mixed with PHP, but they may end up as XML, CSV, or even binary data.

A layout is presentation code that is wrapped around a view. Multiple layouts can be defined, and you can switch
between them, but for now, let’s just use the default.

Remember in the last section how we assigned the ‘articles’ variable to the view using the set () method? That would
hand down the query object collection to the view to be invoked with a foreach iteration.

CakePHP’s template files are stored in templates inside a folder named after the controller they correspond to (we’ll
have to create a folder named ‘Articles’ in this case). To format this article data in a nice table, our view code might
look something like this:

<l-- File: templates/Articles/index.php -->

<h1>Blog articles</hl>
<table>
<tr>
<th>Id</th>
<th>Title</th>
<th>Created</th>
</tr>

<!-- Here is where we iterate through our $articles query object, printing out.
—article info -->

<?php foreach ($articles as $article): ?>

<tr>
<td><?= $article->id ?></td>
<td>
<?= $this->Html->link($article->title, ['action' => 'view',6 S$article->id]) 7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
</tr>
<?php endforeach; 7>
</table>

Hopefully this should look somewhat simple.

You might have noticed the use of an object called $this->Html. This is an instance of the CakePHP Cake\View\
Helper\HtmlHelper class. CakePHP comes with a set of view helpers that make things like linking, form output
a snap. You can learn more about how to use them in Helpers, but what’s important to note here is that the 1ink ()
method will generate an HTML link with the given title (the first parameter) and URL (the second parameter).

When specifying URLs in CakePHP, it is recommended that you use the array format. This is explained in more detail
in the section on Routes. Using the array format for URLs allows you to take advantage of CakePHP’s reverse routing

124 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

capabilities. You can also specify URLSs relative to the base of the application in the form of /controller/action/
paraml/param2 or use named routes.

At this point, you should be able to point your browser to http://www.example.com/articles/index. You should see your
view, correctly formatted with the title and table listing of the articles.

If you happened to have clicked on one of the links we created in this view (that link a article’s title to a URL /
articles/view/some_id), you were probably informed by CakePHP that the action hasn’t yet been defined. If you
were not so informed, either something has gone wrong, or you actually did define it already, in which case you are
very sneaky. Otherwise, we’ll create it in the ArticlesController now:

// src/Controller/ArticlesController.php
namespace App\Controller;

class ArticlesController extends AppController

{
public function index()
{
$this->set('articles', $this->Articles->find()->all());
3
public function view($id = null)
{
$article = $this->Articles->get($id);
$this->set(compact('article'));
1
}

The set() call should look familiar. Notice we’re using get () rather than find() because we only really want a
single article’s information.

Notice that our view action takes a parameter: the ID of the article we’d like to see. This parameter is handed to the
action through the requested URL. If a user requests /articles/view/3, then the value ‘3’ is passed as $id.

We also do a bit of error checking to ensure a user is actually accessing a record. By using the get () function in the
Articles table, we make sure the user has accessed a record that exists. In case the requested article is not present in the
database, or the id is false the get () function will throw a NotFoundException.

Now let’s create the view for our new ‘view’ action and place it in templates/Articles/view.php

<l-- File: templates/Articles/view.php -->

<h1><?= h($article->title) ?></hl>
<p><?= h($article->body) ?></p>
<p><small>Created: <?= $article->created->format(DATE_RFC850) 7></small></p>

Verify that this is working by trying the links at /articles/index or manually requesting an article by accessing
/articles/view/{id}, replacing {id} by an article ‘id’.

Blog Tutorial - Part 2 125

http://www.example.com/articles/index

CakePHP Book, Release 4.x

Adding Articles

Reading from the database and showing us the articles is a great start, but let’s allow for the adding of new articles.

First, start by creating an add() action in the ArticlesController:

// src/Controller/ArticlesController.php
namespace App\Controller;
use App\Controller\AppController;

class ArticlesController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent('Flash'); // Include the FlashComponent
}
public function index()
{
$this->set('articles', $this->Articles->find()->all());
3
public function view($id)
{
$article = $this->Articles->get($id);
$this->set(compact('article'));
}
public function add(Q)
{
$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity(Sarticle, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));
}
$this->set('article’', $article);
}
}

Note: You need to include the Flash component in any controller where you will use it. If necessary, include it in
your AppController.

Here’s what the add () action does: if the HTTP method of the request was POST, try to save the data using the Articles
model. If for some reason it doesn’t save, just render the view. This gives us a chance to show the user validation errors
or other warnings.

126 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Every CakePHP request includes a ServerRequest object which is accessible using $this->request. The request
object contains useful information regarding the request that was just received, and can be used to control the flow of
your application. In this case, we use the Cake\Http\ServerRequest: :is() method to check that the request is a
HTTP POST request.

When a user uses a form to POST data to your application, that information is available in
$this->request->getData(). You can use the pr() or debug() functions to print it out if you want to see
what it looks like.

We use FlashComponent’s success () and error () methods to set a message to a session variable. These methods
are provided using PHP’s magic method features™. Flash messages will be displayed on the page after redirection.
In the layout we have <?= $this->Flash->render() 7> which displays the message and clears the corresponding
session variable. The controller’s Cake\Controller\Controller: :redirect function redirects to another URL.
The param ['action' => 'index'] translates to URL /articles i.e the index action of the ArticlesController.
You can refer to Cake\Routing\Router: :url() function on the API’* to see the formats in which you can specify
a URL for various CakePHP functions.

Calling the save () method will check for validation errors and abort the save if any occur. We’ll discuss how those
errors are handled in the following sections.

Data Validation

CakePHP goes a long way toward taking the monotony out of form input validation. Everyone hates coding up endless
forms and their validation routines. CakePHP makes it easier and faster.

To take advantage of the validation features, you’ll need to use CakePHP’s Form helper in your views. The Cake\
View\Helper\FormHelper is available by default to all views at $this->Form.

Here’s our add view:

<!-- File: templates/Articles/add.php -->

<h1>Add Article</hl>
<?php
echo $this->Form->create($article);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

We use the FormHelper to generate the opening tag for an HTML form. Here’s the HTML that
$this->Form->create() generates:

<form method="post" action="/articles/add">

If create() is called with no parameters supplied, it assumes you are building a form that submits via POST to the
current controller’s add () action (or edit () action when id is included in the form data).

The $this->Form->control () method is used to create form elements of the same name. The first parameter tells
CakePHP which field they correspond to, and the second parameter allows you to specify a wide array of options -
in this case, the number of rows for the textarea. There’s a bit of introspection and automagic here: control () will
output different form elements based on the model field specified.

33 https://php.net/manual/en/language.oop5.overloading php#object.call
54 https://api.cakephp.org

Blog Tutorial - Part 2 127

https://php.net/manual/en/language.oop5.overloading.php#object.call
https://api.cakephp.org

CakePHP Book, Release 4.x

The $this->Form->end() call ends the form. Outputting hidden inputs if CSRF/Form Tampering prevention is
enabled.

Now let’s go back and update our templates/Articles/index.php view to include a new “Add Article” link. Before the
<table>, add the following line:

<?= $this->Html->1link('Add Article', ['action' => 'add']) ?>

You may be wondering: how do I tell CakePHP about my validation requirements? Validation rules are defined in the
model. Let’s look back at our Articles model and make a few adjustments:

// src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;
use Cake\Validation\Validator;

class ArticlesTable extends Table

{
public function initialize(array $config): void
{
$this->addBehavior('Timestamp');
3
public function validationDefault(Validator $validator): Validator
{
$validator
->notEmptyString('title")
->requirePresence('title', 'create')
->notEmptyString('body"')
->requirePresence('body', 'create');
return $validator;
3
}

The validationDefault() method tells CakePHP how to validate your data when the save() method is called.
Here, we’ve specified that both the body and title fields must not be empty, and are required for both create and up-
date operations. CakePHP’s validation engine is strong, with a number of pre-built rules (credit card numbers, email
addresses, etc.) and flexibility for adding your own validation rules. For more information on that setup, check the
Validation documentation.

Now that your validation rules are in place, use the app to try to add an article with an empty title or body to see how
it works. Since we’ve used the Cake\View\Helper\FormHelper: :control () method of the FormHelper to create
our form elements, our validation error messages will be shown automatically.

128 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Editing Articles

Post editing: here we go. You’re a CakePHP pro by now, so you should have picked up a pattern. Make the action, then
the view. Here’s what the edit () action of the ArticlesController would look like:

// src/Controller/ArticlesController.php

public function edit($id = null)

{
$article = $this->Articles->get($id);
if ($this->request->is(['post', 'put']l)) {
$this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to update your article.'));
1
$this->set('article', $article);
}

This action first ensures that the user has tried to access an existing record. If they haven’t passed in an $id parameter,
or the article does not exist, we throw a NotFoundException for the CakePHP ErrorHandler to take care of.

Next the action checks whether the request is either a POST or a PUT request. If it is, then we use the POST data to
update our article entity by using the patchEntity () method. Finally we use the table object to save the entity back
or kick back and show the user validation errors.

The edit view might look something like this:

<!-- File: templates/Articles/edit.php -->

<hl1>Edit Article</hl>
<?php
echo $this->Form->create($article);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

This view outputs the edit form (with the values populated), along with any necessary validation error messages.
CakePHP will determine whether a save () generates an insert or an update statement based on the state of the entity.

You can now update your index view with links to edit specific articles:

<l-- File: templates/Articles/index.php (edit links added) -->

<h1>Blog articles</hl>
<p><?= $this->Html->1ink("Add Article", ['action' => 'add']) ?></p>
<table>
<tr>
<th>Id</th>
<th>Title</th>

(continues on next page)

Blog Tutorial - Part 2 129

CakePHP Book, Release 4.x

(continued from previous page)

<th>Created</th>
<th>Action</th>
</tr>

<!-- Here's where we iterate through our $articles query object, printing out article.
—~info -->

<?php foreach ($articles as $article): ?>

<tr>
<td><?= $article->id ?7></td>
<td>
<?= $this->Html->link($article->title, ['action' => 'view',6 S$article->id]) ?>
</td>
<td>
<?= $article->created->format (DATE_RFC850) ?>
</td>
<td>
<?= $this->Html->1ink('Edit', ['action' => 'edit', S$article->id]) ?>
</td>
</tr>

<?php endforeach; 7>

</table>

Deleting Articles

Next, let’s make a way for users to delete articles. Start with a delete() action in the ArticlesController:

// src/Controller/ArticlesController.php

public function delete($id)

{
$this->request->allowMethod(['post', 'delete']);
$article = $this->Articles->get($id);
if ($this->Articles->delete($article)) {
$this->Flash->success(__('The article with id: {0} has been deleted.', h($id)));
return $this->redirect(['action' => 'index']);
3
}

This logic deletes the article specified by $id, and uses $this->Flash->success() to show the user a confirma-
tion message after redirecting them on to /articles. If the user attempts to do a delete using a GET request, the
allowMethod () will throw an Exception. Uncaught exceptions are captured by CakePHP’s exception handler, and a
nice error page is displayed. There are many built-in Exceptions that can be used to indicate the various HTTP errors
your application might need to generate.

Because we're just executing some logic and redirecting, this action has no view. You might want to update your index
view with links that allow users to delete articles, however:

<!-- File: templates/Articles/index.php (delete links added) -->

(continues on next page)

130 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

<h1>Blog articles</hl>
<p><?= $this->Html->1ink('Add Article', ['action' => 'add']) ?></p>

<table>
<tr>
<th>Id</th>
<th>Title</th>
<th>Created</th>
<th>Actions</th>
</tr>
<!-- Here's where we loop through our $articles query object, printing out article info -
>

<?php foreach ($articles as $article): ?>

<tr>
<td><?= $article->id ?></td>
<td>
<?= $this->Html->link($article->title, ['action' => 'view',6 S$article->id]) 7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
<td>
<?= $this->Form->postLink(
'Delete’,
['action' => 'delete', $article->id],
['confirm' => 'Are you sure?'])
7>
<?= $this->Html->1ink('Edit', ['action' => 'edit', S$article->id]) ?>
</td>
</tr>

<?php endforeach; 7>
</table>

Using postLink () will create a link that uses JavaScript to do a POST request deleting our article.

Warning: Allowing content to be deleted using GET requests is dangerous, as web crawlers could accidentally
delete all your content.

Note: This view code also uses the FormHelper to prompt the user with a JavaScript confirmation dialog before they
attempt to delete an article.

Blog Tutorial - Part 2 131

CakePHP Book, Release 4.x

Routes

For some, CakePHP’s default routing works well enough. Developers who are sensitive to user-friendliness and general
search engine compatibility will appreciate the way that CakePHP’s URLs map to specific actions. So we’ll just make
a quick change to routes in this tutorial.

For more information on advanced routing techniques, see Connecting Routes.

By default, CakePHP responds to a request for the root of your site (for example, http://www.example.com) using its
PagesController, rendering a view called “home”. Instead, we’ll replace this with our ArticlesController by creating
a routing rule.

CakePHP’s routing is found in config/routes.php. You’ll want to comment out or remove the line that defines the
default root route. It looks like this:

$builder->connect('/', ['controller' => 'Pages', 'action' => 'display', 'home']);

This line connects the URL ‘/* with the default CakePHP home page. We want it to connect with our own controller,
so replace that line with this one:

$builder->connect('/', ['controller' => 'Articles', 'action' => 'index']);

This should connect users requesting ‘/° to the index() action of our ArticlesController.

Note: CakePHP also makes use of ‘reverse routing’. If, with the above route defined, you pass ['controller'
=> '"Articles', 'action' => 'index'] to a function expecting an array, the resulting URL used will be ‘/°. It’s
therefore a good idea to always use arrays for URLs as this means your routes define where a URL goes, and also
ensures that links point to the same place.

Conclusion

Keep in mind that this tutorial was very basic. CakePHP has many more features to offer, and is flexible in ways we
didn’t wish to cover here for simplicity’s sake. Use the rest of this manual as a guide for building more feature-rich
applications.

Now that you’ve created a basic CakePHP application, you can either continue to Blog Tutorial - Part 3, or start your
own project. You can also peruse the /topics or API° to learn more about CakePHP.

If you need help, there are many ways to get the help you need - please see the Where to Get Help page. Welcome to
CakePHP!

Suggested Follow-up Reading

These are common tasks people learning CakePHP usually want to study next:
1. Layouts: Customizing your website layout
2. Elements: Including and reusing view snippets
3. /bake/usage: Generating basic CRUD code

4. Blog Tutorial - Authentication: User authentication and authorization tutorial

33 https://api.cakephp.org

132 Chapter 4. Tutorials & Examples

http://www.example.com
https://api.cakephp.org

CakePHP Book, Release 4.x

Blog Tutorial - Part 3

Create a Tree Category

Let’s continue our blog application and imagine we want to categorize our articles. We want the categories to be
ordered, and for this, we will use the 7ree behavior to help us organize the categories.

But first, we need to modify our tables.

Migrations Plugin

We will use the migrations plugin®® to create a table in our database. If you already have an articles table in your
database, erase it.

Now open your application’s composer.json file. Normally you would see that the migrations plugin is already under
require. If not, add it by executing:

composer require cakephp/migrations:~1.0

The migrations plugin will now be in your application’s plugins folder. Also, add
$this->addPlugin('Migrations"'); to your application’s bootstrap method.

Once the plugin is loaded, run the following command to create a migration file:

bin/cake bake migration CreateArticles title:string body:text category_id:integer.,
—.created modified

A migration file will be generated in the /config/Migrations folder with the following:
<?php
use Migrations\AbstractMigration;

class CreateArticles extends AbstractMigration
{
public function change()
{
$table = $this->table('articles');
$table->addColumn('title', 'string', [
'default' => null,
"limit' => 255,
'null' => false,
D;
$table->addColumn('body', 'text', [
'"default' => null,
'null' => false,
D;
$table->addColumn('category_id', 'integer', [
"default' => null,
"limit' => 11,
'null' => false,
D;

(continues on next page)

36 https://github.com/cakephp/migrations

Blog Tutorial - Part 3 133

https://github.com/cakephp/migrations

CakePHP Book, Release 4.x

(continued from previous page)

$table->addColumn('created', 'datetime', [
'"default' => null,
'null' => false,

D;

$table->addColumn('modified', 'datetime', [
'default' => null,
'null' => false,

D;

$table->create();
}

Run another command to create a categories table. If you need to specify a field length, you can do it within brackets
in the field type, ie:

bin/cake bake migration CreateCategories parent_id:integer 1ft:integer[10].
—.rght:integer[10] name:string[100] description:string created modified

This will generate the following file in config/Migrations:

<?php
use Migrations\AbstractMigration;

class CreateCategories extends AbstractMigration
{
public function change()
{
$table = $this->table('categories');
$table->addColumn('parent_id', 'integer', [
'default' => null,
"limit' => 11,
'null' => false,
D;
$table->addColumn('1lft', 'integer', [
'default' => null,
"limit' => 10,
'null' => false,
D;
$table->addColumn('rght', 'integer', [
'default' => null,
"limit' => 10,
'null' => false,

D;

$table->addColumn('name', 'string', [
'default' => null,
'limit' => 100,
'null' => false,

D;

$table->addColumn('description', 'string', [

'default' => null,
'limit"' => 255,
(continues on next page)

134 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)
'null' => false,

D;

$table->addColumn('created', 'datetime', [
'default' => null,
'null' => false,

D;

$table->addColumn('modified', 'datetime', [
'default' => null,
'null' => false,

D;
$table->create();

¥

Now that the migration files are created, you can edit them before creating your tables. We need to change the 'null’
=> false for the parent_id field with 'null' => true because a top-level category has a null parent_id.

Run the following command to create your tables:

bin/cake migrations migrate

Modifying the Tables

With our tables set up, we can now focus on categorizing our articles.

We suppose you already have the files (Tables, Controllers and Templates of Articles) from part 2. So we’ll just add
the references to categories.

We need to associate the Articles and Categories tables together. Open the src/Model/Table/ArticlesTable.php file
and add the following:

// src/Model/Table/ArticlesTable.php
namespace App\Model\Table;
use Cake\ORM\Table;

class ArticlesTable extends Table

{
public function initialize(array $config): void
{
$this->addBehavior (' Timestamp');
// Just add the belongsTo relation with CategoriesTable
$this->belongsTo('Categories', [
'foreignKey' => 'category_id',
D;
}
}

Blog Tutorial - Part 3 135

CakePHP Book, Release 4.x

Generate Skeleton Code for Categories

Create all files by launching bake commands:

bin/cake bake model Categories
bin/cake bake controller Categories
bin/cake bake template Categories

Alternatively, you can bake all with just one line:

bin/cake bake all Categories

The bake tool has created all your files in a snap. You can give them a quick read if you want re-familiarize yourself
with how CakePHP works.

Note: If you are on Windows remember to use \ instead of /.

You’ll need to edit the following in templates/Categories/add.php and templates/Categories/edit.php:

echo $this->Form->control('parent_id', [
'options' => $parentCategories,
'empty' => 'No parent category'

D;

Attach TreeBehavior to CategoriesTable

The TreeBehavior helps you manage hierarchical Tree structures in database table. It uses the MPTT logic®’ to manage
the data. MPTT tree structures are optimized for reads, which often makes them a good fit for read heavy applications
like blogs.

If you open the src/Model/Table/CategoriesTable.php file, you’ll see that the TreeBehavior has been attached to your
CategoriesTable in the initialize() method. Bake adds this behavior to any Tables that contain 1ft and rght
columns:

$this->addBehavior('Tree');

With the TreeBehavior attached you’ll be able to access some features like reordering the categories. We’ll see that in
a moment.

But for now, you have to remove the following controls in your Categories add and edit template files:

echo $this->Form->control('1lft');
echo $this->Form->control('rght');

In addition you should disable or remove the requirePresence from the validator for both the 1ft and rght columns in
your CategoriesTable model:

public function validationDefault(Validator $validator): Validator
{
$validator
->add('id', 'valid', ['rule' => 'numeric'])
(continues on next page)

57 https://www.sitepoint.com/hierarchical-data-database-2/

136 Chapter 4. Tutorials & Examples

https://www.sitepoint.com/hierarchical-data-database-2/

CakePHP Book, Release 4.x

(continued from previous page)

->allowEmptyString('id', 'create');

$validator
->add('1ft', 'valid', ['rule' => 'numeric'])
// ->requirePresence('l1ft', 'create')

->notEmpty('1£ft');

$validator
->add('rght', 'valid', ['rule' => 'numeric'])
// ->requirePresence('rght', 'create')

->notEmpty('rght');

These fields are automatically managed by the TreeBehavior when a category is saved.

Using your web browser, add some new categories using the /yoursite/categories/add controller action.

Reordering Categories with TreeBehavior

In your categories index template file, you can list the categories and re-order them.

Let’s modify the index method in your CategoriesController.php and add moveUp () and moveDown () methods to be
able to reorder the categories in the tree:

class CategoriesController extends AppController
{
public function index()
{
$categories = $this->Categories->find()
->order(['1ft"' => "ASC'])
->allQ);
$this->set(compact('categories'));
$this->viewBuilder()->setOption('serialize', ['categories']);

}

public function moveUp($id = null)
{
$this->request->allowMethod(['post', 'put'l);
$category = $this->Categories->get($id);
if ($this->Categories->moveUp($category)) {
$this->Flash->success('The category has been moved Up.');
} else {
$this->Flash->error('The category could not be moved up. Please, try again.

}

return $this->redirect($this->referer(['action' => 'index']));

public function moveDown($id = null)
{
$this->request->allowMethod(['post', 'put'l);
$category = $this->Categories->get($id);
(continues on next page)

Blog Tutorial - Part 3 137

CakePHP Book, Release 4.x

(continued from previous page)

if ($this->Categories->moveDown($category)) {
$this->Flash->success('The category has been moved down.');
} else {
$this->Flash->error('The category could not be moved down. Please, try again.

}

return $this->redirect($this->referer(['action' => 'index']));

In templates/Categories/index.php replace the existing content with:

<div class="actions large-2 medium-3 columns">
<h3><?= __("Actions') ?></h3>
<ul class="side-nav">
<1li><?= $this->Html->link(__('New Category'), ['action' => 'add']) 7?>

</div>
<div class="categories index large-10 medium-9 columns">
<table cellpadding="0" cellspacing="0">
<thead>
<tr>
<th>Id</th>
<th>Parent Id</th>
<th>Lft</th>
<th>Rght</th>
<th>Name</th>
<th>Description</th>
<th>Created</th>
<th class="actions"><?= __('Actions') 7></th>
</tr>
</thead>
<tbody>
<?php foreach ($categories as $category): 7>
<tr>
<td><?= $category->id ?></td>
<td><?= $category->parent_id ?></td>
<td><?= $category->1ft ?></td>
<td><?= $category->rght ?></td>
<td><?= h($category->name) ?></td>
<td><?= h($category->description) ?></td>
<td><?= h($category->created) 7?></td>
<td class="actions">
<?= $this->Html->link(__('View'), ['action' => 'view', $category->id]) 7>
<?= $this->Html->link(__('Edit'), ['action' => 'edit', $category->id]) ?>
<?= $this->Form->postLink(__('Delete'), ['action' => 'delete', $category-
—>id], ['confirm' => __('Are you sure you want to delete # {0}?', $category->id)]) ?>
<?= $this->Form->postLink(__('Move down'), ['action' => 'moveDown',
—$category->id], ['confirm' => __('Are you sure you want to move down # {0}?',
—$category->id)]) ?>
<?= $this->Form->postLink(__('Move up'), ['action' => 'moveUp',
—$category->id], ['confirm' => __('Are you sure you want to move up # {0}?', $category->

(continues on next page)

138 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

~id)]) 7>

</td>

</tr>
<?php endforeach; ?>
</tbody>
</table>
</div>

Modifying the ArticlesController

In our ArticlesController, we’ll get the list of all the categories. This will allow us to choose a category for an
Article when creating or editing it:

// src/Controller/ArticlesController.php

namespace App\Controller;

use Cake\Http\Exception\NotFoundException;

class ArticlesController extends AppController

{

public function add()

$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}

$this->Flash->error(__('Unable to add your article.'));

}

$this->set('article', $article);

// Just added the categories list to be able to choose

// one category for an article

$categories = $this->Articles->Categories->find('treeList')->all();
$this->set(compact('categories'));

Blog Tutorial - Part 3 139

CakePHP Book, Release 4.x

Modifying the Articles Templates

The article add file should look something like this:

<l-- File: templates/Articles/add.php -->

<h1>Add Article</hl>

<?php

echo $this->Form->create($article);

// just added the categories control

echo $this->Form->control('category_id');

echo $this->Form->control('title');

echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));

echo $this->Form->end();

When you go to the address /yoursite/articles/add you should see a list of categories to choose.

Blog Tutorial - Authentication

Following our Blog Tutorial example, imagine we wanted to disallow unauthenticated users to create articles.

Creating Users Table and Controller

First, let’s create a new table in our blog database to hold our users’ data:

CREATE TABLE users (
id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255),
password VARCHAR(255),
role VARCHAR(20),
created DATETIME DEFAULT ,
modified DATETIME DEFAULT

)3
If you are using PostgreSQL, connect to cake_blog database and execute the following SQL instead:

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255),
password VARCHAR(255),
role VARCHAR(20),
created TIMESTAMP DEFAULT NULL,
modified TIMESTAMP DEFAULT NULL

);

We have adhered to the CakePHP conventions in naming tables, but we’re also taking advantage of another convention:
By using the email and password columns in a users table, CakePHP will be able to auto-configure most things for us
when implementing the user login.

Next step is to create our UsersTable class, responsible for finding, saving and validating any user data:

140 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

// src/Model/Table/UsersTable.php
namespace App\Model\Table;

use Cake\ORM\Table;
use Cake\Validation\Validator;

class UsersTable extends Table

{
public function validationDefault(Validator $validator): Validator
{
return $validator
->notEmpty('email', 'An email is required')
->email('email')
->notEmpty('password', 'A password is required')
->notEmpty('role', 'A role is required')
->add('role', 'inList', [
'rule' => ['inList', ['admin', 'author'l],
'message’ => 'Please enter a valid role’
D;
}
3

Let’s also create our UsersController. The following content corresponds to parts of a basic baked
UsersController class using the code generation utilities bundled with CakePHP:

// src/Controller/UsersController.php
namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class UsersController extends AppController

{

public function index()

{
$this->set('users', $this->Users->find()->all(Q));

}

public function view($id)

{
$user = $this->Users->get($id);
$this->set(compact('user'));

}

public function add()
{
$user = $this->Users->newEmptyEntity(Q);
if ($this->request->is('post')) {
$user = $this->Users->patchEntity($user, $this->request->getData());
if ($this->Users->save($user)) {
$this->Flash->success(__('The user has been saved.'));

(continues on next page)

Blog Tutorial - Authentication 141

CakePHP Book, Release 4.x

(continued from previous page)
return $this->redirect(['action' => 'add']);

}
$this->Flash->error(__('Unable to add the user.'));

}

$this->set('user', $user);
}

In the same way we created the views for our articles by using the code generation tool, we can implement the user
views. For the purpose of this tutorial, we will show just the add.php:

<!-- templates/Users/add.php -->

<div class="users form">
<?= $this->Form->create($user) 7>
<fieldset>
<legend><?= __('Add User') 7></legend>
<?= $this->Form->control('email') 7>
<?= $this->Form->control('password') ?>
<?= $this->Form->control('role', [
'options' => ['admin' => 'Admin', 'author' => 'Author']
D 7>
</fieldset>
<?= $this->Form->button(__('Submit')); ?>
<?= $this->Form->end() ?>
</div>

Adding Authentication

We’re now ready to add our authentication layer. In CakePHP this is handled by the authentication plugin. Let’s
start off by installing it. Use composer to install the Authentication Plugin:

composer require "cakephp/authentication:A2.0"

Then add the following to your application’s bootstrap() method:

// in src/Application.php in the bootstrap() method.
$this->addPlugin('Authentication');

Adding Password Hashing

Next, we’ll create the User entity and add password hashing. Create the src/Model/Entity/User.php entity file and
add the following:

// src/Model/Entity/User.php
namespace App\Model\Entity;

use Cake\Auth\DefaultPasswordHasher;
use Cake\ORM\Entity;

(continues on next page)

142 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)

class User extends Entity

{
// Make all fields mass assignable except for primary key field "id".
protected $_accessible = [
'*' => true,
'id' => false
1;
/) ...
protected function _setPassword($password)
{
if (strlen($password) > 0) {
return (new DefaultPasswordHasher)->hash($password);
}
}
/) ...
}

Now every time the password property is assigned to the user it will be hashed using the Defaul tPasswordHasher
class.

Configuring Authentication

Now it’s time to configure the Authentication Plugin. The Plugin will handle the authentication process using 3 different
classes:

* Application will use the Authentication Middleware and provide an AuthenticationService, holding all the
configuration we want to define how are we going to check the credentials, and where to find them.

e AuthenticationService will be a utility class to allow you configure the authentication process.

e AuthenticationMiddleware will be executed as part of the middleware queue, this is before your Controllers
are processed by the framework, and will pick the credentials and process them to check if the user is authenti-
cated.

Authentication logic is divided into specific classes and the authentication process happens before your controller layer.
First authentication checks if the user is authenticated (based in the configuration you provided) and injects the user
and the authentication results into the request for further reference.

In src/Application.php, add the following imports:

// In src/Application.php add the following imports

use Authentication\AuthenticationService;

use Authentication\AuthenticationServiceInterface;

use Authentication\AuthenticationServiceProviderInterface;
use Authentication\Middleware\AuthenticationMiddleware;
use Psr\Http\Message\ServerRequestInterface;

Then implement the authentication interface on your application class:

// in src/Application.php
class Application extends BaseApplication
(continues on next page)

Blog Tutorial - Authentication 143

CakePHP Book, Release 4.x

(continued from previous page)

implements AuthenticationServiceProviderInterface

Then add the following:

// src/Application.php
public function middleware(MiddlewareQueue $middlewareQueue): MiddlewareQueue
{
$middlewareQueue

// ... other middleware added before

->add(new RoutingMiddleware($this))

// add Authentication after RoutingMiddleware

->add(new AuthenticationMiddleware($this));

return $middlewareQueue;

}

public function getAuthenticationService(ServerRequestInterface $request):.
—AuthenticationServiceInterface

{
$authenticationService = new AuthenticationService([
'"unauthenticatedRedirect' => '/users/login',
'queryParam' => 'redirect',
D;
// Load identifiers, ensure we check email and password fields
$authenticationService->loadIdentifier('Authentication.Password', [
"fields' => [
'username' => 'email',
'password' => 'password',
]
D;
// Load the authenticators, you want session first
$authenticationService->loadAuthenticator('Authentication.Session');
// Configure form data check to pick email and password
$authenticationService->loadAuthenticator('Authentication.Form', [
'fields' => [
'username' => 'email',
'password' => 'password',
Js
'loginUrl' => '/users/login',
D;
return $authenticationService;
}

In you AppController class add the following code:

// src/Controller/AppController.php
public function initialize(): void

{

(continues on next page)

144 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

(continued from previous page)
parent::initialize();
$this->loadComponent('Flash');

// Add this line to check authentication result and lock your site
$this->loadComponent ('Authentication.Authentication');

Now, on every request, the AuthenticationMiddleware will inspect the request session to look for an authenticated
user. If we are loading the /users/login page, it'll inspect also the posted form data (if any) to extract the cre-
dentials. By default the credentials will be extracted from the email and password fields in the request data. The
authentication result will be injected in a request attribute named authentication. You can inspect the result at any
time using $this->request->getAttribute('authentication') from your controller actions. All your pages
will be restricted as the AuthenticationComponent is checking the result on every request. When it fails to find any
authenticated user, it’1l redirect the user to the /users/login page. Note at this point, the site won’t work as we don’t
have a login page yet. If you visit your site, you’ll get an “infinite redirect loop”. So, let’s fix that!

In your UsersController, add the following code:

public function beforeFilter(\Cake\Event\EventInterface $event)

{
parent: :beforeFilter($event);
// Configure the login action to not require authentication, preventing
// the infinite redirect loop issue
$this->Authentication->addUnauthenticatedActions(['login']);

}

public function login()
{
$this->request->allowMethod(['get', 'post']l);
$result = $this->Authentication->getResult();
// regardless of POST or GET, redirect if user is logged in
if ($result->isValidQ)) {
// redirect to /articles after login success
$redirect = $this->request->getQuery('redirect', [
'controller' => 'Articles',
'action' => 'index',

D;

return $this->redirect($redirect);
}
// display error if user submitted and authentication failed
if ($this->request->is('post') && !$result->isValid()) {
$this->Flash->error(__('Invalid email or password'));

}

Add the template logic for your login action:

<l-- in /templates/Users/login.php -->
<div class="users form'">
<?= $this->Flash->render() 7>
<h3>Login</h3>
<?= $this->Form->create() ?>
<fieldset>

(continues on next page)

Blog Tutorial - Authentication 145

CakePHP Book, Release 4.x

(continued from previous page)
<legend><?= __('Please enter your email and password') ?></legend>
<?= $this->Form->control('email', ['required' => true]) 7>
<?= $this->Form->control('password', ['required' => true]) 7>
</fieldset>
<?= $this->Form->submit(__('Login')); 7>
<?= $this->Form->end() 7>

<?= $this->Html->1ink("Add User", ['action' => 'add']l) ?>
</div>

Now login page will allow us to correctly login into the application. Test it by requesting any page of your site. After
being redirected to the /users/login page, enter the email and password you picked previously when creating your
user. You should be redirected successfully after login.

We need to add a couple more details to configure our application. We want all view and index pages accessible
without logging in so we’ll add this specific configuration in AppController:

// in src/Controller/AppController.php
public function beforeFilter(\Cake\Event\EventInterface $event)

{
parent: :beforeFilter($event);
// for all controllers in our application, make index and view
// actions public, skipping the authentication check.
$this->Authentication->addUnauthenticatedActions(['index', 'view']);
}
Logout

Add the logout action to the UsersController class:

// in src/Controller/UsersController.php
public function logout()

{
$result = $this->Authentication->getResult();
// regardless of POST or GET, redirect if user is logged in
if ($result->isValidQ)) {
$this->Authentication->logout();
return $this->redirect(['controller' => 'Users', 'action' => 'login']);
}
}

Now you can visit /users/logout to log out. You should then be sent to the login page. If you’ve made it this far,
congratulations, you now have a simple blog that:

¢ Allows authenticated users to create and edit articles.

* Allows unauthenticated users to view articles and tags.

146 Chapter 4. Tutorials & Examples

CakePHP Book, Release 4.x

Suggested Follow-up Reading

1. /bake/usage Generating basic CRUD code

2. Authentication Plugin documentation.

Blog Tutorial - Authentication 147

CakePHP Book, Release 4.x

148 Chapter 4. Tutorials & Examples

CHAPTER 5

Contributing

There are a number of ways you can contribute to CakePHP. The following sections cover the various ways you can
contribute to CakePHP:

Documentation

Contributing to the documentation is simple. The files are hosted on https://github.com/cakephp/docs. Feel free to
fork the repo, add your changes/improvements/translations and give back by issuing a pull request. You can even edit
the docs online with GitHub, without ever downloading the files — the “Improve this Doc” button on any given page
will direct you to GitHub’s online editor for that page.

CakePHP documentation is continuously integrated’®, and deployed after each pull request is merged.
Translations

Email the docs team (docs at cakephp dot org) or hop on IRC (#cakephp on freenode) to discuss any translation efforts
you would like to participate in.

38 https://en.wikipedia.org/wiki/Continuous_integration

149

https://github.com/cakephp/docs
https://en.wikipedia.org/wiki/Continuous_integration

CakePHP Book, Release 4.x

New Translation Language
We want to provide translations that are as complete as possible. However, there may be times where a translation file
is not up-to-date. You should always consider the English version as the authoritative version.

If your language is not in the current languages, please contact us through Github and we will consider creating a
skeleton folder for it. The following sections are the first one you should consider translating as these files don’t change
often:

* index.rst

* intro.rst

e quickstart.rst
e installation.rst
e /intro folder

* /tutorials-and-examples folder

Reminder for Docs Administrators

The structure of all language folders should mirror the English folder structure. If the structure changes for the English
version, we should apply those changes in the other languages.

For example, if a new English file is created in en/file.rst, we should:
¢ Add the file in all other languages : fr/file.rst, zh/file.rst, ...

¢ Delete the content, but keeping the title, meta information and eventual toc-tree elements. The following
note will be added while nobody has translated the file:

File Title
BHUBHAHGAH

. note::
The documentation is not currently supported in XX language for this

page.

Please feel free to send us a pull request on
"Github <https://github.com/cakephp/docs>"_ or use the **Improve This Doc**
button to directly propose your changes.

You can refer to the English version in the select top menu to have
information about this pageﬂs topic.

// If toc-tree elements are in the English version
. toctree::
:maxdepth: 1

one-toc-file
other-toc-file

. meta::
:title lang=xx: File Title
:keywords lang=xx: title, description,...

150 Chapter 5. Contributing

CakePHP Book, Release 4.x

Translator tips

Browse and edit in the language you want the content to be translated to - otherwise you won’t see what has
already been translated.

Feel free to dive right in if your chosen language already exists on the book.
Use Informal Form™”.
Translate both the content and the title at the same time.

Do compare to the English content before submitting a correction (if you correct something, but don’t integrate
an ‘upstream’ change your submission won’t be accepted).

If you need to write an English term, wrap it in tags. For example, “asdf asdf Controller asdf” or “asdf
asdf Kontroller (Controller) asfd”.

Do not submit partial translations.

Do not edit a section with a pending change.

Do not use HTML entities® for accented characters, the book uses UTF-8.
Do not significantly change the markup (HTML) or add new content.

If the original content is missing some info, submit an edit for that first.

Documentation Formatting Guide

The new CakePHP documentation is written with ReST formatted text®'. ReST (Re Structured Text) is a plain text
markup syntax similar to markdown, or textile. To maintain consistency it is recommended that when adding to the
CakePHP documentation you follow the guidelines here on how to format and structure your text.

Line Length

Lines of text should be wrapped at 80 columns. The only exception should be long URLSs, and code snippets.

Headings and Sections

Section headers are created by underlining the title with punctuation characters at least the length of the text.

Is used to denote page titles.
=Is used for sections in a page.
- Is used for subsections.

~ Is used for sub-subsections.

A Is used for sub-sub-subsections.

Headings should not be nested more than 5 levels deep. Headings should be preceded and followed by a blank line.

39 https://en.wikipedia.org/wiki/Register#Linguistics
60 https://en.wikipedia.org/wiki/List_of _XML_and_HTML_character_entity_references
o1 https://en.wikipedia.org/wiki/ReStructured Text

Documentation 151

https://en.wikipedia.org/wiki/Register#Linguistics
https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
https://en.wikipedia.org/wiki/ReStructuredText

CakePHP Book, Release 4.x

Paragraphs

Paragraphs are simply blocks of text, with all the lines at the same level of indentation. Paragraphs should be separated
by one blank line.

Inline Markup

* One asterisk: text for emphasis (italics) We’ll use it for general highlighting/emphasis.
- *text®.

* Two asterisks: text for strong emphasis (boldface) We’ll use it for working directories, bullet list subject, table
names and excluding the following word “table”.

— **/config/Migrations**, **articles*¥*, etc.

* Two backquotes: text for code samples We’ll use it for names of method options, names of table columns,
object names, excluding the following word “object” and for method/function names — include “()”.

— " “cascadeCallbacks ", " “true °, ~"id" ", " "PagesController °, ~“config() °, etc.

If asterisks or backquotes appear in running text and could be confused with inline markup delimiters, they have to be
escaped with a backslash.

Inline markup has a few restrictions:
* It may not be nested.
* Content may not start or end with whitespace: * text* is wrong.

¢ Content must be separated from surrounding text by non-word characters. Use a backslash escaped space to
work around that: onelong\ *bolded*\ word.

Lists

List markup is very similar to markdown. Unordered lists are indicated by starting a line with a single asterisk and a
space. Numbered lists can be created with either numerals, or # for auto numbering:

* This is a bullet
* So is this. But this line
has two lines.

1. First line
2. Second line

#. Automatic numbering
#. Will save you some time.

Indented lists can also be created, by indenting sections and separating them with an empty line:

* First line
* Second line

* Going deeper
* Thoah

* Back to the first level.

152 Chapter 5. Contributing

CakePHP Book, Release 4.x

Definition lists can be created by doing the following:
term

definition
CakePHP

An MVC framework for PHP

Terms cannot be more than one line, but definitions can be multi-line and all lines should be indented consistently.

Links

There are several kinds of links, each with their own uses.

External Links

Links to external documents can be done with the following:
"External Link to php.net <https://php.net> _

The resulting link would look like this: External Link to php.net®

Links to Other Pages

:doc:

Other pages in the documentation can be linked to using the :doc: role. You can link to the specified document
using either an absolute or relative path reference. You should omit the .rst extension. For example, if the ref-
erence :doc: form™ appears in the document core-helpers/html, then the link references core-helpers/
form. If the reference was :doc: " /core-helpers’, it would always reference /core-helpers regardless of
where it was used.

Cross Referencing Links

:ref:
You can cross reference any arbitrary title in any document using the :ref: role. Link label targets must be

unique across the entire documentation. When creating labels for class methods, it’s best to use class-method
as the format for your link label.

The most common use of labels is above a title. Example:

. _label-name:

Section heading

More content here.

Elsewhere you could reference the above section using :ref: label-name’. The link’s text would be the title
that the link preceded. You can also provide custom link text using :ref: Link text <label-name>".

62 https://php.net

Documentation 153

https://php.net

CakePHP Book, Release 4.x

Prevent Sphinx to Output Warnings

Sphinx will output warnings if a file is not referenced in a toc-tree. It’s a great way to ensure that all files have a link
directed to them, but sometimes, you don’t need to insert a link for a file, eg. for our epub-contents and pdf-contents
files. In those cases, you can add :orphan: at the top of the file, to suppress warnings that the file is not in the toc-tree.

Describing Classes and their Contents

The CakePHP documentation uses the phpdomain® to provide custom directives for describing PHP objects and con-
structs. Using these directives and roles is required to give proper indexing and cross referencing features.

Describing Classes and Constructs

Each directive populates the index, and or the namespace index.

. php:global:: name

This directive declares a new PHP global variable.

. php:function:: name(signature)

Defines a new global function outside of a class.

. php:const:: name

This directive declares a new PHP constant, you can also use it nested inside a class directive to create class
constants.

. php:exception:: name
This directive declares a new Exception in the current namespace. The signature can include constructor argu-
ments.

. php:class:: name
Describes a class. Methods, attributes, and constants belonging to the class should be inside this directive’s body:

. php:class:: MyClass
Class description

. php:method:: method($argument)
Method description

Attributes, methods and constants don’t need to be nested. They can also just follow the class declaration:

. php:class:: MyClass
Text about the class
[[[@hp:method:: methodName ()
Text about the method

See also:

php:method, php:attr, php:const

63 https://pypi.org/project/sphinxcontrib- phpdomain/

154 Chapter 5. Contributing

https://pypi.org/project/sphinxcontrib-phpdomain/

CakePHP Book, Release 4.x

. php:method:: name(signature)

Describe a class method, its arguments, return value, and exceptions:

. php:method:: instanceMethod($one, $two)

:param string $one: The first parameter.
:param string $two: The second parameter.
:returns: An array of stuff.

:throws: InvalidArgumentException

This is an instance method.

. php:staticmethod:: ClassName: :methodName(signature)

Describe a static method, its arguments, return value and exceptions, see php :method for options.

. php:attr:: name

Describe an property/attribute on a class.

Prevent Sphinx to Output Warnings

Sphinx will output warnings if a function is referenced in multiple files. It’s a great way to ensure that you did not add
a function two times, but sometimes, you actually want to write a function in two or more files, eg. debug object is
referenced in /development/debugging and in /core-libraries/global-constants-and-functions. In this case, you can add
:noindex: under the function debug to suppress warnings. Keep only one reference without :no-index: to still
have the function referenced:

. php:function:: debug(mixed $var, boolean $showHtml = null, $showFrom = true)
:noindex:

Cross Referencing

The following roles refer to PHP objects and links are generated if a matching directive is found:
:php: func:
Reference a PHP function.
:php:global:
Reference a global variable whose name has $ prefix.
:php:const:

Reference either a global constant, or a class constant. Class constants should be preceded by the owning class:

DateTime has an :php:const: DateTime::ATOM constant.

:php:class:
Reference a class by name:
:php:class: ClassName"

:php:meth:
Reference a method of a class. This role supports both kinds of methods:

Documentation 155

CakePHP Book, Release 4.x

:php:meth: DateTime: :setDate’
:php:meth: Classname: :staticMethod"

:php:attr:

Reference a property on an object:

:php:attr: ClassName: : $propertyName"

:php:exc:

Reference an exception.

Source Code

Literal code blocks are created by ending a paragraph with : :. The literal block must be indented, and like all paragraphs
be separated by single lines:

This is a paragraph::

while ($i--) {
doStuff()

This is regular text again.

Literal text is not modified or formatted, save that one level of indentation is removed.

Notes and Warnings
There are often times when you want to inform the reader of an important tip, special note or a potential hazard.
Admonitions in sphinx are used for just that. There are fives kinds of admonitions.

e .. tip:: Tips are used to document or re-iterate interesting or important information. The content of the
directive should be written in complete sentences and include all appropriate punctuation.

e .. note:: Notes are used to document an especially important piece of information. The content of the direc-
tive should be written in complete sentences and include all appropriate punctuation.

e .. warning:: Warnings are used to document potential stumbling blocks, or information pertaining to security.
The content of the directive should be written in complete sentences and include all appropriate punctuation.

e .. versionadded:: X.Y.Z “Version added” admonitions are used to display notes specific to new features
added at a specific version, X.Y.Z being the version on which the said feature was added.

e .. deprecated:: X.Y.Z Asopposed to “version added” admonitions, “deprecated” admonition are used to
notify of a deprecated feature, X.Y.Z being the version on which the said feature was deprecated.

All admonitions are made the same:

. note::

Indented and preceded and followed by a blank line. Just like a
paragraph.

This text is not part of the note.

156 Chapter 5. Contributing

CakePHP Book, Release 4.x

Samples

Tip: This is a helpful tid-bit you probably forgot.

Note: You should pay attention here.

Warning: It could be dangerous.

New in version 4.0.0: This awesome feature was added in version 4.0.0

Deprecated since version 4.0.1: This old feature was deprecated on version 4.0.1

Tickets

Getting feedback and help from the community in the form of tickets is an extremely important part of the CakePHP
development process. All of CakePHP’s tickets are hosted on GitHub®*.

Reporting Bugs

Well written bug reports are very helpful. There are a few steps to help create the best bug report possible:

* Do: Please search® for a similar existing ticket, and ensure someone hasn’t already reported your issue, or that
it hasn’t already been fixed in the repository.

* Do: Please include detailed instructions on how to reproduce the bug. This could be in the form of a test-case
or a snippet of code that demonstrates the issue. Not having a way to reproduce an issue means it’s less likely to
get fixed.

* Do: Please give as many details as possible about your environment: (OS, PHP version, CakePHP version).

* Don’t: Please don’t use the ticket system to ask support questions. Both the support channel on the CakePHP

Slack workspace® and the #cakephp IRC channel on Freenode®” have many developers available to help answer

your questions. Also have a look at Stack Overflow®® or the official CakePHP forum®’.

64 https://github.com/cakephp/cakephp/issues

95 https://github.com/cakephp/cakephp/search?q=it+is+broken&ref=cmdformé&type=Issues
9 https://cakesf.herokuapp.com

67 https://webchat.freenode.net

68 https://stackoverflow.com/questions/tagged/cakephp

%9 https://discourse.cakephp.org

Tickets 157

https://github.com/cakephp/cakephp/issues
https://github.com/cakephp/cakephp/search?q=it+is+broken&ref=cmdform&type=Issues
https://cakesf.herokuapp.com
https://cakesf.herokuapp.com
https://webchat.freenode.net
https://stackoverflow.com/questions/tagged/cakephp
https://discourse.cakephp.org

CakePHP Book, Release 4.x

Reporting Security Issues

If you’ve found a security issue in CakePHP, please use the following procedure instead of the normal bug reporting
system. Instead of using the bug tracker, mailing list or IRC please send an email to security [at] cakephp.org. Emails
sent to this address go to the CakePHP core team on a private mailing list.

For each report, we try to first confirm the vulnerability. Once confirmed, the CakePHP team will take the following
actions:

* Acknowledge to the reporter that we’ve received the issue, and are working on a fix. We ask that the reporter
keep the issue confidential until we announce it.

* Get a fix/patch prepared.
* Prepare a post describing the vulnerability, and the possible exploits.
¢ Release new versions of all affected versions.

* Prominently feature the problem in the release announcement.

Code

Patches and pull requests are a great way to contribute code back to CakePHP. Pull requests can be created in GitHub,
and are preferred over patch files in ticket comments.

Initial Setup
Before working on patches for CakePHP, it’s a good idea to get your environment setup. You’ll need the following
software:

* Git

* PHP 7.4 or greater

* PHPUnit 5.7.0 or greater

Set up your user information with your name/handle and working email address:

git config --global user.name 'Bob Barker'
git config --global user.email 'bob.barker@example.com'

Note: If you are new to Git, we highly recommend you to read the excellent and free ProGit’" book.

Get a clone of the CakePHP source code from GitHub:
« If you don’t have a GitHub’' account, create one.
* Fork the CakePHP repository’” by clicking the Fork button.

After your fork is made, clone your fork to your local machine:

git clone git@github.com:YOURNAME/cakephp.git

70 https://git-scm.com/book/
71 https://github.com
72 https://github.com/cakephp/cakephp

158 Chapter 5. Contributing

https://git-scm.com/book/
https://github.com
https://github.com/cakephp/cakephp

CakePHP Book, Release 4.x

Add the original CakePHP repository as a remote repository. You’ll use this later to fetch changes from the CakePHP
repository. This will let you stay up to date with CakePHP:

cd cakephp
git remote add upstream git://github.com/cakephp/cakephp.git

Now that you have CakePHP setup you should be able to define a $test database connection, and run all the tests.

Working on a Patch

Each time you want to work on a bug, feature or enhancement create a topic branch.

The branch you create should be based on the version that your fix/enhancement is for. For example if you are fixing a
bug in 3.x you would want to use the master branch as the base for your branch. If your change is a bug fix for the
2.x release series, you should use the 2. x branch:

fixing a bug on 3.x
git fetch upstream
git checkout -b ticket-1234 upstream/master

fixing a bug on 2.x
git fetch upstream
git checkout -b ticket-1234 upstream/2.x

Tip: Use a descriptive name for your branch. Referencing the ticket or feature name is a good convention. Examples
include ticket-1234 and feature-awesome.

The above will create a local branch based on the upstream (CakePHP) 2.x branch. Work on your fix, and make as
many commits as you need; but keep in mind the following:

» Follow the Coding Standards.
* Add a test case to show the bug is fixed, or that the new feature works.

» Keep your commits logical, and write clear commit messages that provide context on what you changed and why.

Submitting a Pull Request

Once your changes are done and you’re ready for them to be merged into CakePHP, you’ll want to update your branch:

Rebase fix on top of master
git checkout master

git fetch upstream

git merge upstream/master

git checkout <branch_name>
git rebase master

This will fetch + merge in any changes that have happened in CakePHP since you started. It will then rebase - or replay
your changes on top of the current code. You might encounter a conflict during the rebase. If the rebase quits early you
can see which files are conflicted/un-merged with git status. Resolve each conflict, and then continue the rebase:

git add <filename> # do this for each conflicted file.
git rebase --continue

Code 159

CakePHP Book, Release 4.x

Check that all your tests continue to pass. Then push your branch to your fork:

git push origin <branch-name>

If you’ve rebased after pushing your branch, you’ll need to use force push:

git push --force origin <branch-name>

Once your branch is on GitHub, you can submit a pull request on GitHub.

Choosing Where Your Changes will be Merged Into

When making pull requests you should make sure you select the correct base branch, as you cannot edit it once the pull
request is created.

e If your change is a bugfix and doesn’t introduce new functionality and only corrects existing behavior that is
present in the current release. Then choose master as your merge target.

« If your change is a new feature or an addition to the framework, then you should choose the branch with the next
version number. For example if the current stable release is 4.0.0, the branch accepting new features will be
4.next.

* If your change is a breaks existing functionality, or APIs then you’ll have to choose then next major release. For
example, if the current release is 4.0. 0 then the next time existing behavior can be broken will be in 5. x so you
should target that branch.

Note: Remember that all code you contribute to CakePHP will be licensed under the MIT License, and the Cake
Software Foundation”® will become the owner of any contributed code. Contributors should follow the CakePHP
Community Guidelines™.

All bug fixes merged into a maintenance branch will also be merged into upcoming releases periodically by the core
team.

Coding Standards

CakePHP developers will use the PSR-12 coding style guide’” in addition to the following rules as coding standards.
It is recommended that others developing Cakelngredients follow the same standards.

You can use the CakePHP Code Sniffer’® to check that your code follows required standards.

73 https://cakefoundation.org/old

74 https://cakephp.org/get-involved

75 https://www.php-fig.org/pst/psr- 12/

76 https://github.com/cakephp/cakephp-codesniffer

160 Chapter 5. Contributing

https://cakefoundation.org/old
https://cakefoundation.org/old
https://cakephp.org/get-involved
https://cakephp.org/get-involved
https://www.php-fig.org/psr/psr-12/
https://github.com/cakephp/cakephp-codesniffer

CakePHP Book, Release 4.x

Adding New Features

No new features should be added, without having their own tests — which should be passed before committing them to
the repository.

IDE Setup

Please make sure your IDE is set up to “trim right” on whitespaces. There should be no trailing spaces per line.

Most modern IDEs also support an . editorconfig file. The CakePHP app skeleton ships with it by default. It already
contains best practise defaults.

We recommend to use the IdeHelper’’ plugin if you want to maximize IDE compatibility. It will assist to keep the
annotations up-to-date which will make the IDE fully understand how all classes work together and provides better
type-hinting and auto-completion.

Indentation

Four spaces will be used for indentation.

So, indentation should look like this:

// base level
// level 1
// level 2
// level 1
// base level

Or:

$booleanVariable = true;
$stringVariable = 'moose';
if ($booleanVariable) {
echo 'Boolean value is true';
if ($stringVariable === 'moose') {
echo 'We have encountered a moose';

}
}
In cases where you’re using a multi-line function call use the following guidelines:
* Opening parenthesis of a multi-line function call must be the last content on the line.
* Only one argument is allowed per line in a multi-line function call.
* Closing parenthesis of a multi-line function call must be on a line by itself.

As an example, instead of using the following formatting:

$matches = array_intersect_key($this->_listeners,
array_flip(preg_grep($matchPattern,
array_keys($this->_listeners), 0)));

Use this instead:

77 https://github.com/dereuromark/cakephp-ide-helper

Coding Standards 161

https://github.com/dereuromark/cakephp-ide-helper

CakePHP Book, Release 4.x

$matches = array_intersect_key(
$this->_listeners,
array_£lip(
preg_grep($matchPattern, array_keys($this->_listeners), 0)
)
);

Line Length

It is recommended to keep lines at approximately 100 characters long for better code readability. A limit of 80 or 120
characters makes it necessary to distribute complex logic or expressions by function, as well as give functions and
objects shorter, more expressive names. Lines must not be longer than 120 characters.

In short:
¢ 100 characters is the soft limit.

¢ 120 characters is the hard limit.

Control Structures

Control structures are for example “if”, “for”, “foreach”, “while”, “switch” etc. Below, an example with “if”:

if (Cexpr_1) || (expr_2)) {
// action_1;

} elseif (!(expr_3) && (expr_4)) {
// action_2;

} else {
// default_action;

}

¢ In the control structures there should be 1 (one) space before the first parenthesis and 1 (one) space between the
last parenthesis and the opening bracket.

» Always use curly brackets in control structures, even if they are not needed. They increase the readability of the
code, and they give you fewer logical errors.

* Opening curly brackets should be placed on the same line as the control structure. Closing curly brackets should
be placed on new lines, and they should have same indentation level as the control structure. The statement
included in curly brackets should begin on a new line, and code contained within it should gain a new level of
indentation.

* Inline assignments should not be used inside of the control structures.

// wrong = no brackets, badly placed statement
if (expr) statement;

// wrong = no brackets
if (expr)
statement;

// good
if (expr) {
statement;

(continues on next page)

162 Chapter 5. Contributing

CakePHP Book, Release 4.x

(continued from previous page)

}

// wrong = inline assignment
if ($variable = Class::function()) {
statement;

}

// good
$variable = Class::function();
if ($variable) {

statement;

¥

Ternary Operator

Ternary operators are permissible when the entire ternary operation fits on one line. Longer ternaries should be split
into if else statements. Ternary operators should not ever be nested. Optionally parentheses can be used around the
condition check of the ternary for clarity:

// Good, simple and readable
$variable = isset($options['variable']) ? S$options['variable'] : true;

// Nested ternaries are bad
$variable = isset($options['variable']) ? isset(S$options['othervar']) ? true : false :.
—false;

Template Files

In template files developers should use keyword control structures. Keyword control structures are easier to read in
complex template files. Control structures can either be contained in a larger PHP block, or in separate PHP tags:

<?php
if ($isAdmin):
echo '<p>You are the admin user.</p>';
endif;
7>
<p>The following is also acceptable:</p>
<?php if ($isAdmin): ?>
<p>You are the admin user.</p>
<?php endif; 7>

Coding Standards 163

CakePHP Book, Release 4.x

Comparison

Always try to be as strict as possible. If a non-strict test is deliberate it might be wise to comment it as such to avoid
confusing it for a mistake.

For testing if a variable is null, it is recommended to use a strict check:

if ($value === null) {
/) ...
}

The value to check against should be placed on the right side:

// not recommended

if (null === $this->foo(Q)) {
/) ...

}

// recommended

if ($this->foo() === null) {
/) ...

}

Function Calls

Functions should be called without space between function’s name and starting parenthesis. There should be one space
between every parameter of a function call:

$var = foo($bar, $bar2, $bar3l);

As you can see above there should be one space on both sides of equals sign (=).

Method Definition

Example of a method definition:

public function someFunction($argl, S$arg2 = ''")
{
if (expr) {
statement;
}

return $var;

}

Parameters with a default value, should be placed last in function definition. Try to make your functions return some-
thing, at least true or false, so it can be determined whether the function call was successful:

public function connection($dns, $persistent = false)
{
if (is_array($dns)) {
$dnsInfo = $dns;

(continues on next page)

164 Chapter 5. Contributing

CakePHP Book, Release 4.x

(continued from previous page)

} else {
$dnsInfo = BD::parseDNS($dns);

3

if (! ($dnsInfo) || !($dnsInfol'phpType'])) {
return $this->addError();

}

return true;

}

There are spaces on both side of the equals sign.

Bail Early

Try to avoid unnecessary nesting by bailing early:

public function run(array $data)

{
if (!$success) {
return false;
}
3
public function check(array $data)
{
if (!$success) {
throw new RuntimeException(...);
}
}

This helps to keep the logic sequential which improves readability.

Typehinting

Arguments that expect objects, arrays or callbacks (callable) can be typehinted. We only typehint public methods,
though, as typehinting is not cost-free:

/7': %

* Some method description.

* @param \Cake\ORM\Table $table The table class to use.
* @param array $array Some array value.
* @param callable $callback Some callback.
* @aram bool $boolean Some boolean value.
(continues on next page)

Coding Standards 165

CakePHP Book, Release 4.x

(continued from previous page)

:’:/
public function foo(Table $table, array $array, callable $callback, $boolean)

{
}

Here $table must be an instance of \Cake\ORM\Table, $array must be an array and $callback must be of type
callable (a valid callback).

Note that if you want to allow $array to be also an instance of \ArrayObject you should not typehint as array
accepts only the primitive type:

/:’: *

* Some method description.

* @param array|\ArrayObject $array Some array value.
:’:/

public function foo($array)

{

}

Anonymous Functions (Closures)

Defining anonymous functions follows the PSR-127% coding style guide, where they are declared with a space after the
function keyword, and a space before and after the use keyword:

$closure = function ($argl, $arg2) use ($varl, $var2) {
// code
};

Method Chaining

Method chaining should have multiple methods spread across separate lines, and indented with four spaces:

$email->from(' foo@example.com')
->to('bar@example.com')
->subject('A great message')
->send();

Commenting Code

All comments should be written in English, and should in a clear way describe the commented block of code.
Comments can include the following phpDocumentor’” tags:

+ @deprecated®’ Using the @version <vector> <description> format, where version and description
are mandatory. Version refers to the one it got deprecated in.

» @example®

78 https://www.php-fig.org/pst/pst- 12/

79 https://phpdoc.org

80 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/deprecated.html
81 https://docs.phpdoc.org/latest/ guide/references/phpdoc/tags/example.html

166 Chapter 5. Contributing

https://www.php-fig.org/psr/psr-12/
https://phpdoc.org
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/deprecated.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/example.html

CakePHP Book, Release 4.x

@ignore®’

@internal®’
@link®
@see®
@since®®

@version®’

PhpDoc tags are very much like JavaDoc tags in Java. Tags are only processed if they are the first thing in a DocBlock
line, for example:

/7': *

* Tag example.

* @author this tag is parsed, but this @version is ignored
* @version 1.0 this tag is also parsed

7':/

/:’r *

* Example of inline phpDoc tags.
* This function works hard with foo() to rule the world.

* @return void

:'r/

function bar()

{
}

/:’r *

* Foo function.

* @return void

:’:/

function foo()

{
}

Comment blocks, with the exception of the first block in a file, should always be preceded by a newline.

82 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/ignore.html
83 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/internal.html
84 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/link html

85 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/see.html

86 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/since.html
87 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/version.html

Coding Standards

167

https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/ignore.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/internal.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/link.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/see.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/since.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/version.html

CakePHP Book, Release 4.x

Variable Types

Variable types for use in DocBlocks:

Type
Description

mixed
A variable with undefined (or multiple) type.

int
Integer type variable (whole number).

float
Float type (point number).

bool
Logical type (true or false).

string
String type (any value in

TR

or ‘).
null

Null type. Usually used in conjunction with another type.

array
Array type.

object
Object type. A specific class name should be used if possible.

resource
Resource type (returned by for example mysql_connect()). Remember that when you specify the type as mixed,
you should indicate whether it is unknown, or what the possible types are.

callable
Callable function.

You can also combine types using the pipe char:

int|bool

For more than two types it is usually best to just use mixed.

When returning the object itself (for example, for chaining), one should use $this instead:

/:’: *

* Foo function.

* @return $this
7’:/
public function foo()

{

return $this;

}

168 Chapter 5. Contributing

CakePHP Book, Release 4.x

Including Files

include, require, include_once and require_once do not have parentheses:

// wrong = parentheses
require_once('ClassFileName.php');
require_once ($class);

// good = no parentheses
require_once 'ClassFileName.php';

require_once $class;

When including files with classes or libraries, use only and always the require_once®® function.

PHP Tags

Always use long tags (<?php ?7>) instead of short tags (<? ?7>). The short echo should be used in template files where
appropriate.

Short Echo

The short echo should be used in template files in place of <?php echo. It should be immediately followed by a single
space, the variable or function value to echo, a single space, and the php closing tag:

// wrong = semicolon, no spaces
<td><?=%name; ?></td>

// good = spaces, no semicolon
<td><?= $name ?></td>

As of PHP 5.4 the short echo tag (<?=) is no longer to be consider a ‘short tag’ is always available regardless of the
short_open_tag ini directive.

Naming Convention
Functions

Write all functions in camelBack:

function longFunctionName ()
{
}

88 https://php.net/require_once

Coding Standards 169

https://php.net/require_once

CakePHP Book, Release 4.x

Classes

Class names should be written in CamelCase, for example:

class ExampleClass
{
}

Variables

Variable names should be as descriptive as possible, but also as short as possible. All variables should start with a
lowercase letter, and should be written in camelBack in case of multiple words. Variables referencing objects should
in some way associate to the class the variable is an object of. Example:

$user = 'John';
$users = ['John', 'Hans', 'Arne'];

$dispatcher = new Dispatcher();

Member Visibility

Use PHP’s public, protected and private keywords for methods and variables.

Example Addresses

LEIT3

For all example URL and mail addresses use “example.com”, “example.org” and “example.net”, for example:
* Email: someone@example.com
* WWW: http://www.example.com
» FTP: ftp://ftp.example.com

The “example.com” domain name has been reserved for this (see RFC 2606") and is recommended for use in docu-
mentation or as examples.

Files

File names which do not contain classes should be lowercased and underscored, for example:

long_file_name.php

89 https://datatracker.ietf.org/doc/html/rfc2606.html

170 Chapter 5. Contributing

mailto:someone@example.com
http://www.example.com
ftp://ftp.example.com
https://datatracker.ietf.org/doc/html/rfc2606.html

CakePHP Book, Release 4.x

Casting

For casting we use:

Type
Description

(bool)
Cast to boolean.

(int)
Cast to integer.

(float)
Cast to float.

(string)
Cast to string.

(array)
Cast to array.

(object)
Cast to object.

Please use (int)$var instead of intval($var) and (float) $var instead of floatval($var) when applicable.

Constants

Constants should be defined in capital letters:

define('CONSTANT', 1);

If a constant name consists of multiple words, they should be separated by an underscore character, for example:

define('LONG_NAMED_CONSTANT', 2);

Careful when using empty()/isset()

While empty () often seems correct to use, it can mask errors and cause unintended effects when '®"' and @ are given.
When variables or properties are already defined, the usage of empty() is not recommended. When working with
variables, it is better to rely on type-coercion to boolean instead of empty():

function manipulate($var)
{
// Not recommended, $var is already defined in the scope
if (empty($var)) {
J/ ..
}

// Use boolean type coercion
if (!$var) {
/) ...
}
if ($var) {
/) ...

(continues on next page)

Coding Standards 171

CakePHP Book, Release 4.x

(continued from previous page)

¥

When dealing with defined properties you should favour null checks over empty()/isset () checks:

class Thing

{
private $property; // Defined
public function readProperty()
{
// Not recommended as the property is defined in the class
if (lisset($this->property)) {
/) ...
}
// Recommended
if ($this->property === null) {
}
}
}

When working with arrays, it is better to merge in defaults over using empty () checks. By merging in defaults, you
can ensure that required keys are defined:

function doWork(array S$array)
{
// Merge defaults to remove need for empty checks.
$array += [
'key' => null,
1;

// Not recommended, the key is already set
if (isset($array['key'])) {

/) ...
}

// Recommended

if (Sarray['key'] !== null) {
/) ...

}

172 Chapter 5. Contributing

CakePHP Book, Release 4.x

Backwards Compatibility Guide

Ensuring that you can upgrade your applications easily and smoothly is important to us. That’s why we only break
compatibility at major release milestones. You might be familiar with semantic versioning”’, which is the general
guideline we use on all CakePHP projects. In short, semantic versioning means that only major releases (such as 2.0,
3.0, 4.0) can break backwards compatibility. Minor releases (such as 2.1, 3.1, 3.2) may introduce new features, but
are not allowed to break compatibility. Bug fix releases (such as 2.1.2, 3.0.1) do not add new features, but fix bugs or
enhance performance only.

Note: Deprecations are removed with the next major version of the framework. It is advised that you adapt to depre-
cations as they are introduced to ensure future upgrades are easier.

To clarify what changes you can expect in each release tier we have more detailed information for developers using
CakePHP, and for developers working on CakePHP that helps set expectations of what can be done in minor releases.
Major releases can have as many breaking changes as required.

Migration Guides

For each major and minor release, the CakePHP team will provide a migration guide. These guides explain the new
features and any breaking changes that are in each release. They can be found in the Appendices section of the cookbook.

Using CakePHP

If you are building your application with CakePHP, the following guidelines explain the stability you can expect.

Interfaces

Outside of major releases, interfaces provided by CakePHP will not have any existing methods changed. New methods
may be added, but no existing methods will be changed.

Classes

Classes provided by CakePHP can be constructed and have their public methods and properties used by application
code and outside of major releases backwards compatibility is ensured.

Note: Some classes in CakePHP are marked with the @internal API doc tag. These classes are not stable and do
not have any backwards compatibility promises.

In minor releases, new methods may be added to classes, and existing methods may have new arguments added. Any
new arguments will have default values, but if you’ve overridden methods with a differing signature you may see fatal
errors. Methods that have new arguments added will be documented in the migration guide for that release.

The following table outlines several use cases and what compatibility you can expect from CakePHP:

%0 https://semver.org/

Backwards Compatibility Guide 173

https://semver.org/

CakePHP Book, Release 4.x

If you...

Backwards compatibility?

Typehint against the class
Create a new instance
Extend the class

Access a public property
Call a public method
Extend a class and...
Override a public property
Access a protected property
Override a protected property
Override a protected method
Call a protected method
Add a public property

Add a public method

Add an argument to an overridden method
Add a default argument value to an existing method argument

Yes
Yes
Yes
Yes
Yes

Yes
No'
NoPugc 174, 1

No'

Yes

Working on CakePHP

If you are helping make CakePHP even better please keep the following guidelines in mind when adding/changing

functionality:

In a minor release you can:

In a minor release can you. ..

Classes

Remove a class

Remove an interface
Remove a trait

Make final

Make abstract

Change name

Properties

Add a public property
Remove a public property
Add a protected property
Remove a protected property
Methods

Add a public method
Remove a public method
Add a protected method
Move to parent class
Remove a protected method
Reduce visibility

Change method name

Add a new argument with default value

Add a new required argument to an existing method.

Remove a default value from an existing argument
Change method type void

Yes
No
Yes
Yes®

Yes
No
Yes
Yes
YeSPugc 175,3
No
YeSPage 175,2
Yes
No
No
Yes

! Your code may be broken by minor releases. Check the migration guide for details.

174

Chapter 5.

Contributing

CakePHP Book, Release 4.x

Deprecations

In each minor release, features may be deprecated. If features are deprecated, API documentation and runtime warnings
will be added. Runtime errors help you locate code that needs to be updated before it breaks. If you wish to disable
runtime warnings you can do so using the Error.errorLevel configuration value:

// in config/app.php
/) ...
'"Error' => [
'errorLevel' => E_ALL A E_USER_DEPRECATED,
1
/) ...

Will disable runtime deprecation warnings.

Experimental Features

Experimental features are not included in the above backwards compatibility promises. Experimental features can
have breaking changes made in minor releases as long as they remain experimental. Experimental features can be
identified by the warning in the book and the usage of @experimental in the API documentation.

Experimental features are intended to help gather feedback on how a feature works before it becomes stable. Once the
interfaces and behavior has been vetted with the community the experimental flags will be removed.

2 You can change a class/method name as long as the old name remains available. This is generally avoided unless renaming has significant
benefit.
3 Avoid whenever possible. Any removals need to be documented in the migration guide.

Backwards Compatibility Guide 175

CakePHP Book, Release 4.x

176 Chapter 5. Contributing

CHAPTER 6

Installation

CakePHP has a few system requirements:

e HTTP Server. For example: Apache. Having mod_rewrite is preferred, but by no means required. You can also
use nginx, or Microsoft IIS if you prefer.

e Minimum PHP 7.4 (8.2 supported).
* mbstring PHP extension

* intl PHP extension

» SimpleXML PHP extension

* PDO PHP extension

Note: In XAMPP, intl extension is included but you have to uncomment extension=php_intl.dll (or
extension=intl) in php.ini and restart the server through the XAMPP Control Panel.

In WAMP, the intl extension is “activated” by default but not working. To make it work you have to go to php folder
(by default) C:\wamp\bin\php\php{version}, copy all the files that looks like icu*.dll and paste them into the apache
bin directory C:\wamp\bin\apache\apache{version}\bin. Then restart all services and it should be OK.

While a database engine isn’t required, we imagine that most applications will utilize one. CakePHP supports a variety
of database storage engines:

* MySQL (5.6 or higher)

* MariaDB (5.6 or higher)

* PostgreSQL (9.4 or higher)

* Microsoft SQL Server (2012 or higher)
* SQLite 3

177

CakePHP Book, Release 4.x

The Oracle database is supported through the Driver for Oracle Database’’ community plugin.

Note: All built-in drivers require PDO. You should make sure you have the correct PDO extensions installed.

Installing CakePHP

Before starting you should make sure that your PHP version is up to date:
php -v

You should have PHP 7.4 (CLI) or higher. Your webserver’s PHP version must also be of 7.4 or higher, and should be
the same version your command line interface (CLI) uses.

Installing Composer

CakePHP uses Composer’?, a dependency management tool, as the officially supported method for installation.
* Installing Composer on Linux and macOS

1. Run the installer script as described in the official Composer documentation” and follow the instructions
to install Composer.

2. Execute the following command to move the composer.phar to a directory that is in your path:

mv composer.phar /usr/local/bin/composer

¢ Installing Composer on Windows

For Windows systems, you can download Composer’s Windows installer here’*. Further instructions for Com-
poser’s Windows installer can be found within the README here”’”.

Create a CakePHP Project

You can create a new CakePHP application using composer’s create-project command:

composer create-project --prefer-dist cakephp/app:~4.0 my_app_name

Once Composer finishes downloading the application skeleton and the core CakePHP library, you should have a func-
tioning CakePHP application installed via Composer. Be sure to keep the composer.json and composer.lock files with
the rest of your source code.

You can now visit the path to where you installed your CakePHP application and see the default home page. To change
the content of this page, edit templates/Pages/home.php.

Although composer is the recommended installation method, there are pre-installed downloads available on Github”.

Those downloads contain the app skeleton with all vendor packages installed. Also it includes the composer.phar so
you have everything you need for further use.

1 https://github.com/CakeDC/cakephp-oracle-driver

92 https://getcomposer.org

93 https://getcomposer.org/download/

94 https://github.com/composer/windows-setup/releases/
95 https://github.com/composer/windows-setup

9 https://github.com/cakephp/cakephp/tags

178 Chapter 6. Installation

https://github.com/CakeDC/cakephp-oracle-driver
https://getcomposer.org
https://getcomposer.org/download/
https://github.com/composer/windows-setup/releases/
https://github.com/composer/windows-setup
https://github.com/cakephp/cakephp/tags

CakePHP Book, Release 4.x

Keeping Up To Date with the Latest CakePHP Changes

By default this is what your application composer.json looks like:

"require": {
"cakephp/cakephp": "4.4.*"
}

Each time you run php composer.phar update you will receive patch releases for this minor version. You can
instead change this to A4.4 to also receive the latest stable minor releases of the 4.x branch.

Installation using DDEV

Another quick way to install CakePHP is via DDEV®’. It is an open source tool for launching local web development
environments.

If you want to configure a new project, you just need:

mkdir my-cakephp-app

cd my-cakephp-app

ddev config --project-type=cakephp --docroot=webroot
ddev composer create --prefer-dist cakephp/app:~4.0
ddev launch

If you have an existing project:

git clone <your-cakephp-repo>

cd <your-cakephp-project>

ddev config --project-type=cakephp --docroot=webroot
ddev composer install

ddev launch

Please check DDEV Docs” for details on how to install / update DDEV.

Note: IMPORTANT: This is not a deployment script. It is aimed to help developers to set up a development environ-
ment quickly. It is not intended for production environments.

Permissions

CakePHP uses the tmp directory for a number of different operations. Model descriptions, cached views, and session
information are a few examples. The logs directory is used to write log files by the default FileLog engine.

As such, make sure the directories logs, tmp and all its subdirectories in your CakePHP installation are writable by the
web server user. Composer’s installation process makes tmp and its subfolders globally writeable to get things up and
running quickly but you can update the permissions for better security and keep them writable only for the web server
user.

One common issue is that logs and tmp directories and subdirectories must be writable both by the web server and the
command line user. On a UNIX system, if your web server user is different from your command line user, you can run

97 https://ddev.com/
98 https://ddev.readthedocs.io/

Permissions 179

https://ddev.com/
https://ddev.readthedocs.io/

CakePHP Book, Release 4.x

the following commands from your application directory just once in your project to ensure that permissions will be
setup properly:

HTTPDUSER="ps aux | grep -E '[a]pache|[h]ttpd|[_Jwww|[w]ww-data|[n]ginx' | grep -v root.
—| head -1 | cut -d\ -f1°

setfacl -R -m u:${HTTPDUSER}:rwx tmp

setfacl -R -d -m u:${HTTPDUSER}:rwx tmp

setfacl -R -m u:${HTTPDUSER}:rwx logs

setfacl -R -d -m u:${HTTPDUSER}:rwx logs

In order to use the CakePHP console tools, you need to ensure that bin/cake file is executable. On *nix or macOS,
you can execute:

chmod +x bin/cake

On Windows, the .bat file should be executable already. If you are using a Vagrant, or any other virtualized environ-
ment, any shared directories need to be shared with execute permissions (Please refer to your virtualized environment’s
documentation on how to do this).

If, for whatever reason, you cannot change the permissions of the bin/cake file, you can run the CakePHP console
with:

php bin/cake.php

Development Server

A development installation is the fastest way to setup CakePHP. In this example, we use CakePHP’s console to run
PHP’s built-in web server which will make your application available at http://host:port. From the app directory,
execute:

bin/cake server

By default, without any arguments provided, this will serve your application at http://localhost:8765/.

If there is conflict with localhost or port 8765, you can tell the CakePHP console to run the web server on a specific
host and/or port utilizing the following arguments:

bin/cake server -H 192.168.13.37 -p 5673

This will serve your application at http://192.168.13.37:5673/.

That’s it! Your CakePHP application is up and running without having to configure a web server.

Note: Try bin/cake server -H 0.0.0.0 if the server is unreachable from other hosts.

Warning: The development server should never be used in a production environment. It is only intended as a
basic development server.

If you’d prefer to use a real web server, you should be able to move your CakePHP install (including the hidden files)
inside your web server’s document root. You should then be able to point your web-browser at the directory you moved
the files into and see your application in action.

180 Chapter 6. Installation

CakePHP Book, Release 4.x

Production

A production installation is a more flexible way to setup CakePHP. Using this method allows an entire domain to act as
a single CakePHP application. This example will help you install CakePHP anywhere on your filesystem and make it
available at http://www.example.com. Note that this installation may require the rights to change the DocumentRoot
on Apache webservers.

After installing your application using one of the methods above into the directory of your choosing - we’ll assume you
chose /cake_install - your production setup will look like this on the file system:

/cake_install/
bin/
config/
logs/
plugins/
resources/
src/
templates/
tests/
tmp/
vendor/
webroot/ (this directory is set as DocumentRoot)
.gitignore
.htaccess
.travis.yml
composer. json
index.php
phpunit.xml.dist
README . md

Developers using Apache should set the DocumentRoot directive for the domain to:

DocumentRoot /cake_install/webroot

If your web server is configured correctly, you should now find your CakePHP application accessible at http://www.
example.com.

Fire It Up

Alright, let’s see CakePHP in action. Depending on which setup you used, you should point your browser to http://
example.com/ or http://localhost:8765/. At this point, you’ll be presented with CakePHP’s default home, and a message
that tells you the status of your current database connection.

Congratulations! You are ready to create your first CakePHP application.

Production 181

http://www.example.com
http://www.example.com
http://www.example.com
http://example.com/
http://example.com/
http://localhost:8765/

CakePHP Book, Release 4.x

URL Rewriting

Apache

While CakePHP is built to work with mod_rewrite out of the box—and usually does—we’ve noticed that a few users
struggle with getting everything to play nicely on their systems.

Here are a few things you might try to get it running correctly. First look at your httpd.conf. (Make sure you are editing
the system httpd.conf rather than a user- or site-specific httpd.conf.)

These files can vary between different distributions and Apache versions. You may also take a look at https://cwiki.
apache.org/confluence/display/httpd/DistrosDefaultLayout for further information.

1.

Make sure that an .htaccess override is allowed and that AllowOverride is set to All for the correct DocumentRoot.
You should see something similar to:

Each directory to which Apache has access can be configured with respect
to which services and features are allowed and/or disabled in that
directory (and its subdirectories).

First, we configure the "default" to be a very restrictive set of
features.
<Directory />
Options FollowSymLinks
AllowOverride All
Order deny,allow
Deny from all
</Directory>

#
#
#
#
#
#

Make sure you are loading mod_rewrite correctly. You should see something like:

LoadModule rewrite_module libexec/apache2/mod_rewrite.so

In many systems these will be commented out by default, so you may just need to remove the leading # symbols.
After you make changes, restart Apache to make sure the settings are active.

Verify that your .htaccess files are actually in the right directories. Some operating systems treat files that start
with ‘. as hidden and therefore won’t copy them.

. Make sure your copy of CakePHP comes from the downloads section of the site or our Git repository, and has

been unpacked correctly, by checking for .htaccess files.

CakePHP app directory (will be copied to the top directory of your application by bake):

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteRule AS webroot/ [L]
RewriteRule (.*) webroot/$1 [L]
</IfModule>

CakePHP webroot directory (will be copied to your application’s web root by bake):

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f

(continues on next page)

182

Chapter 6. Installation

https://cwiki.apache.org/confluence/display/httpd/DistrosDefaultLayout
https://cwiki.apache.org/confluence/display/httpd/DistrosDefaultLayout

CakePHP Book, Release 4.x

(continued from previous page)

RewriteRule A index.php [L]
</IfModule>

If your CakePHP site still has problems with mod_rewrite, you might want to try modifying settings for Virtual
Hosts. On Ubuntu, edit the file /etc/apache2/sites-available/default (location is distribution-dependent). In this
file, ensure that AllowOverride None is changed to AllowOverride All, so you have:

<Directory />
Options FollowSymLinks
AllowOverride All

</Directory>

<Directory /var/www>
Options FollowSymLinks
AllowOverride All
Order Allow,Deny
Allow from all

</Directory>

On macOS$, another solution is to use the tool virtualhostx” to make a Virtual Host to point to your folder.

For many hosting services (GoDaddy, landl), your web server is being served from a user directory that al-
ready uses mod_rewrite. If you are installing CakePHP into a user directory (http://example.com/~username/
cakephp/), or any other URL structure that already utilizes mod_rewrite, you’ll need to add RewriteBase state-
ments to the .htaccess files CakePHP uses (.htaccess, webroot/.htaccess).

This can be added to the same section with the RewriteEngine directive, so for example, your webroot .htaccess
file would look like:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/app
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule A index.php [L]
</IfModule>

The details of those changes will depend on your setup, and can include additional things that are not related to
CakePHP. Please refer to Apache’s online documentation for more information.

4. (Optional) To improve production setup, you should prevent invalid assets from being parsed by CakePHP. Mod-
ify your webroot .htaccess to something like:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/app/
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !A/(webroot/)?(img|css|js)/(.*)$
RewriteRule A index.php [L]
</IfModule>

The above will prevent incorrect assets from being sent to index.php and instead display your web server’s 404
page.

Additionally you can create a matching HTML 404 page, or use the default built-in CakePHP 404 by adding an
ErrorDocument directive:

9 https://clickontyler.com/virtualhostx/

URL Rewriting 183

https://clickontyler.com/virtualhostx/
http://example.com/~username/cakephp/
http://example.com/~username/cakephp/

CakePHP Book, Release 4.x

ErrorDocument 404 /404-not-found

nginx

nginx does not make use of .htaccess files like Apache, so it is necessary to create those rewrit-
ten URLs in the site-available configuration. This is usually found in /etc/nginx/sites-available/
your_virtual_host_conf_file. Depending on your setup, you will have to modify this, but at the very least,
you will need PHP running as a FastCGI instance. The following configuration redirects the request to webroot/
index.php:

location / {
try_files $uri $uri/ /index.php?$args;
}

A sample of the server directive is as follows:

server {
listen 80;
listen [::1:80;
server_name www.example.com;
return 301 http://example.com$request_uri;

}
server {
listen 80;
listen [::1:80;
server_name example.com;
root /var/www/example.com/public/webroot;
index index.php;
access_log /var/www/example.com/log/access.log;
error_log /var/www/example.com/log/error.log;
location / {
try_files $uri $uri/ /index.php?$args;
}
location ~ \.php$ {
try_files $uri =404;
include fastcgi_params;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_intercept_errors on;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
}
}

Note: Recent configurations of PHP-FPM are set to listen to the unix php-fpm socket instead of TCP port 9000 on
address 127.0.0.1. If you get 502 bad gateway errors from the above configuration, try update fastcgi_pass to use
the unix socket path (eg: fastcgi_pass unix:/var/run/php/php7.1-fpm.sock;) instead of the TCP port.

184 Chapter 6. Installation

CakePHP Book, Release 4.x

NGINX Unit

NGINX Unit'"’ is dynamically configurable in runtime; the following configuration relies on webroot/index.php,
also serving other .php scripts if present via cakephp_direct:

{
"listeners": {
"*:80": {
"pass": "routes/cakephp"
}
o
"routes": {
"cakephp": [
{
"match": {
"uri": [
"*.php",
"*.php/*"
]
B
"action": {
"pass": "applications/cakephp_direct"
}
e
{
"action": {
"share": "/path/to/cakephp/webroot/",
"fallback": {
"pass": "applications/cakephp_index"
}
}
}
]
1,
"applications": {
"cakephp_direct": {
"type": "php",
"root": "/path/to/cakephp/webroot/",
"user": "www-data"
Fo
"cakephp_index": {
"type": "php",
"root": "/path/to/cakephp/webroot/",
"user": "www-data",
"script": "index.php"
}
}
}

100 hitps://unit.nginx.org

URL Rewriting 185

https://unit.nginx.org

CakePHP Book, Release 4.x

To enable this config (assuming it’s saved as cakephp. json):

curl -X PUT --data-binary @cakephp.json --unix-socket \
/path/to/control.unit.sock http://localhost/config

lIS7 (Windows hosts)

IIS7 does not natively support .htaccess files. While there are add-ons that can add this support, you can also import
htaccess rules into IIS to use CakePHP’s native rewrites. To do this, follow these steps:

1. Use Microsoft’s Web Platform Installer'”' to install the URL Rewrite Module 2.0'"> or download it directly
(32-bit!%3 / 64-bit!04),

2. Create a new file called web.config in your CakePHP root folder.

3. Using Notepad or any XML-safe editor, copy the following code into your new web.config file:

<?xml version="1.0" encoding="UTF-8"7?>
<configuration>
<system.webServer>
<rewrite>
<rules>
<rule name="Exclude direct access to webroot/*"
stopProcessing="true">
<match url="Awebroot/(.*)$" ignoreCase="false" />
<action type="None" />
</rule>
<rule name="Rewrite routed access to assets(img, css, files, js, favicon)

stopProcessing="true">
<match url="A(font|img|css|files|js|favicon.ico)(.*)$" />
<action type="Rewrite" url="webroot/{R:1}{R:2}"
appendQueryString="false" />
</rule>
<rule name="Rewrite requested file/folder to index.php"
stopProcessing="true">
<match url="A(.*)$" ignoreCase="false" />
<action type="Rewrite" url="index.php"
appendQueryString="true" />
</rule>
</rules>
</rewrite>
</system.webServer>
</configuration>

Once the web.config file is created with the correct IIS-friendly rewrite rules, CakePHP’s links, CSS, JavaScript, and
rerouting should work correctly.

101 https://www.microsoft.com/web/downloads/platform.aspx

102 https://www.iis.net/downloads/microsoft/url-rewrite

103 https://download.microsoft.com/download/D/8/1/D81E5DD6- 1 ABB-46B0-9B4B-21894E18B77F/rewrite_x86_en-US.msi
104 hitps://download.microsoft.com/download/ 1/2/8/128E2E22-C1B9-44A4-BE2A- 5859ED 1 D4592/rewrite_amd64_en-US.msi

186 Chapter 6. Installation

https://www.microsoft.com/web/downloads/platform.aspx
https://www.iis.net/downloads/microsoft/url-rewrite
https://download.microsoft.com/download/D/8/1/D81E5DD6-1ABB-46B0-9B4B-21894E18B77F/rewrite_x86_en-US.msi
https://download.microsoft.com/download/1/2/8/128E2E22-C1B9-44A4-BE2A-5859ED1D4592/rewrite_amd64_en-US.msi

CakePHP Book, Release 4.x

Lighttpd

Lighttpd does not make use of .htaccess files like Apache, so itis necessary to add a url.rewrite-once configuration
in conf/lighttpd.conf. Ensure the following is present in your lighthttpd configuration:

server.modules += (
"mod_alias",
"mod_cgi",
"mod_rewrite"

)

Directory Alias
alias.url = ("/TestCake" => "C:/Users/Nicola/Documents/TestCake")

CGI Php
cgi.assign = (".php" => "c:/php/php-cgi.exe")

Rewrite Cake Php (on /TestCake path)

url.rewrite-once = (
"A/TestCake/(css|files|img|js|stats)/(.*)$" => "/TestCake/webroot/$1/$2",
"A/TestCake/(.*)$" => "/TestCake/webroot/index.php/$1"

The above lines include PHP CGI configuration and example application configuration for an application on the /
TestCake path.

I Can’t Use URL Rewriting

If you don’t want or can’t get mod_rewrite (or some other compatible module) running on your server, you will need
to use CakePHP’s built in pretty URLs. In config/app.php, uncomment the line that looks like:

"App' = [
J/ ..
// 'baseUrl' => env('SCRIPT_NAME'),

]

Also remove these .htaccess files:

/.htaccess
webroot/.htaccess

This will make your URLs look like www.example.com/index.php/controllername/actionname/param rather than
www.example.com/controllername/actionname/param.

URL Rewriting 187

CakePHP Book, Release 4.x

188 Chapter 6. Installation

CHAPTER 7

Configuration

While conventions remove the need to configure all of CakePHP, you’ll still need to configure a few things like your
database credentials.

Additionally, there are optional configuration options that allow you to swap out default values & implementations with
ones tailored to your application.

Configuring your Application

Configuration is generally stored in either PHP or INI files, and loaded during the application bootstrap. CakePHP
comes with one configuration file by default, but if required you can add additional configuration files and load them
in your application’s bootstrap code. Cake\Core\Configure is used for global configuration, and classes like Cache
provide setConfig() methods to make configuration simple and transparent.

The application skeleton features a config/app.php file which should contain configuration that doesn’t vary across the
various environments your application is deployed in. The config/app_local.php file should contain the configuration
data that varies between environments and should be managed by configuration management, or your deployment
tooling. Both of these files reference environment variables through the env() function that enables configuration
values to set though the server environment.

189

CakePHP Book, Release 4.x

Loading Additional Configuration Files

If your application has many configuration options it can be helpful to split configuration into multiple files. After
creating each of the files in your config/ directory you can load them in bootstrap.php:

use Cake\Core\Configure;
use Cake\Core\Configure\Engine\PhpConfig;

Configure: :setConfig('default', new PhpConfig());
Configure::load('app', 'default', false);
Configure::load('other_config', 'default');

Environment Variables

Many modern cloud providers, like Heroku, let you define environment variables for configuration data. You can
configure your CakePHP through environment variables in the 12factor app style'’>. Environment variables allow
your application to require less state making your application easier to manage when it is deployed across a number of
environments.

As you can see in your app.php, the env () function is used to read configuration from the environment, and build the
application configuration. CakePHP uses DSN strings for databases, logs, email transports and cache configurations
allowing you to easily vary these libraries in each environment.

For local development, CakePHP leverages dotenv'” to make local development automatically reload environment
variables. Use composer to require this library and then there is a block of code in bootstrap.php that needs to be
uncommented to harness it.

You will see a config/.env.example in your application. By copying this file into config/.env and customizing
the values you can configure your application.

You should avoid committing the config/ . env file to your repository and instead use the config/.env.example as
a template with placeholder values so everyone on your team knows what environment variables are in use and what
should go in each one.

Once your environment variables have been set, you can use env () to read data from the environment:

$debug = env('APP_DEBUG', false);

The second value passed to the env function is the default value. This value will be used if no environment variable
exists for the given key.

General Configuration

Below is a description of the variables and how they affect your CakePHP application.

debug
Changes CakePHP debugging output. false = Production mode. No error messages, errors, or warnings shown.
true = Errors and warnings shown.

App.namespace
The namespace to find app classes under.

105 hitps://12factor.net/
106 https://github.com/josegonzalez/php-dotenv

190 Chapter 7. Configuration

https://12factor.net/
https://github.com/josegonzalez/php-dotenv

CakePHP Book, Release 4.x

Note: When changing the namespace in your configuration, you will also need to update your composer.json
file to use this namespace as well. Additionally, create a new autoloader by running php composer.phar
dumpautoload.

App.baseUrl
Un-comment this definition if you don’t plan to use Apache’s mod_rewrite with CakePHP. Don’t forget to remove
your .htaccess files too.

App.base
The base directory the app resides in. If false this will be auto detected. If not false, ensure your string starts
with a/ and does NOT end with a /. For example, /basedir is a valid App.base. Otherwise, the AuthComponent
will not work properly.

App.encoding
Define what encoding your application uses. This encoding is used to generate the charset in the layout, and
encode entities. It should match the encoding values specified for your database.

App.webroot
The webroot directory.

App.wwwRoot
The file path to webroot.

App.fullBaseUrl
The fully qualified domain name (including protocol) to your application’s root. This is used when generating
absolute URLs. By default this value is generated using the $_SERVER environment. However, you should define
it manually to optimize performance or if you are concerned about people manipulating the Host header. In a
CLI context (from shells) the fullBaseUrl cannot be read from $_SERVER, as there is no webserver involved.
You do need to specify it yourself if you do need to generate URLs from a shell (for example, when sending
emails).

App.imageBaseUrl
Web path to the public images directory under webroot. If you are using a CDN you should set this value to the
CDN’s location.

App.cssBaseUrl
Web path to the public css directory under webroot. If you are using a CDN you should set this value to the
CDN’s location.

App.jsBaseUrl
Web path to the public js directory under webroot. If you are using a CDN you should set this value to the CDN’s
location.

App.paths
Configure paths for non class based resources. Supports the plugins, templates, locales subkeys, which
allow the definition of paths for plugins, view templates and locale files respectively.

App.uploadedFilesAsObjects
Defines whether uploaded files are being represented as objects (true), or arrays (false). This option is being
treated as enabled by default. See the File Uploads section in the Request & Response Objects chapter for more
information.

Security.salt
A random string used in hashing. This value is also used as the HMAC salt when doing symmetric encryption.

Asset.timestamp
Appends a timestamp which is last modified time of the particular file at the end of asset files URLs (CSS,
JavaScript, Image) when using proper helpers. Valid values:

Configuring your Application 191

CakePHP Book, Release 4.x

¢ (bool) false - Doesn’t do anything (default)
¢ (bool) true - Appends the timestamp when debug is true
* (string) ‘force’ - Always appends the timestamp.

Asset.cacheTime
Sets the asset cache time. This determines the http header Cache-Control’s max-age, and the http header’s
Expire’s time for assets. This can take anything that you version of PHP’s strtotime function'?’ can take. The
default is +1 day.

Using a CDN

To use a CDN for loading your static assets, change App . imageBaseUrl, App.cssBaseUrl, App. jsBaseUrl to point
the CDN URI, for example: https://mycdn.example.com/ (note the trailing /).

All images, scripts and styles loaded via HtmlHelper will prepend the absolute CDN path, matching the same relative
path used in the application. Please note there is a specific use case when using plugin based assets: plugins will not
use the plugin’s prefix when absolute . . .BaseUrl URI is used, for example By default:

¢ $this->Helper->assetUrl('TestPlugin.logo.png') resolves to test_plugin/logo.png
If you set App.imageBaseUrl to https://mycdn.example.com/:

e $this->Helper->assetUrl('TestPlugin.logo.png') resolves to https://mycdn.example.com/
logo.png.

Database Configuration

See the Database Configuration for information on configuring your database connections.

Caching Configuration

See the Caching Configuration for information on configuring caching in CakePHP.

Error and Exception Handling Configuration

See the Error and Exception Configuration for information on configuring error and exception handlers.

Logging Configuration

See the Logging Configuration for information on configuring logging in CakePHP.

107 hitps://php.net/manual/en/function.strtotime.php

192 Chapter 7. Configuration

https://php.net/manual/en/function.strtotime.php

CakePHP Book, Release 4.x

Email Configuration

See the Email Configuration for information on configuring email presets in CakePHP.

Session Configuration

See the Session Configuration for information on configuring session handling in CakePHP.

Routing configuration

See the Routes Configuration for more information on configuring routing and creating routes for your application.

Additional Class Paths

Additional class paths are setup through the autoloaders your application uses. When using composer to generate your
autoloader, you could do the following, to provide fallback paths for controllers in your application:

"autoload": {
"psr-4": {
"App\\Controller\\": "/path/to/directory/with/controller/folders/",
"App\\": "src/"

}

The above would setup paths for both the App and App\Controller namespace. The first key will be searched, and
if that path does not contain the class/file the second key will be searched. You can also map a single namespace to
multiple directories with the following:

"autoload": {
"psr-4": {
"App\\": ["src/", "/path/to/directory/"]
3

Plugin, View Template and Locale Paths

Since plugins, view templates and locales are not classes, they cannot have an autoloader configured. CakePHP provides
three Configure variables to setup additional paths for these resources. In your config/app.php you can set these
variables:

return [
// More configuration
"App' = [

'paths' => [
'plugins' => [
ROOT . DS . 'plugins' . DS,
' /path/to/other/plugins/"'
ie
'templates' => [
(continues on next page)

Additional Class Paths 193

CakePHP Book, Release 4.x

(continued from previous page)

ROOT . DS . 'templates' . DS,
ROOT . DS . 'templates2' . DS

i
'locales' => [
ROOT . DS . 'resources' . DS . 'locales' . DS

]

1;

Paths should end with a directory separator, or they will not work properly.

Inflection Configuration

See the Inflection Configuration docs for more information.

Configure Class

class Cake\Core\Configure

CakePHP’s Configure class can be used to store and retrieve application or runtime specific values. Be careful, this
class allows you to store anything in it, then use it in any other part of your code: a sure temptation to break the MVC
pattern CakePHP was designed for. The main goal of Configure class is to keep centralized variables that can be shared
between many objects. Remember to try to live by “convention over configuration” and you won’t end up breaking the
MVC structure CakePHP provides.

Writing Configuration data

static Cake\Core\Configure: :write($key, $value)
Use write() to store data in the application’s configuration:

Configure: :write('Company.name', 'Pizza, Inc.');
Configure: :write('Company.slogan', 'Pizza for your body and soul');

Note: The dot notation used in the $key parameter can be used to organize your configuration settings into logical
groups.

The above example could also be written in a single call:

Configure: :write('Company', [
'name' => 'Pizza, Inc.',
'slogan' => 'Pizza for your body and soul'

D;

You can use Configure: :write('debug’', $bool) to switch between debug and production modes on the fly.

194 Chapter 7. Configuration

CakePHP Book, Release 4.x

Note: Any configuration changes done using Configure: :write() are in memory and will not persist across re-
quests.

Reading Configuration Data

static Cake\Core\Configure::read($key = null, $default = null)

Used to read configuration data from the application. If a key is supplied, the data is returned. Using our examples
from write() above, we can read that data back:

// Returns 'Pizza Inc.'
Configure: :read('Company.name') ;

// Returns 'Pizza for your body and soul'
Configure: :read('Company.slogan');

Configure: :read('Company');
// Returns:
['name' => 'Pizza, Inc.', 'slogan' => 'Pizza for your body and soul'];

// Returns 'fallback' as Company.nope is undefined.
Configure: :read('Company.nope', 'fallback');

If $key is left null, all values in Configure will be returned.
static Cake\Core\Configure::readOrFail ($key)

Reads configuration data just like Cake\Core\Configure: :read but expects to find a key/value pair. In case the
requested pair does not exist, a RuntimeException will be thrown:

Configure: :readOrFail (' Company.name') ; // Yields: 'Pizza, Inc.'
Configure: :readOrFail ('Company.geolocation'); // Will throw an exception

Configure: :readOrFail (' Company"');

// Yields:
['name' => 'Pizza, Inc.', 'slogan' => 'Pizza for your body and soul'];

Checking to see if Configuration Data is Defined

static Cake\Core\Configure::check(8key)
Used to check if a key/path exists and has non-null value:

$exists = Configure::check('Company.name');

Configure Class 195

CakePHP Book, Release 4.x

Deleting Configuration Data

static Cake\Core\Configure::delete($key)
Used to delete information from the application’s configuration:

Configure: :delete('Company.name');

Reading & Deleting Configuration Data

static Cake\Core\Configure::consume ($key)

Read and delete a key from Configure. This is useful when you want to combine reading and deleting values in a single
operation.

static Cake\Core\Configure::consumeOrFail ($key)

Consumes configuration data just like Cake\Core\Configure: : consume but expects to find a key/value pair. In case
the requested pair does not exist, a RuntimeException will be thrown:

Configure: :consumeOrFail (' Company.name'); // Yields: 'Pizza, Inc.'
Configure: :consumeOrFail (' Company.geolocation'); // Will throw an exception

Configure: :consumeOrFail (' Company"');

// Yields:
['name' => 'Pizza, Inc.', 'slogan' => 'Pizza for your body and soul'];

Reading and writing configuration files

static Cake\Core\Configure::setConfig($name, $engine)

CakePHP comes with two built-in configuration file engines. Cake\Core\Configure\Engine\PhpConfig is able
to read PHP config files, in the same format that Configure has historically read. Cake\Core\Configure\Engine\
IniConfig is able to read ini config files. See the PHP documentation'®® for more information on the specifics of ini
files. To use a core config engine, you’ll need to attach it to Configure using Configure: :config():

use Cake\Core\Configure\Engine\PhpConfig;

// Read config files from config
Configure: :config('default', new PhpConfig());

// Read config files from another path.
Configure::config('default', new PhpConfig('/path/to/your/config/files/"'));

You can have multiple engines attached to Configure, each reading different kinds or sources of configuration files.
You can interact with attached engines using a few other methods on Configure. To check which engine aliases are
attached you can use Configure: :configured():

108 https://php.net/parse_ini_file

196 Chapter 7. Configuration

https://php.net/parse_ini_file

CakePHP Book, Release 4.x

// Get the array of aliases for attached engines.
Configure: :configured();

// Check if a specific engine is attached
Configure: :configured('default');

static Cake\Core\Configure::drop($name)

You can also remove attached engines. Configure: :drop('default') would remove the default engine alias. Any
future attempts to load configuration files with that engine would fail:

Configure: :drop('default');

Loading Configuration Files

static Cake\Core\Configure::load($key, $config = 'default', $merge = true)
Once you’ve attached a config engine to Configure you can load configuration files:

// Load my_file.php using the 'default' engine object.
Configure::load('my_file', 'default');

Loaded configuration files merge their data with the existing runtime configuration in Configure. This allows you to
overwrite and add new values into the existing runtime configuration. By setting $merge to true, values will not ever
overwrite the existing configuration.

Warning: When merging configuration files with $merge = true, dot notation in keys is not expanded:

// configl.php
'Keyl' => [
'Key2' => [
'Key3' => ['NestedKeyl' => 'Value'],
1,
1,

// config2.php
'Keyl.Key2' => [

'Key3' => ['NestedKey2' => 'Value2'],
]

Configure::load('configl', 'default');
Configure::load('config2', 'default',6 true);

// Now Keyl.Key2.Key3 has the value ['NestedKey2' => 'Value2']
// instead of [NestedKeyl' => 'Value', 'NestedKey2' => 'Value2']

Reading and writing configuration files 197

CakePHP Book, Release 4.x

Creating or Modifying Configuration Files

static Cake\Core\Configure: :dump ($key, $config = 'default’, $keys = [])

Dumps all or some of the data in Configure into a file or storage system supported by a config engine. The serialization
format is decided by the config engine attached as $config. For example, if the ‘default’ engine is a Cake\Core\
Configure\Engine\PhpConfig, the generated file will be a PHP configuration file loadable by the Cake\Core\
Configure\Engine\PhpConfig

Given that the ‘default’ engine is an instance of PhpConfig. Save all data in Configure to the file my_config.php:

Configure: :dump('my_config', 'default');

Save only the error handling configuration:

Configure: :dump('error', 'default', ['Error', 'Exception']);

Configure::dump() can be used to either modify or overwrite configuration files that are readable with
Configure: :load()

Storing Runtime Configuration

static Cake\Core\Configure::store($name, $cacheConfig = 'default’, $data = null)

You can also store runtime configuration values for use in a future request. Since configure only remembers values for
the current request, you will need to store any modified configuration information if you want to use it in subsequent
requests:

// Store the current configuration in the 'user_1234' key in the 'default' cache.
Configure::store('user_1234"', 'default');

Stored configuration data is persisted in the named cache configuration. See the Caching documentation for more
information on caching.

Restoring Runtime Configuration

static Cake\Core\Configure::restore($name, $cacheConfig = 'default")

Once you've stored runtime configuration, you’ll probably need to restore it so you can access it again.
Configure: :restore() does exactly that:

// Restore runtime configuration from the cache.
Configure: :restore('user_1234"', 'default');

When restoring configuration information it’s important to restore it with the same key, and cache configuration as was
used to store it. Restored information is merged on top of the existing runtime configuration.

198 Chapter 7. Configuration

CakePHP Book, Release 4.x

Configuration Engines

CakePHP provides the ability to load configuration files from a number of different sources, and features a pluggable
system for creating your own configuration engines'””. The built in configuration engines are:

+ JsonConfig''"

e IniConfig'!!

 PhpConfig!!'?
By default your application will use PhpConfig.

Disabling Generic Tables

While utilizing generic table classes - also called auto-tables - when quickly creating new applications and baking
models is useful, generic table class can make debugging more difficult in some scenarios.

You can check if any query was emitted from a generic table class via DebugKit via the SQL panel in DebugKit. If
you're still having trouble diagnosing an issue that could be caused by auto-tables, you can throw an exception when
CakePHP implicitly uses a generic Cake\ORM\Table instead of your concrete class like so:

// In your bootstrap.php
use Cake\Event\EventManager;
use Cake\Http\Exception\InternalErrorException;

$isCakeBakeShellRunning = (PHP_SAPI === 'cli' && isset($argv[1l]) && $argv[l] === 'bake');
if (!$isCakeBakeShellRunning) {
EventManager: :instance()->on('Model.initialize', function($event) {
$subject = $event->getSubject();
if (get_class($subject) === 'Cake\ORM\Table') {
$msg = sprintf(
'Missing table class or incorrect alias when registering table class for.,
—.database table %s.',
$subject->getTable());
throw new InternalErrorException($msg);

b;

109 https://api.cakephp.org/4.x/interface- Cake.Core.Configure.ConfigEnginelnterface.html
110 hitps://api.cakephp.org/4.x/class-Cake.Core.Configure. Engine.JsonConfig.html

1 https://api.cakephp.org/4.x/class-Cake.Core.Configure. Engine. IniConfig html

112 https://api.cakephp.org/4.x/class-Cake.Core.Configure Engine. PhpConfig html

Disabling Generic Tables 199

https://api.cakephp.org/4.x/interface-Cake.Core.Configure.ConfigEngineInterface.html
https://api.cakephp.org/4.x/class-Cake.Core.Configure.Engine.JsonConfig.html
https://api.cakephp.org/4.x/class-Cake.Core.Configure.Engine.IniConfig.html
https://api.cakephp.org/4.x/class-Cake.Core.Configure.Engine.PhpConfig.html

CakePHP Book, Release 4.x

200 Chapter 7. Configuration

CHAPTER 8

Routing

class Cake\Routing\RouterBuilder

Routing provides you tools that map URLSs to controller actions. By defining routes, you can separate how your appli-
cation is implemented from how its URLSs are structured.

Routing in CakePHP also encompasses the idea of reverse routing, where an array of parameters can be transformed
into a URL string. By using reverse routing, you can re-factor your application’s URL structure without having to
update all your code.

Quick Tour

This section will teach you by example the most common uses of the CakePHP Router. Typically you want to display
something as a landing page, so you add this to your config/routes.php file:

/** @var \Cake\Routing\RouteBuilder $routes */
$routes->connect('/', ['controller' => 'Articles', 'action' => 'index']);

This will execute the index method in the ArticlesController when the homepage of your site is visited. Sometimes
you need dynamic routes that will accept multiple parameters, this would be the case, for example of a route for viewing
an article’s content:

$routes->connect('/articles/*', ['controller' => 'Articles', 'action' => 'view']);

The above route will accept any URL looking like /articles/15 and invoke the method view(15) in the
ArticlesController. This will not, though, prevent people from trying to access URLs looking like /articles/
foobar. If you wish, you can restrict some parameters to conform to a regular expression:

// Using fluent interface
$routes->connect(

(continues on next page)

201

CakePHP Book, Release 4.x

(continued from previous page)
'/articles/{id}"',
['controller' => 'Articles', 'action' => 'view'],
)
->setPatterns(['id' => '\d+'])
->setPass(['id']);

// Using options array

$routes->connect(
'/articles/{id}"',
['controller' => 'Articles', 'action' => 'view'],
['id' => '\d+', 'pass' => ['id']]

);

The previous example changed the star matcher by a new placeholder {id}. Using placeholders allows us to validate
parts of the URL, in this case we used the \d+ regular expression so that only digits are matched. Finally, we told the
Router to treat the id placeholder as a function argument to the view() function by specifying the pass option. More
on using this option later.

The CakePHP Router can also reverse match routes. That means that from an array containing matching parameters,
it is capable of generating a URL string:

use Cake\Routing\Router;

echo Router::url(['controller' => 'Articles', 'action' => 'view',6 'id' => 15]);
// Will output
/articles/15

Routes can also be labelled with a unique name, this allows you to quickly reference them when building links instead
of specifying each of the routing parameters:

// In routes.php

$routes->connect (
' /upgrade',
['controller' => 'Subscriptions', 'action' => 'create'l],
['_name' => 'upgrade']

DE
use Cake\Routing\Router;

echo Router::url(['_name' => 'upgrade']);
// Will output
/upgrade

To help keep your routing code DRY, the Router has the concept of ‘scopes’. A scope defines a common path segment,
and optionally route defaults. Any routes connected inside a scope will inherit the path/defaults from their wrapping
scopes:

$routes->scope('/blog', ['plugin' => 'Blog'], function (RouteBuilder $routes) {
$routes->connect('/', ['controller' => 'Articles']);

s

The above route would match /blog/ and send it to Blog\Controller\ArticlesController::index().

The application skeleton comes with a few routes to get you started. Once you’ve added your own routes, you can

202 Chapter 8. Routing

CakePHP Book, Release 4.x

remove the default routes if you don’t need them.

Connecting Routes

To keep your code DRY you should use ‘routing scopes’. Routing scopes not only let you keep your code DRY, they
also help Router optimize its operation. This method defaults to the / scope. To create a scope and connect some routes
we’ll use the scope () method:

// In config/routes.php
use Cake\Routing\RouteBuilder;
use Cake\Routing\Route\DashedRoute;

$routes->scope('/', function (RouteBuilder $routes) {
// Connect the generic fallback routes.
$routes->fallbacks(DashedRoute::class);

B;

The connect () method takes up to three parameters: the URL template you wish to match, the default values for your
route elements, and the options for the route. Options frequently include regular expression rules to help the router
match elements in the URL.

The basic format for a route definition is:

$routes->connect(
'/url/template’,
['targetKey' => 'targetValue'],
['option' => 'matchingRegex']

);

The first parameter is used to tell the router what sort of URL you’re trying to control. The URL is a normal slash
delimited string, but can also contain a wildcard (*) or Route Elements. Using a wildcard tells the router that you are
willing to accept any additional arguments supplied. Routes without a * only match the exact template pattern supplied.

Once you’ve specified a URL, you use the last two parameters of connect () to tell CakePHP what to do with a request
once it has been matched. The second parameter defines the route ‘target’. This can be defined either as an array, or as
a destination string. A few examples of route targets are:

// Array target to an application controller
$routes->connect (

'/users/view/*",

['controller' => 'Users', 'action' => 'view']
DE
$routes->connect('/users/view/*', 'Users::view');

// Array target to a prefixed plugin controller
$routes->connect(
'/admin/cms/articles’,

['prefix' => 'Admin', 'plugin' => 'Cms', 'controller' => 'Articles', 'action' =>
—'index"]
DE
$routes->connect('/admin/cms/articles', 'Cms.Admin/Articles::index');

The first route we connect matches URLs starting with /users/view and maps those requests to the
UsersController->view(). The trailing /* tells the router to pass any additional segments as method arguments.

Connecting Routes 203

CakePHP Book, Release 4.x

For example, /users/view/123 would map to UsersController->view(123).

The above example also illustrates string targets. String targets provide a compact way to define a route’s destination.
String targets have the following syntax:

[Plugin] . [Prefix]/[Controller]:: [action]

Some example string targets are:

// Application controller
'Bookmarks: :view'

// Application controller with prefix
Admin/Bookmarks: :view

// Plugin controller
Cms.Articles::edit

// Prefixed plugin controller
Vendor/Cms . Management /Admin/Articles: :view

Earlier we used the greedy star (/*) to capture additional path segments, there is also the trailing star (/**). Using a
trailing double star, will capture the remainder of a URL as a single passed argument. This is useful when you want to
use an argument that included a / in it:

$routes->connect(
'/pages/**",
['controller' => 'Pages', 'action' => 'show']

);

The incoming URL of /pages/the-example-/-and-proof would result in a single passed argument of
the-example-/-and-proof.

The second parameter of connect () can define any parameters that compose the default route parameters:

$routes->connect(
' /government ',
['controller' => 'Pages', 'action' => 'display', 5]

);

This example uses the second parameter of connect() to define default parameters. If you built an application that
features products for different categories of customers, you might consider creating a route. This allows you to link to
/government rather than /pages/display/5.

A common use for routing is to rename controllers and their actions. Instead of accessing our users controller at /
users/some-action/5, we’d like to be able to access it through /cooks/some-action/5. The following route
takes care of that:

$routes->connect (
'/cooks/{action}/*', ['controller' => 'Users']

)

This is telling the Router that any URL beginning with /cooks/ should be sent to the UsersController. The action
called will depend on the value of the {action} parameter. By using Route Elements, you can create variable routes,
that accept user input or variables. The above route also uses the greedy star. The greedy star indicates that this
route should accept any additional positional arguments given. These arguments will be made available in the Passed
Arguments array.

204 Chapter 8. Routing

CakePHP Book, Release 4.x

When generating URLs, routes are used too. Using ['controller' => 'Users', 'action' =>
'some-action', 5] as a URL will output /cooks/some-action/5 if the above route is the first match
found.

The routes we’ve connected so far will match any HTTP verb. If you are building a REST API you’ll often want to map
HTTP actions to different controller methods. The RouteBuilder provides helper methods that make defining routes
for specific HTTP verbs simpler:

// Create a route that only responds to GET requests.
$routes->get(
'/cooks/{id}"',
['controller' => 'Users', 'action' => 'view'],
'users:view'

)

// Create a route that only responds to PUT requests
$routes->put(
'/cooks/{id}"',
['controller' => 'Users', 'action' => 'update'],
'users:update’

);
The above routes map the same URL to different controller actions based on the HTTP verb used. GET requests will
go to the ‘view’ action, while PUT requests will go to the ‘update’ action. There are HTTP helper methods for:
* GET
* POST
* PUT
* PATCH
DELETE
OPTIONS
« HEAD

All of these methods return the route instance allowing you to leverage the fluent setters to further configure your route.

Route Elements

You can specify your own route elements and doing so gives you the power to define places in the URL where pa-
rameters for controller actions should lie. When a request is made, the values for these route elements are found in
$this->request->getParam() in the controller. When you define a custom route element, you can optionally spec-
ify a regular expression - this tells CakePHP how to know if the URL is correctly formed or not. If you choose to not
provide a regular expression, any non / character will be treated as part of the parameter:

$routes->connect(
'/{controller}/{id}",
['action' => 'view']
)->setPatterns(['id' => '[0-9]+']);

$routes->connect(
'/{controller}/{id}",
['action' => 'view'],

(continues on next page)

Connecting Routes 205

CakePHP Book, Release 4.x

(continued from previous page)
['id" => "[0-9]+']
)3

The above example illustrates how to create a quick way to view models from any controller by crafting a URL that
looks like /controllername/{id}. The URL provided to connect () specifies two route elements: {controller}
and {id}. The {controller} element is a CakePHP default route element, so the router knows how to match and
identify controller names in URLs. The {id} element is a custom route element, and must be further clarified by
specifying a matching regular expression in the third parameter of connect().

CakePHP does not automatically produce lowercased and dashed URLs when using the {controller} parameter. If
you need this, the above example could be rewritten like so:

use Cake\Routing\Route\DashedRoute;

// Create a builder with a different route class.
$routes->scope('/', function (RouteBuilder $routes) {
$routes->setRouteClass(DashedRoute: :class);
$routes->connect('/{controller}/{id}', ['action' => 'view'])
->setPatterns(['id' => '[0-9]+']);

$routes->connect(
'/{controller}/{id}"',
['action' => 'view'],
['id" => "[0-9]+']
)
19K

The DashedRoute class will make sure that the {controller} and {plugin} parameters are correctly lowercased
and dashed.

Note: Patterns used for route elements must not contain any capturing groups. If they do, Router will not function
correctly.

Once this route has been defined, requesting /apples/5 would call the view () method of the ApplesController. Inside
the view() method, you would need to access the passed ID at $this->request->getParam('id").

If you have a single controller in your application and you do not want the controller name to appear in the URL, you
can map all URLSs to actions in your controller. For example, to map all URLSs to actions of the home controller, e.g
have URLs like /demo instead of /home/demo, you can do the following:

$routes->connect('/{action}', ['controller' => 'Home']);

If you would like to provide a case insensitive URL, you can use regular expression inline modifiers:

$routes->connect(

' /{userShortcut}',

['controller' => 'Teachers', 'action' => 'profile',K 1],
)->setPatterns(['userShortcut' => '(?i:principal)']);

One more example, and you’ll be a routing pro:

$routes->connect(
'/{controller}/{year}/{month}/{day}"',

(continues on next page)

206 Chapter 8. Routing

CakePHP Book, Release 4.x

(continued from previous page)
['action' => 'index']
)->setPatterns([
'year' => '[12][0-9]1{3}',
'month' => '0[1-9]|1[012]",
"day' => '0[1-9]|[12][0-9]|3[01]"
DN

This is rather involved, but shows how powerful routes can be. The URL supplied has four route elements. The first is
familiar to us: it’s a default route element that tells CakePHP to expect a controller name.
Next, we specify some default values. Regardless of the controller, we want the index () action to be called.

Finally, we specify some regular expressions that will match years, months and days in numerical form. Note that
parenthesis (capturing groups) are not supported in the regular expressions. You can still specify alternates, as above,
but not grouped with parenthesis.

Once defined, this route will match /articles/2007/02/01, /articles/2004/11/16, handing the requests to the
index () actions of their respective controllers, with the date parameters in $this->request->getParam().

Reserved Route Elements
There are several route elements that have special meaning in CakePHP, and should not be used unless you want the
special meaning

» controller Used to name the controller for a route.

* action Used to name the controller action for a route.

* plugin Used to name the plugin a controller is located in.

e prefix Used for Prefix Routing

e _ext Used for File extentions routing.

e _base Set to false to remove the base path from the generated URL. If your application is not in the root
directory, this can be used to generate URLs that are ‘cake relative’.

e _scheme Set to create links on different schemes like webcal or ftp. Defaults to the current scheme.
* _host Set the host to use for the link. Defaults to the current host.
e _port Set the port if you need to create links on non-standard ports.

e _full If true the value of App.fullBaseUrl mentioned in General Configuration will be prepended to gen-
erated URLs.

* # Allows you to set URL hash fragments.
e _https Set to true to convert the generated URL to https or false to force http. Prior to 4.5.0 use _ss1.
e _method Define the HTTP verb/method to use. Useful when working with RESTful Routing.

» _name Name of route. If you have setup named routes, you can use this key to specify it.

Connecting Routes 207

CakePHP Book, Release 4.x

Configuring Route Options

There are a number of route options that can be set on each route. After connecting a route you can use its fluent
builder methods to further configure the route. These methods replace many of the keys in the $options parameter of
connect():

$routes->connect(
'/{lang}/articles/{slug}’,
['controller' => 'Articles', 'action' => 'view'],
)
// Allow GET and POST requests.
->setMethods(['GET', 'POST'])

// Only match on the blog subdomain.
->setHost('blog.example.com")

// Set the route elements that should be converted to passed arguments
->setPass(['slug'])

// Set the matching patterns for route elements
->setPatterns([

'slug' => '[a-z0-9-_]+',

'lang' => 'en|fr|es',

D

// Also allow JSON file extensions
->setExtensions(['json'])

// Set lang to be a persistent parameter
->setPersist(['lang']);

Passing Parameters to Action

When connecting routes using Route Elements you may want to have routed elements be passed arguments instead.
The pass option indicates which route elements should also be made available as arguments passed into the controller
functions:

// src/Controller/BlogsController.php
public function view($articleId = null, $slug = null)
{

// Some code here...

¥

// routes.php
$routes->scope('/', function (RouteBuilder $routes) {
$routes->connect(
'/blog/{id}-{slug}', // For example, /blog/3-CakePHP_Rocks
['controller' => 'Blogs', 'action' => 'view']
)
// Define the route elements in the route template
// to prepend as function arguments. Order matters as this
// will pass the “$id" and "$slug™ elements as the first and

(continues on next page)

208 Chapter 8. Routing

CakePHP Book, Release 4.x

(continued from previous page)
// second parameters. Any additional passed parameters in your
// route will be added after the setPass() arguments.
->setPass(['id', 'slug'l])
// Define a pattern that ‘id must match.
->setPatterns([
'id' = '[0-9]+"',
D
s

Now thanks to the reverse routing capabilities, you can pass in the URL array like below and CakePHP will know how
to form the URL as defined in the routes:

// view.php
// This will return a link to /blog/3-CakePHP_Rocks
echo $this->Html->1ink('CakePHP Rocks', [
'controller' => 'Blog',
'action' => 'view',
'id' = 3,
'slug' => 'CakePHP_Rocks'
D;

// You can also used numerically indexed parameters.
echo $this->Html->link('CakePHP Rocks', [
'controller' => 'Blog’,
'action' => 'view',
3],
'CakePHP_Rocks'
D;

Using Path Routing

We talked about string targets above. The same also works for URL generation using Router: :pathUrl():

echo Router::pathUrl('Articles::index');
// outputs: /articles

echo Router::pathUrl('MyBackend.Admin/Articles::view', [3]);
// outputs: /admin/my-backend/articles/view/3

Tip: IDE support for Path Routing autocomplete can be enabled with CakePHP IdeHelper Plugin''®.

113 https://github.com/dereuromark/cakephp-ide-helper

Connecting Routes 209

https://github.com/dereuromark/cakephp-ide-helper

CakePHP Book, Release 4.x

Using Named Routes

Sometimes you’ll find typing out all the URL parameters for a route too verbose, or you’d like to take advantage of
the performance improvements that named routes have. When connecting routes you can specify a _name option, this
option can be used in reverse routing to identify the route you want to use:

// Connect a route with a name.

$routes->connect(
'/login',
['controller' => 'Users', 'action' => 'login'],
['_name' => 'login']

);

// Name a verb specific route

$routes->post(
'/logout',
['controller' => 'Users', 'action' => 'logout'],
'logout’

DE

// Generate a URL using a named route.
$url = Router::url(['_name' => 'logout']);

// Generate a URL using a named route,
// with some query string args.
$url = Router::url(['_name' => 'login', 'username' => 'jimmy']);

If your route template contains any route elements like {controller} you’ll need to supply those as part of the options
to Router: :url(Q).

Note: Route names must be unique across your entire application. The same _name cannot be used twice, even if the
names occur inside a different routing scope.

When building named routes, you will probably want to stick to some conventions for the route names. CakePHP
makes building up route names easier by allowing you to define name prefixes in each scope:

$routes->scope('/api', ['_namePrefix' => 'api:'], function (RouteBuilder $routes) {
// This route's name will be “api:ping’
$routes->get('/ping', ['controller' => 'Pings'], 'ping');

s

// Generate a URL for the ping route

Router::url(['_name' => 'api:ping']);

// Use namePrefix with plugin()
$routes->plugin('Contacts', ['_namePrefix' => 'contacts:'], function (RouteBuilder
—$routes) {

// Connect routes.

B;

// Or with prefix()
$routes->prefix('Admin', ['_namePrefix' => 'admin:'], function (RouteBuilder $routes) {
// Connect routes.

B;

210 Chapter 8. Routing

CakePHP Book, Release 4.x

You can also use the _namePrefix option inside nested scopes and it works as you’d expect:

$routes->plugin('Contacts', ['_namePrefix' => 'contacts:'], function (RouteBuilder
—$routes) {
$routes->scope('/api', ['_namePrefix' => 'api:'], function (RouteBuilder $routes) {
// This route's name will be ‘contacts:api:ping’
$routes->get('/ping', ['controller' => 'Pings'], 'ping');

s
b;

// Generate a URL for the ping route
Router::url(['_name' => 'contacts:api:ping']);

Routes connected in named scopes will only have names added if the route is also named. Nameless routes will not
have the _namePrefix applied to them.

Prefix Routing

static Cake\Routing\RouterBuilder: :prefix($name, $callback)

Many applications require an administration section where privileged users can make changes. This is often done
through a special URL such as /admin/users/edit/5. In CakePHP, prefix routing can be enabled by using the
prefix scope method:

use Cake\Routing\Route\DashedRoute;

$routes->prefix('Admin', function (RouteBuilder $routes) {
// All routes here will be prefixed with “/admin’, and
// have the “prefix' => 'Admin" route element added that
// will be required when generating URLs for these routes
$routes->fallbacks(DashedRoute: :class);

};

Prefixes are mapped to sub-namespaces in your application’s Controller namespace. By having prefixes as separate
controllers you can create smaller and simpler controllers. Behavior that is common to the prefixed and non-prefixed
controllers can be encapsulated using inheritance, Components, or traits. Using our users example, accessing the URL
/admin/users/edit/5 would call the edit () method of our src¢/Controller/Admin/UsersController.php passing
5 as the first parameter. The view file used would be templates/Admin/Users/edit.php

You can map the URL /admin to your index () action of pages controller using following route:

$routes->prefix('Admin', function (RouteBuilder $routes) {
// Because you are in the admin scope,
// you do not need to include the /admin prefix
// or the Admin route element.
$routes->connect('/', ['controller' => 'Pages', 'action' => 'index']);

B;

When creating prefix routes, you can set additional route parameters using the $options argument:

$routes->prefix('Admin', ['param' => 'value'], function (RouteBuilder $routes) {
// Routes connected here are prefixed with '/admin' and
// have the 'param' routing key set.
(continues on next page)

Connecting Routes 211

CakePHP Book, Release 4.x

(continued from previous page)

$routes->connect('/{controller}');

b;

Multi word prefixes are by default converted using dasherize inflection, ie MyPrefix would be mapped to my-prefix
in the URL. Make sure to set a path for such prefixes if you want to use a different format like for example underscoring:

$routes->prefix('MyPrefix', ['path' => '/my_prefix'], function (RouteBuilder $routes) {
// Routes connected here are prefixed with '/my_prefix'
$routes->connect('/{controller}');

B;

You can define prefixes inside plugin scopes as well:

$routes->plugin('DebugKit', function (RouteBuilder $routes) {
$routes->prefix('Admin', function (RouteBuilder $routes) {
$routes->connect('/{controller}');
s
s

The above would create a route template like /debug-kit/admin/{controller}. The connected route would have
the plugin and prefix route elements set.

When defining prefixes, you can nest multiple prefixes if necessary:

$routes->prefix('Manager', function (RouteBuilder $routes) {
$routes->prefix('Admin', function (RouteBuilder $routes) {
$routes->connect('/{controller}/{action}');
b
B

The above would create a route template like /manager/admin/{controller}/{action}. The connected route
would have the prefix route element set to Manager/Admin.

The current prefix will be available from the controller methods through $this->request->getParam('prefix')

When using prefix routes it’s important to set the prefix option, and to use the same CamelCased format that is used
in the prefix () method. Here’s how to build this link using the HTML helper:

// Go into a prefixed route.
echo $this->Html->1ink(
'Manage articles',
['prefix' => 'Manager/Admin', 'controller' => 'Articles', 'action' => 'add']

);

// Leave a prefix
echo $this->Html->1ink(
'View Post',
['prefix' => false, 'controller' => 'Articles', 'action' => 'view', 5]

);

212 Chapter 8. Routing

CakePHP Book, Release 4.x

Creating Links to Prefix Routes

You can create links that point to a prefix, by adding the prefix key to your URL array:

echo $this->Html->1link(
'New admin todo',
['prefix' => 'Admin', 'controller' => 'TodoItems', 'action' => 'create']

);
When using nesting, you need to chain them together:

echo $this->Html->1ink(
'New todo',
['prefix' => 'Admin/MyPrefix', 'controller' => 'TodoItems', 'action' => 'create'l]

);

This would link to a controller with the namespace App\\Controller\\Admin\\MyPrefix and the file path src/
Controller/Admin/MyPrefix/TodoItemsController.php.

Note: The prefix is always CamelCased here, even if the routing result is dashed. The route itself will do the inflection
if necessary.

Plugin Routing

static Cake\Routing\RouterBuilder::plugin($name, $options =[], $callback)

Routes for Plugins should be created using the plugin() method. This method creates a new routing scope for the
plugin’s routes:

$routes->plugin('DebugKit', function (RouteBuilder $routes) {
// Routes connected here are prefixed with '/debug-kit' and
// have the plugin route element set to DebugKit'.
$routes->connect('/{controller}');

b;

When creating plugin scopes, you can customize the path element used with the path option:

$routes->plugin('DebugKit', ['path' => '/debugger'], function (RouteBuilder $routes) {
// Routes connected here are prefixed with '/debugger' and
// have the plugin route element set to 'DebugKit'.
$routes->connect('/{controller}');

B;

When using scopes you can nest plugin scopes within prefix scopes:

$routes->prefix('Admin', function (RouteBuilder $routes) {
$routes->plugin('DebugKit', function (RouteBuilder $routes) {
$routes->connect('/{controller}');
B
s

The above would create a route that looks like /admin/debug-kit/{controller}. It would have the prefix, and
plugin route elements set. The Plugin Routes section has more information on building plugin routes.

Connecting Routes 213

CakePHP Book, Release 4.x

Creating Links to Plugin Routes

You can create links that point to a plugin, by adding the plugin key to your URL array:

echo $this->Html->1link(
'New todo',
['plugin' => 'Todo', 'controller' => 'TodoItems', 'action' => 'create']

);

Conversely if the active request is a plugin request and you want to create a link that has no plugin you can do the
following:

echo $this->Html->1ink(
'New todo',
['plugin' => null, 'controller' => 'Users', 'action' => 'profile']

s

By setting "plugin' => null you tell the Router that you want to create a link that is not part of a plugin.

SEO-Friendly Routing

Some developers prefer to use dashes in URLs, as it’s perceived to give better search engine rankings. The
DashedRoute class can be used in your application with the ability to route plugin, controller, and camelized action
names to a dashed URL.

For example, if we had a ToDo plugin, with a TodoItems controller, and a showItems () action, it could be accessed
at /to-do/todo-items/show-items with the following router connection:

use Cake\Routing\Route\DashedRoute;

$routes->plugin('ToDo', ['path' => 'to-do'], function (RouteBuilder $routes) {
$routes->fallbacks(DashedRoute::class);
IOK

Matching Specific HTTP Methods

Routes can match specific HTTP methods using the HTTP verb helper methods:

$routes->scope('/', function (RouteBuilder $routes) {
// This route only matches on POST requests.
$routes->post(
'/reviews/start',
['controller' => 'Reviews', 'action' => 'start']

)N

// Match multiple verbs
$routes->connect(
'/reviews/start',
[
'controller' => 'Reviews',
'action' => 'start',

(continues on next page)

214 Chapter 8. Routing

CakePHP Book, Release 4.x

(continued from previous page)

)->setMethods(['POST', 'PUT']);
9N

You can match multiple HTTP methods by using an array. Because the _method parameter is a routing key, it partic-
ipates in both URL parsing and URL generation. To generate URLs for method specific routes you’ll need to include
the _method key when generating the URL:

$url = Router::url([
'controller' => 'Reviews',
'action' => 'start',
'_method' => 'POST',

D

Matching Specific Hosthames

Routes can use the _host option to only match specific hosts. You can use the *. wildcard to match any subdomain:

$routes->scope('/', function (RouteBuilder $routes) {
// This route only matches on http://images.example.com
$routes->connect (
'/images/default-logo.png',
['controller' => 'Images', 'action' => 'default']
)->setHost('images.example.com');

// This route only matches on http://*.example.com
$routes->connect(

'/images/old-log.png',

['controller' => 'Images', 'action' => 'oldLogo']
)->setHost('*.example.com');

b;

The _host option is also used in URL generation. If your _host option specifies an exact domain, that domain will
be included in the generated URL. However, if you use a wildcard, then you will need to provide the _host parameter
when generating URLSs:

// If you have this route
$routes->connect(

'/images/old-log.png',

['controller' => 'Images', 'action' => 'oldLogo']
)->setHost('images.example.com');

// You need this to generate a url
echo Router: :url([
'controller' => 'Images',
'action' => 'oldLogo',
'_host' => 'images.example.com',

D;

Connecting Routes 215

CakePHP Book, Release 4.x

Routing File Extensions

static Cake\Routing\RouterBuilder::extensions (string|array|null $extensions, $merge = true)

To handle different file extensions in your URLs, you can define the extensions using the Cake\Routing\
RouteBuilder: :setExtensions() method:

$routes->scope('/', function (RouteBuilder S$routes) {
$routes->setExtensions(['json', 'xml']);

b;

This will enable the named extensions for all routes that are being connected in that scope after the setExtensions()
call, including those that are being connected in nested scopes.

Note: Setting the extensions should be the first thing you do in a scope, as the extensions will only be applied to routes
connected after the extensions are set.

Also be aware that re-opened scopes will not inherit extensions defined in previously opened scopes.

By using extensions, you tell the router to remove any matching file extensions from the URL, and then parse what
remains. If you want to create a URL such as /page/title-of-page.html you would create your route using:

$routes->scope('/page', function (RouteBuilder $routes) {

$routes->setExtensions(['json', 'xml', 'html']);
$routes->connect(

'/{title}"',

['controller' => 'Pages', 'action' => 'view']

)->setPass(['title']);
s

Then to create links which map back to the routes simply use:

$this->Html->1ink(

'Link title',

['controller' => 'Pages', 'action' => 'view', 'title' => 'super-article',
< 'html"']
);

File extensions are used by Request Handling to do automatic view switching based on content types.

Route Scoped Middleware

While Middleware can be applied to your entire application, applying middleware to specific routing scopes offers more
flexibility, as you can apply middleware only where it is needed allowing your middleware to not concern itself with
how/where it is being applied.

Note: Applied scoped middleware will be run by RoutingMiddleware, normally at the end of your application’s
middleware queue.

Before middleware can be applied to a scope, it needs to be registered into the route collection:

216 Chapter 8. Routing

CakePHP Book, Release 4.x

// in config/routes.php
use Cake\Http\Middleware\CsrfProtectionMiddleware;
use Cake\Http\Middleware\EncryptedCookieMiddleware;

$routes->registerMiddleware('csrf', new CsrfProtectionMiddleware());
$routes->registerMiddleware('cookies', new EncryptedCookieMiddleware());

Once registered, scoped middleware can be applied to specific scopes:

$routes->scope('/cms', function (RouteBuilder $routes) {
// Enable CSRF & cookies middleware
$routes->applyMiddleware('csrf', 'cookies');
$routes->get('/articles/{action}/*', ['controller' => 'Articles']);

B;

In situations where you have nested scopes, inner scopes will inherit the middleware applied in the containing scope:

$routes->scope('/api', function (RouteBuilder $routes) {
$routes->applyMiddleware('ratelimit', 'auth.api');
$routes->scope('/vl', function (RouteBuilder S$routes) {
$routes->applyMiddleware('vlicompat');
// Define routes here.
B;
s

In the above example, the routes defined in /v1 will have ‘ratelimit’, ‘auth.api’, and ‘vlcompat’ middleware applied.
If you re-open a scope, the middleware applied to routes in each scope will be isolated:

$routes->scope('/blog', function (RouteBuilder $routes) {
$routes->applyMiddleware('auth');
// Connect the authenticated actions for the blog here.

s

$routes->scope('/blog', function (RouteBuilder $routes) {
// Connect the public actions for the blog here.

9K

In the above example, the two uses of the /blog scope do not share middleware. However, both of these scopes will
inherit middleware defined in their enclosing scopes.

Grouping Middleware

To help keep your route code DRY (Do not Repeat Yourself) middleware can be combined into groups. Once combined
groups can be applied like middleware can:

$routes->registerMiddleware('cookie', new EncryptedCookieMiddleware());
$routes->registerMiddleware('auth', new AuthenticationMiddleware());
$routes->registerMiddleware('csrf', new CsrfProtectionMiddleware());
$routes->middlewareGroup('web', ['cookie', 'auth', 'csrf']);

// Apply the group
$routes->applyMiddleware('web');

Route Scoped Middleware 217

CakePHP Book, Release 4.x

RESTful Routing

Router helps generate RESTful routes for your controllers. RESTful routes are helpful when you are creating API
endpoints for your application. If we wanted to allow REST access to a recipe controller, we’d do something like this:

// In config/routes.php...

$routes->scope('/', function (RouteBuilder $routes) {
$routes->setExtensions(['json']);
$routes->resources('Recipes');

B;

The first line sets up a number of default routes for REST access where method specifies the desired result format, for

example, xml, json and rss. These routes are HTTP Request Method sensitive.

HTTP format URL.format Controller action invoked
GET /recipes.format RecipesController::index()
GET /recipes/123.format RecipesController::view(123)
POST /recipes.format RecipesController::add()

PUT /recipes/123.format RecipesController::edit(123)
PATCH /recipes/123.format RecipesController::edit(123)
DELETE /recipes/123.format RecipesController::delete(123)

Note: The default for pattern for resource IDs only matches integers or UUIDs. If your IDs are different you will have
to supply a regular expression pattern via the id option, for example, $builder->resources('Recipes', ['id'

= .

The HTTP method being used is detected from a few different sources. The sources in order of preference are:
1. The _method POST variable
2. The X_HTTP_METHOD_OVERRIDE header.
3. The REQUEST_METHOD header

The _method POST variable is helpful in using a browser as a REST client (or anything else that can do POST). Just
set the value of _method to the name of the HTTP request method you wish to emulate.

Creating Nested Resource Routes

Once you have connected resources in a scope, you can connect routes for sub-resources as well. Sub-resource routes
will be prepended by the original resource name and a id parameter. For example:

$routes->scope('/api', function (RouteBuilder $routes) {
$routes->resources('Articles', function (RouteBuilder $routes) {
$routes->resources('Comments');
B;
9N

Will generate resource routes for both articles and comments. The comments routes will look like:

218 Chapter 8. Routing

CakePHP Book, Release 4.x

/api/articles/{article_id}/comments
/api/articles/{article_id}/comments/{id}

You can get the article_id in CommentsController by:

$this->request->getParam('article_id');

By default resource routes map to the same prefix as the containing scope. If you have both nested and non-nested
resource controllers you can use a different controller in each context by using prefixes:

$routes->scope('/api', function (RouteBuilder $routes) {
$routes->resources('Articles', function (RouteBuilder $routes) {
$routes->resources('Comments', ['prefix' => 'Articles']);
B
9N

The above would map the ‘Comments’ resource to the App\Controller\Articles\CommentsController. Having
separate controllers lets you keep your controller logic simpler. The prefixes created this way are compatible with Prefix
Routing.

Note: While you can nest resources as deeply as you require, it is not recommended to nest more than 2 resources
together.

Limiting the Routes Created

By default CakePHP will connect 6 routes for each resource. If you’d like to only connect specific resource routes you
can use the only option:

$routes->resources('Articles', [
'only' => ['index', 'view']
D;

Would create read only resource routes. The route names are create, update, view, index, and delete.

The default route name and controller action used are as follows:

Route name Controller action used

create add
update edit
view view
index index
delete delete

RESTful Routing 219

CakePHP Book, Release 4.x

Changing the Controller Actions Used

You may need to change the controller action names that are used when connecting routes. For example, if your edit ()
action is called put () you can use the actions key to rename the actions used:

$routes->resources('Articles', [
'actions' => ['update' => 'put', 'create' => 'add'l]

D;

The above would use put () for the edit () action, and add() instead of create().

Mapping Additional Resource Routes

You can map additional resource methods using the map option:

$routes->resources('Articles', [
'map' => [
'deleteAll' => [
'action' => 'deleteAll',
'method' => 'DELETE'

]
D;
// This would connect /articles/deleteAll

In addition to the default routes, this would also connect a route for /articles/delete-all. By default the path segment
will match the key name. You can use the ‘path’ key inside the resource definition to customize the path name:

$routes->resources('Articles', [
'map' => [
'updateAll' => [
'action' => 'updateAll',
'method' => 'PUT',
'path' => '/update-many'
g
]
D
// This would connect /articles/update-many

If you define ‘only’ and ‘map’, make sure that your mapped methods are also in the ‘only’ list.

Prefixed Resource Routing

Resource routes can be connected to controllers in routing prefixes by connecting routes within a prefixed scope or by
using the prefix option

$routes->resources('Articles', [
'prefix' => "Api',

D;

220 Chapter 8. Routing

CakePHP Book, Release 4.x

Custom Route Classes for Resource Routes

You can provide connectOptions key in the $options array for resources() to provide custom setting used by
connect():

$routes->scope('/', function (RouteBuilder S$routes) {
$routes->resources('Books', [
'connectOptions' => [
'routeClass' => 'ApiRoute',
]
1;
s

URL Inflection for Resource Routes
By default, multi-worded controllers’ URL fragments are the dashed form of the controller’s name. For example,
BlogPostsController’s URL fragment would be /blog-posts.

You can specify an alternative inflection type using the inflect option:

$routes->scope('/', function (RouteBuilder $routes) {
$routes->resources('BlogPosts’', [
'inflect' => 'underscore' // Will use “‘Inflector: :underscore()"
D;
s

The above will generate URLSs styled like: /blog_posts.

Changing the Path Element

By default resource routes use an inflected form of the resource name for the URL segment. You can set a custom URL
segment with the path option:

$routes->scope('/', function (RouteBuilder $routes) {
$routes->resources('BlogPosts', ['path' => 'posts']);

B;

Passed Arguments

Passed arguments are additional arguments or path segments that are used when making a request. They are often used
to pass parameters to your controller methods.

http://localhost/calendars/view/recent/mark

In the above example, both recent and mark are passed arguments to CalendarsController: :view(). Passed
arguments are given to your controllers in three ways. First as arguments to the action method called, and secondly
they are available in $this->request->getParam('pass') as a numerically indexed array. When using custom
routes you can force particular parameters to go into the passed arguments as well.

If you were to visit the previously mentioned URL, and you had a controller action that looked like:

Passed Arguments 221

CakePHP Book, Release 4.x

class CalendarsController extends AppController

{
public function view($argl, $arg2)
{
debug(func_get_args());
3
}

You would get the following output:

Array

(
[0] => recent
[1] => mark

)

This same data is also available at $this->request->getParam('pass') in your controllers, views, and helpers.
The values in the pass array are numerically indexed based on the order they appear in the called URL:

debug($this->request->getParam('pass'));

Either of the above would output:

Array

(

[0] => recent
[1] => mark

When generating URLSs, using a routing array you add passed arguments as values without string keys in the array:

['controller' => 'Articles', 'action' => 'view', 5]

Since 5 has a numeric key, it is treated as a passed argument.

Generating URLs

static Cake\Routing\RouterBuilder: :url($url = null, $full = false)
static Cake\Routing\RouterBuilder::reverse(8params, $full = false)

Generating URLSs or Reverse routing is a feature in CakePHP that is used to allow you to change your URL structure
without having to modify all your code.

If you create URLSs using strings like:

$this->Html->link('View', '/articles/view/' . $id);

And then later decide that /articles should really be called ‘posts’ instead, you would have to go through your entire
application renaming URLs. However, if you defined your link like:

//"1ink ()" uses Router::url() internally and accepts a routing array

(continues on next page)

222 Chapter 8. Routing

CakePHP Book, Release 4.x

(continued from previous page)
$this->Html->1ink(
'View',
['controller' => 'Articles', 'action' => 'view',6 $id]

);
or:

//'Router: :reverse()' operates on the request parameters array
//and will produce a url string, valid input for ‘link()"

$requestParams = Router::getRequest()->getAttribute('params');
$this->Html->1link('View', Router::reverse($requestParams));

Then when you decided to change your URLSs, you could do so by defining a route. This would change both the
incoming URL mapping, as well as the generated URLSs.

The choice of technique is determined by how well you can predict the routing array elements.

Using Router: :url()

Router: :url() allows you to use routing arrays in situations where the array elements required are fixed or easily
deduced.

It will provide reverse routing when the destination url is well defined:

$this->Html->1ink(
'View',
['controller' => 'Articles', 'action' => 'view', $id]
)3
It is also useful when the destination is unknown but follows a well defined pattern:
$this->Html->1ink(
"View',

['controller' => $controller, 'action' => 'view',6 $id]

);

Elements with numeric keys are treated as Passed Arguments.

When using routing arrays, you can define both query string parameters and document fragments using special keys:

$routes->url ([
'controller' => 'Articles',
'action' => 'index',
'?' => ['page' => 1],
"#' => "top'
D;

// Will generate a URL like.
/articles/index?page=1#top

You can also use any of the special route elements when generating URLSs:

» _ext Used for Routing File Extensions routing.

Generating URLs 223

CakePHP Book, Release 4.x

* _base Set to false to remove the base path from the generated URL. If your application is not in the root
directory, this can be used to generate URLs that are ‘cake relative’.

¢ _scheme Set to create links on different schemes like webcal or ftp. Defaults to the current scheme.
¢ _host Set the host to use for the link. Defaults to the current host.

* _port Set the port if you need to create links on non-standard ports.

e _method Define the HTTP verb the URL is for.

e _full If true the value of App. fullBaseUrl mentioned in General Configuration will be prepended to gen-
erated URLs.

e _https Set to true to convert the generated URL to https or false to force http. Prior to 4.5.0 use _ssl

* _name Name of route. If you have setup named routes, you can use this key to specify it.

Using Router: :reverse()

Router: :reverse() allows you to use the Request Parameters in cases where the current URL with some modification
is the basis for the destination and the elements of the current URL are unpredictable.

As an example, imagine a blog that allowed users to create Articles and Comments, and to mark both as either pub-
lished or draft. Both the index page URLs might include the user id. The Comments URL might also include an
article id to identify what article the comment refers to.

Here are urls for this scenario:

/articles/index/42
/comments/index/42/18

When the author uses these pages, it would be convenient to include links that allow the page to be displayed with all
results, published only, or draft only.

To keep the code DRY, it would be best to include the links through an element:

// element/filter_published.php
$params = $this->getRequest()->getAttribute('params');

/* prepare url for Draft */
$params = Hash::insert($params, '?.published', 0);
echo $this->Html->link(__('Draft'), Router::reverse($params));

/* Prepare url for Published */
$params = Hash::insert($params, '?.published', 1);
echo $this->Html->1link(__('Published'), Router::reverse($params));

/* Prepare url for All */
$params = Hash::remove($params, '?.published');
echo $this->Html->1link(__('All'), Router::reverse($params));

The links generated by these method calls would include one or two pass parameters depending on the structure of the
current URL. And the code would work for any future URL, for example, if you started using pathPrefixes or if you
added more pass parameters.

224 Chapter 8. Routing

CakePHP Book, Release 4.x

Routing Arrays vs Request Parameters

The significant difference between the two arrays and their use in these reverse routing methods is in the way they
include pass parameters.

Routing arrays include pass parameters as un-keyed values in the array:
$url = [

'controller' => 'Articles',

'action' => 'View',

$id, //a pass parameter

'page' => 3, //a query argument

1;
Request parameters include pass parameters on the ‘pass’ key of the array:

$url = [

'controller' => 'Articles',

'action' => 'View',

'pass' => [$id], //the pass parameters

'?' => ['page' => 3], //the query arguments
1;

So it is possible, if you wish, to convert the request parameters into a routing array or vice versa.

Generating Asset URLs

The Asset class provides methods for generating URLSs to your application’s css, javascript, images and other static
asset files:

use Cake\Routing\Asset;

// Generate a URL to APP/webroot/js/app.js
$js = Asset::scriptUrl('app.js');

// Generate a URL to APP/webroot/css/app.css
$css = Asset::cssUrl('app.css');

// Generate a URL to APP/webroot/image/logo.png
$img = Asset::imageUrl('logo.png');

// Generate a URL to APP/webroot/files/upload/photo.png
$file = Asset::url('files/upload/photo.png');
The above methods also accept an array of options as their second parameter:
» fullBase Append the full URL with domain name.
e pathPrefix Path prefix for relative URLs.
e plugin’ You can provide false" to prevent paths from being treated as a plugin asset.

* timestamp Overrides the value of Asset.timestamp in Configure. Set to false to skip timestamp generation.
Set to true to apply timestamps when debug is true. Set to ' force' to always enable timestamping regardless
of debug value.

Generating Asset URLs 225

CakePHP Book, Release 4.x

// Generates http://example.org/img/logo.png
$img = Asset::url('logo.png', ['fullBase' => true]);

// Generates /img/logo.png?1568563625
// Where the timestamp is the last modified time of the file.
$img = Asset::url('logo.png', ['timestamp' => true]);

To generate asset URLSs for files in plugins use plugin syntax:

// Generates "/debug_kit/img/cake.png"
$img = Asset::imageUrl('DebugKit.cake.png');

Redirect Routing

Redirect routing allows you to issue HTTP status 30x redirects for incoming routes, and point them at different URLSs.
This is useful when you want to inform client applications that a resource has moved and you don’t want to expose two
URLS for the same content.

Redirection routes are different from normal routes as they perform an actual header redirection if a match is found.
The redirection can occur to a destination within your application or an outside location:

$routes->scope('/', function (RouteBuilder S$routes) {
$routes->redirect(
' /home/* ",
['controller' => 'Articles', 'action' => 'view'],
['persist' => truel]
// Or ['persist'=>['id']] for default routing where the
// view action expects $id as an argument.
D
B

Redirects /home/* to /articles/view and passes the parameters to /articles/view. Using an array as the redirect
destination allows you to use other routes to define where a URL string should be redirected to. You can redirect to
external locations using string URLSs as the destination:

$routes->scope('/', function (RouteBuilder S$routes) {
$routes->redirect('/articles/*', 'https://google.com', ['status' => 302]);
9K

This would redirect /articles/* to https://google.com with a HTTP status of 302.

Entity Routing

Entity routing allows you to use an entity, an array or object implement ArrayAccess as the source of routing param-
eters. This allows you to refactor routes more easily, and generate URLs with less code. For example, if you start off
with a route that looks like:

$routes->get(
'/view/{id}"',
['controller' => 'Articles', 'action' => 'view'],

(continues on next page)

226 Chapter 8. Routing

CakePHP Book, Release 4.x

(continued from previous page)

'articles:view'

)3
You can generate URLS to this route using:

// $article is an entity in the local scope.
Router::url(['_name' => 'articles:view', 'id' => S$article->id]);

Later on, you may want to expose the article slug in the URL for SEO purposes. In order to do this you would need
to update everywhere you generate a URL to the articles:view route, which could take some time. If we use entity
routes we pass the entire article entity into URL generation allowing us to skip any rework when URLs require more
parameters:

use Cake\Routing\Route\EntityRoute;

// Create entity routes for the rest of this scope.
$routes->setRouteClass(EntityRoute::class);

// Create the route just like before.

$routes->get(
"/view/{id}/{slug}",
['controller' => 'Articles', 'action' => 'view'],
'articles:view'

)3
Now we can generate URLs using the _entity key:

Router::url(['_name' => 'articles:view', '_entity' => S$article]);

This will extract both the id property and the slug property out of the provided entity.

Custom Route Classes

Custom route classes allow you to extend and change how individual routes parse requests and handle reverse routing.
Route classes have a few conventions:

* Route classes are expected to be found in the Routing\\Route namespace of your application or plugin.
¢ Route classes should extend Cake\Routing\Route\Route.
* Route classes should implement one or both of match() and/or parse().

The parse () method is used to parse an incoming URL. It should generate an array of request parameters that can be
resolved into a controller & action. Return null from this method to indicate a match failure.

The match () method is used to match an array of URL parameters and create a string URL. If the URL parameters do
not match the route false should be returned.

You can use a custom route class when making a route by using the routeClass option:

$routes->connect(
"/{slug}’,
['controller' => 'Articles', 'action' => 'view'],
['routeClass' => 'SlugRoute']
(continues on next page)

Custom Route Classes 227

CakePHP Book, Release 4.x

(continued from previous page)

);

// Or by setting the routeClass in your scope.
$routes->scope('/', function (RouteBuilder S$routes) {
$routes->setRouteClass('SlugRoute');
$routes->connect(
'/{slug}’,
['controller' => 'Articles', 'action' => 'view']
s
s

This route would create an instance of SlugRoute and allow you to implement custom parameter handling. You can
use plugin route classes using standard plugin syntax.

Default Route Class

static Cake\Routing\RouterBuilder: :setRouteClass ($routeClass = null)

If you want to use an alternate route class for your routes besides the default Route, you can do so by calling
RouterBuilder: :setRouteClass() before setting up any routes and avoid having to specify the routeClass op-
tion for each route. For example using:

use Cake\Routing\Route\DashedRoute;
$routes->setRouteClass(DashedRoute: :class);

will cause all routes connected after this to use the DashedRoute route class. Calling the method without an argument
will return current default route class.

Fallbacks Method

Cake\Routing\RouterBuilder: : fallbacks ($routeClass = null)

The fallbacks method is a simple shortcut for defining default routes. The method uses the passed routing class for the
defined rules or if no class is provided the class returned by RouterBuilder: :setRouteClass() is used.

Calling fallbacks like so:

use Cake\Routing\Route\DashedRoute;
$routes->fallbacks(DashedRoute::class);

Is equivalent to the following explicit calls:

use Cake\Routing\Route\DashedRoute;

$routes->connect('/{controller}', ['action' => 'index'], ['routeClass' =>,
—DashedRoute: :class]);
$routes->connect('/{controller}/{action}/*', [], ['routeClass' => DashedRoute::class]);

228 Chapter 8. Routing

CakePHP Book, Release 4.x

Note: Using the default route class (Route) with fallbacks, or any route with {plugin} and/or {controller} route
elements will result in inconsistent URL case.

Creating Persistent URL Parameters

You can hook into the URL generation process using URL filter functions. Filter functions are called before the URLs
are matched against the routes, this allows you to prepare URLs before routing.

Callback filter functions should expect the following parameters:

* $params The URL parameter array being processed.

* $request The current request (Cake\Http\ServerRequest instance).
The URL filter function should a/ways return the parameters even if unmodified.

URL filters allow you to implement features like persistent parameters:

Router::addUrlFilter(function (array $params, ServerRequest S$request) {
if ($request->getParam('lang') && !isset($params['lang'])) {
$params['lang'] = $request->getParam('lang');
}
return $params;

b;

Filter functions are applied in the order they are connected.

Another use case is changing a certain route on runtime (plugin routes for example):

Router::addUrlFilter(function (array $params, ServerRequest S$request) {
if (empty($params['plugin']) || $params['plugin'] !== 'MyPlugin' || empty($params[
—'controller'])) {
return $params;

}
if ($params['controller'] === 'Languages' && $params['action'] === 'view') {
$params['controller'] = 'Locations';
$params['action'] = 'index';
$params['language'] = $params[0];
unset ($params[0]);
}

return $params;

B;

This will alter the following route:

Router::url(['plugin' => 'MyPlugin', 'controller' => 'Languages', 'action' => 'view', 'es
<'1);

into this:

Router::url(['plugin' => 'MyPlugin', 'controller' => 'Locations', 'action' => 'index',

— 'language' => 'es']);

Creating Persistent URL Parameters 229

CakePHP Book, Release 4.x

Warning: If you are using the caching features of routing-middleware you must define the URL filters in your
application bootstrap() as filters are not part of the cached data.

230 Chapter 8. Routing

CHAPTER 9

Request & Response Objects

The request and response objects provide an abstraction around HTTP requests and responses. The request object in
CakePHP allows you to introspect an incoming request, while the response object allows you to effortlessly create
HTTP responses from your controllers.

Request

class Cake\Http\ServerRequest

ServerRequest is the default request object used in CakePHP. It centralizes a number of features for interrogating
and interacting with request data. On each request one Request is created and then passed by reference to the various
layers of an application that use request data. By default the request is assigned to $this->request, and is available
in Controllers, Cells, Views and Helpers. You can also access it in Components using the controller reference.

Changed in version 4.4.0: The ServerRequest is available via DI. So you can get it from container or use it as a
dependency for your service.

Some of the duties ServerRequest performs include:
* Processing the GET, POST, and FILES arrays into the data structures you are familiar with.

* Providing environment introspection pertaining to the request. Information like the headers sent, the client’s IP
address, and the subdomain/domain names the server your application is running on.

 Providing access to request parameters both as array indexes and object properties.

CakePHP’s request object implements the PSR-7 ServerRequestInterface''*

side of CakePHP.

making it easier to use libraries from out-

114 https://www.php-fig.org/pst/pst-7/

231

https://www.php-fig.org/psr/psr-7/

CakePHP Book, Release 4.x

Request Parameters

The request exposes routing parameters through the getParam() method:

$controllerName = $this->request->getParam('controller');

To get all routing parameters as an array use getAttribute():

$parameters = $this->request->getAttribute('params');

All Route Elements are accessed through this interface.

In addition to Route Elements, you also often need access to Passed Arguments. These are both available on the request
object as well:

// Passed arguments
$passedArgs = $this->request->getParam('pass');

Will all provide you access to the passed arguments. There are several important/useful parameters that CakePHP uses
internally, these are also all found in the routing parameters:

* plugin The plugin handling the request. Will be null when there is no plugin.
» controller The controller handling the current request.
e action The action handling the current request.

» prefix The prefix for the current action. See Prefix Routing for more information.

Query String Parameters

Cake\Http\ServerRequest: :getQuery ($name, $default = null)
Query string parameters can be read using the getQuery () method:

// URL is /posts/index?page=1&sort=title
$page = $this->request->getQuery('page');

You can either directly access the query property, or you can use getQuery () method to read the URL query array in
an error-free manner. Any keys that do not exist will return null:

$foo = $this->request->getQuery('value_that_does_not_exist');
// $foo === null

// You can also provide default values
$foo = $this->request->getQuery('does_not_exist', 'default val');

If you want to access all the query parameters you can use getQueryParams():

$query = $this->request->getQueryParams();

232 Chapter 9. Request & Response Objects

CakePHP Book, Release 4.x

Request Body Data

Cake\Http\ServerRequest: :getData($name, $default = null)

All POST data normally available through PHP’s $_POST global variable can be accessed using Cake\Http\
ServerRequest: :getData(). For example:

// An input with a name attribute equal to 'title' is accessible at
$title = $this->request->getData('title');

You can use a dot separated names to access nested data. For example:

$value = $this->request->getData('address.street_name');

For non-existent names the $default value will be returned:

$foo = $this->request->getData('value.that.does.not.exist');
// $foo == null

You can also use body-parser-middleware to parse request body of different content types into an array, so that it’s
accessible through ServerRequest::getData().

If you want to access all the data parameters you can use getParsedBody():

$data = $this->request->getParsedBody();

File Uploads

Uploaded files can be accessed through the request body data, using the Cake\Http\ServerRequest: :getData()
method described above. For example, a file from an input element with a name attribute of attachment, can be
accessed like this:

$attachment = $this->request->getData('attachment');

By default file wuploads are represented in the request data as objects that implement
\Psr\Http\Message\UploadedFileInterface' . In the current implementation, the $attachment variable in the
above example would by default hold an instance of \Laminas\Diactoros\UploadedFile.

Accessing the uploaded file details is fairly simple, here’s how you can obtain the same data as provided by the old style
file upload array:

$name = $attachment->getClientFilename();

$type = $attachment->getClientMediaType();

$size = $attachment->getSize();

$tmpName = $attachment->getStream()->getMetadata('uri');
$error = $attachment->getError();

Moving the uploaded file from its temporary location to the desired target location, doesn’t require manually accessing
the temporary file, instead it can be easily done by using the objects moveTo () method:

$attachment->moveTo($targetPath);

115 https://www.php-fig.org/pst/pst-7/#16-uploaded-files

Request 233

https://www.php-fig.org/psr/psr-7/#16-uploaded-files

CakePHP Book, Release 4.x

In an HTTP environment, the moveTo () method will automatically validate whether the file is an actual uploaded file,
and throw an exception in case necessary. In an CLI environment, where the concept of uploading files doesn’t exist, it
will allow to move the file that you’ve referenced irrespective of its origins, which makes testing file uploads possible.

In order to switch back to using file upload arrays instead, set the configuration value App .uploadedFilesAsObjects
to false, for example in your config/app . php file:

return [
Y/
"App' = [
/) ...
'uploadedFilesAsObjects' => false,
1,
Y/
1;

With the option disabled, the file uploads are represented in the request data as arrays, with a normalized structure
that remains the same even for nested inputs/names, which is different from how PHP represents them in the $_FILES
superglobal (refer to the PHP manual''® for more information), ie the $attachment value would look something like
this:

L
'name' => 'attachment.txt',
"type' => 'text/plain’,
'size' => 123,
"tmp_name' => '/tmp/hfz6dbn.tmp"'
'error' => 0
]
Tip: Uploaded files can also be accessed as objects separately from the request data via the Cake\

Http\ServerRequest: :getUploadedFile() and Cake\Http\ServerRequest: :getUploadedFiles() meth-
ods. These methods will always return objects, irrespectively of the App.uploadedFilesAsObjects configuration.

Cake\Http\ServerRequest: :getUploadedFile ($path)

Returns the uploaded file at a specific path. The path uses the same dot syntax as the Cake\Http)\
ServerRequest: :getData() method:

$attachment = $this->request->getUploadedFile('attachment');

Unlike Cake\Http\ServerRequest::getData(), Cake\Http\ServerRequest::getUploadedFile() would
only return data when an actual file upload exists for the given path, if there is regular, non-file request body data
present at the given path, then this method will return null, just like it would for any non-existent path.

Cake\Http\ServerRequest: :getUploadedFiles()

Returns all uploaded files in a normalized array structure. For the above example with the file input name of
attachment, the structure would look like:

[
'attachment' => object(Laminas\Diactoros\UploadedFile) {

/).

(continues on next page)

116 https://www.php.net/manual/en/features.file-upload.php

234 Chapter 9. Request & Response Objects

https://www.php.net/manual/en/features.file-upload.php

CakePHP Book, Release 4.x

(continued from previous page)

]

Cake\Http\ServerRequest: :withUploadedFiles (array $files)

This method sets the uploaded files of the request object, it accepts an array of objects that implement
\Psr\Http\Message\UploadedFileInterface''”. It will replace all possibly existing uploaded files:

$files = [
'MyModel' => [
'attachment' => new \Laminas\Diactoros\UploadedFile(
$streamOrFile,
$size,
$errorStatus,
$clientFilename,
$clientMediaType
)
"anotherAttachment' => new \Laminas\Diactoros\UploadedFile(
'/tmp/hfz6dbn. tmp"',
123,
\UPLOAD_ERR_OK,
'attachment.txt',
'text/plain’

1,
1l

$this->request = $this->request->withUploadedFiles($files);

Note: Uploaded files that have been added to the request via this method, will not be available in the request
body data, ie you cannot retrieve them via Cake\Http\ServerRequest::getData()! If you need them in the
request data (too), then you have to set them via Cake\Http\ServerRequest::withData() or Cake\Http\
ServerRequest: :withParsedBody ().

PUT, PATCH or DELETE Data

Cake\Http\ServerRequest::input($caﬂback[,$0pﬁ0ns])

When building REST services, you often accept request data on PUT and DELETE requests. Any application/
x-www-form-urlencoded request body data will automatically be parsed and set to $this->data for PUT and
DELETE requests. If you are accepting JSON or XML data, see below for how you can access those request bodies.

When accessing the input data, you can decode it with an optional function. This is useful when interacting with
XML or JSON request body content. Additional parameters for the decoding function can be passed as arguments to
input():

$jsonData = $this->request->input('json_decode');

7 https://www.php-fig.org/pst/pst-7/#16-uploaded-files

Request 235

https://www.php-fig.org/psr/psr-7/#16-uploaded-files

CakePHP Book, Release 4.x

Environment Variables (from $_SERVER and $_ENV)

Cake\Http\ServerRequest: :putenv($key, $value = null)

ServerRequest::getEnv() is a wrapper for getenv() global function and acts as a getter/setter for environment
variables without having to modify globals $_SERVER and $_ENV:

// Get the host
$host = $this->request->getEnv('HTTP_HOST');

// Set a value, generally helpful in testing.
$this->request->withEnv('REQUEST_METHOD', 'POST');

To access all the environment variables in a request use getServerParams():

$env = $this->request->getServerParams();

XML or JSON Data

Applications employing REST often exchange data in non-URL-encoded post bodies. You can read input data in any
format using input (). By providing a decoding function, you can receive the content in a deserialized format:

// Get JSON encoded data submitted to a PUT/POST action
$jsonData = $this->request->input('json_decode');

Some deserializing methods require additional parameters when called, such as the ‘as array’ parameter on
json_decode. If you want XML converted into a DOMDocument object, input () supports passing in additional
parameters as well:

// Get XML encoded data submitted to a PUT/POST action
$data = $this->request->input('Cake\Utility\Xml::build', ['return' => 'domdocument']);

Path Information

The request object also provides useful information about the paths in your application. The base and webroot
attributes are useful for generating URLs, and determining whether or not your application is in a subdirectory. The
attributes you can use are:

// Assume the current request URL is /subdir/articles/edit/1?page=1

// Holds /subdir/articles/edit/1?page=1
$here = $request->getRequestTarget();

// Holds /subdir
$base = $request->getAttribute('base');

// Holds /subdir/
$base = $request->getAttribute('webroot');

236 Chapter 9. Request & Response Objects

CakePHP Book, Release 4.x

Checking Request Conditions

Cake\Http\ServerRequest: :is($type, $args...)

The request object provides a way to inspect certain conditions in a given request. By using the is() method you can
check a number of common conditions, as well as inspect other application specific request criteria:

$isPost = $this->request->is('post');

You can also extend the request detectors that are available, by using Cake\Http\ServerRequest: :addDetector ()
to create new kinds of detectors. There are different types of detectors that you can create:

Environment value comparison - Compares a value fetched from env () for equality with the provided value.
Header value comparison - If the specified header exists with the specified value, or if the callable returns true.

Pattern value comparison - Pattern value comparison allows you to compare a value fetched from env() to a
regular expression.

Option based comparison - Option based comparisons use a list of options to create a regular expression. Sub-
sequent calls to add an already defined options detector will merge the options.

Callback detectors - Callback detectors allow you to provide a ‘callback’ type to handle the check. The callback
will receive the request object as its only parameter.

Cake\Http\ServerRequest: :addDetector ($name, $options)

Some examples would be:

// Add an environment detector.
$this->request->addDetector(

);

'post’,
['env' => 'REQUEST_METHOD', 'value' => 'POST']

// Add a pattern value detector.
$this->request->addDetector(

);

'iphone’,
['env' => '"HTTP_USER_AGENT', 'pattern' => '/iPhone/i']

// Add an option detector
$this->request->addDetector('internalIp', [

D;

'env' => 'CLIENT_IP',
'options' => ['192.168.0.101"', '192.168.0.100']

// Add a header detector with value comparison
$this->request->addDetector('fancy', [

D;

'env' => 'CLIENT_IP',
'header' => ['X-Fancy' => 1]

// Add a header detector with callable comparison
$this->request->addDetector (' fancy', [

'env' => 'CLIENT_IP',

(continues on next page)

Request 237

CakePHP Book, Release 4.x

D;

(continued from previous page)
'header' => ['X-Fancy' => function ($value, S$header) {
return in_array($value, ['1"', '0', 'yes', 'no'], true);

3]

// Add a callback detector. Must be a valid callable.
$this->request->addDetector(

);

'awesome ',
function ($request) {
return $request->getParam('awesome');

}

// Add a detector that uses additional arguments.
$this->request->addDetector(

);

csv',

[
'accept' => ['text/csv'],
'param' => '_ext',
'value' => 'csv',

]

There are several built-in detectors that you can use:

is('get") Check to see whether the current request is a GET.

is('put') Check to see whether the current request is a PUT.

is('patch') Check to see whether the current request is a PATCH.

is('post') Check to see whether the current request is a POST.

is('delete') Check to see whether the current request is a DELETE.

is('head') Check to see whether the current request is HEAD.

is('options') Check to see whether the current request is OPTIONS.

is('ajax") Check to see whether the current request came with X-Requested-With = XMLHttpRequest.
is('ssl") Check to see whether the request is via SSL.

is('flash"') Check to see whether the request has a User-Agent of Flash.

is("json') Check to see whether the request has ‘json’ extension and accept ‘application/json’ mimetype.

is('xml") Check to see whether the request has ‘xml’ extension and accept ‘application/xml’ or ‘text/xml’
mimetype.

ServerRequest also includes methods like Cake\Http\ServerRequest::domain(), Cake\Http)\
ServerRequest: :subdomains() and Cake\Http\ServerRequest::host() to make applications that use
subdomains simpler.

238

Chapter 9. Request & Response Objects

CakePHP Book, Release 4.x

Session Data

To access the session for a given request use the getSession() method or use the session attribute:

$session = $this->request->getSession();
$session = $this->request->getAttribute('session');

$userName = $session->read('Auth.User.name');

For more information, see the Sessions documentation for how to use the session object.

Host and Domain Name

Cake\Http\ServerRequest: :domain($tldLength = I)
Returns the domain name your application is running on:

// Prints 'example.org’
echo $request->domain();

Cake\Http\ServerRequest: : subdomains ($tldLength = I)
Returns the subdomains your application is running on as an array:

// Returns [my', 'dev'] for 'my.dev.example.org'
$subdomains = $request->subdomains();

Cake\Http\ServerRequest: :host()
Returns the host your application is on:

// Prints my.dev.example.org'
echo $request->host();

Reading the HTTP Method

Cake\Http\ServerRequest: :getMethod()
Returns the HTTP method the request was made with:

// Output POST
echo $request->getMethod();

Restricting Which HTTP method an Action Accepts

Cake\Http\ServerRequest: :allowMethod ($methods)

Set allowed HTTP methods. If not matched, will throw MethodNotAllowedException. The 405 response will
include the required Allow header with the passed methods:

Request 239

CakePHP Book, Release 4.x

public function delete()

{
// Only accept POST and DELETE requests

$this->request->allowMethod(['post', 'delete']);

Reading HTTP Headers

Allows you to access any of the HTTP_* headers that were used for the request. For example:

// Get the header as a string
$userAgent = $this->request->getHeaderLine('User-Agent');

// Get an array of all values.
$acceptHeader = $this->request->getHeader('Accept');

// Check if a header exists
$hasAcceptHeader = $this->request->hasHeader('Accept');

While some apache installs don’t make the Authorization header accessible, CakePHP will make it available through
apache specific methods as required.

Cake\Http\ServerRequest: :referer ($local = true)

Returns the referring address for the request.

Cake\Http\ServerRequest::clientIp()

Returns the current visitor’s IP address.

Trusting Proxy Headers

If your application is behind a load balancer or running on a cloud service, you will often get the load balancer host,
port and scheme in your requests. Often load balancers will also send HITP-X-Forwarded-* headers with the original
values. The forwarded headers will not be used by CakePHP out of the box. To have the request object use these headers
set the trustProxy property to true:

$this->request->trustProxy = true;

// These methods will now use the proxied headers.
$port = $this->request->port();

$host = $this->request->host();

$scheme = $this->request->scheme();

$clientIp = $this->request->clientIp();

In addition to trusting proxy headers, applications operating behind a loadbalancer should define App . fullBaseUrl
configuration value with the public facing domain name and protocol so that URLs generated by the application use
the public facing domain name.

Once proxies are trusted the clientIp() method will use the last IP address in the X-Forwarded-For header. If
your application is behind multiple proxies, you can use setTrustedProxies() to define the IP addresses of proxies
in your control:

240 Chapter 9. Request & Response Objects

CakePHP Book, Release 4.x

$request->setTrustedProxies(['127.1.1.1"', '127.8.1.3']);

After proxies are trusted clientIp() will use the first IP address in the X-Forwarded-For header providing it is the
only value that isn’t from a trusted proxy.

Checking Accept Headers

Cake\Http\ServerRequest: :accepts ($type = null)

Find out which content types the client accepts, or check whether it accepts a particular type of content.

Get all types:

$accepts = $this->request->accepts();

Check for a single type:

$acceptsJson = $this->request->accepts('application/json');

Cake\Http\ServerRequest: :acceptLanguage ($language = null)

Get all the languages accepted by the client, or check whether a specific language is accepted.

Get the list of accepted languages:

$acceptsLanguages = $this->request->acceptlLanguage() ;

Check whether a specific language is accepted:

$acceptsSpanish = $this->request->acceptlLanguage('es-es');

Reading Cookies

Request cookies can be read through a number of methods:

// Get the cookie value, or null if the cookie is missing.
$rememberMe = $this->request->getCookie('remember_me');

// Read the value, or get the default of 0
$rememberMe = $this->request->getCookie('remember_me', 0);

// Get all cookies as an hash
$cookies = $this->request->getCookieParams();

// Get a CookieCollection instance
$cookies = $this->request->getCookieCollection()

See the Cake\Http\Cookie\CookieCollection documentation for how to work with cookie collection.

Request 241

CakePHP Book, Release 4.x

Uploaded Files

Requests expose the uploaded file datain getData () or getUploadedFiles () asUploadedFileInterface objects:

// Get a list of UploadedFile objects
$files = $request->getUploadedFiles();

// Read the file data.
$files[0]->getStream();
$files[0]->getSize();
$files[0]->getClientFileName();

// Move the file.
$files[0]->moveTo($targetPath);

Manipulating URIs

Requests contain a URI object, which contains methods for interacting with the requested URI:

// Get the URI
$uri = $request->getUri();

// Read data out of the URI.
$path = $uri->getPath(Q);
$query = $uri->getQuery();
$host = $uri->getHost();

Response

class Cake\Http\Response

Cake\Http\Response is the default response class in CakePHP. It encapsulates a number of features and functionality
for generating HTTP responses in your application. It also assists in testing, as it can be mocked/stubbed allowing you
to inspect headers that will be sent.

Response provides an interface to wrap the common response-related tasks such as:
» Sending headers for redirects.
* Sending content type headers.
» Sending any header.

 Sending the response body.

242 Chapter 9. Request & Response Objects

CakePHP Book, Release 4.x

Dealing with Content Types

Cake\Http\Response: :withType ($contentType = null)

You can control the Content-Type of your application’s responses with Cake\Http\Response: :withType (). If your
application needs to deal with content types that are not built into Response, you can map them with setTypeMap ()
as well:

// Add a vCard type
$this->response->setTypeMap('vcf', ['text/v-card']);

// Set the response Content-Type to vcard.
$this->response = $this->response->withType('vct');

Usually, you’ll want to map additional content types in your controller’s beforeFilter () callback, so you can leverage
the automatic view switching features of RequestHandlerComponent if you are using it.

Sending Files

Cake\Http\Response: :withFile ($path, $options = [])

There are times when you want to send files as responses for your requests. You can accomplish that by using Cake\
Http\Response: :withFile():

public function sendFile($id)

{
$file = $this->Attachments->getFile($id);
$response = $this->response->withFile($file['path']);
// Return the response to prevent controller from trying to render
// a view.
return $response;
}

As shown in the above example, you must pass the file path to the method. CakePHP will send a proper content type
header if it’s a known file type listed in Cake\Http\Response::$_mimeTypes. You can add new types prior to calling
Cake\Http\Response: :withFile() by using the Cake\Http\Response: :withType () method.

If you want, you can also force a file to be downloaded instead of displayed in the browser by specifying the options:

$response = $this->response->withFile(
$file['path'],
['download' => true, 'name' => 'foo']

);

The supported options are:

name
The name allows you to specify an alternate file name to be sent to the user.

download
A boolean value indicating whether headers should be set to force download.

Response 243

CakePHP Book, Release 4.x

Sending a String as File

You can respond with a file that does not exist on the disk, such as a pdf or an ics generated on the fly from a string:

public function sendIcs()

{
$icsString = $this->Calendars->generatelcs();
$response = $this->response;
// Inject string content into response body
$response = $response->withStringBody($icsString);
$response = $response->withType('ics');
// Optionally force file download
$response = $response->withDownload('filename_for_download.ics');
// Return response object to prevent controller from trying to render
// a view.
return $response;
}

Setting Headers

Cake\Http\Response: :withHeader ($header, $value)

Setting headers is done with the Cake\Http\Response: :withHeader () method. Like all of the PSR-7 interface
methods, this method returns a new instance with the new header:

// Add/replace a header
$response = $response->withHeader('X-Extra', 'My header');

// Set multiple headers
$response = $response->withHeader('X-Extra', 'My header')
->withHeader('Location', 'http://example.com');

// Append a value to an existing header
$response = $response->withAddedHeader('Set-Cookie', 'remember_me=1"');
Headers are not sent when set. Instead, they are held until the response is emitted by Cake\Http\Server.

You can now use the convenience method Cake\Http\Response: :withLocation() to directly set or get the redirect
location header.

244 Chapter 9. Request & Response Objects

CakePHP Book, Release 4.x

Setting the Body

Cake\Http\Response: :withStringBody ($string)
To set a string as the response body, do the following:

// Set a string into the body
$response = $response->withStringBody('My Body');

// If you want a json response
$response = $response->withType('application/json')

->withStringBody(json_encode(['Foo' => 'bar']));

Cake\Http\Response: :withBody ($body)

To set the response body, use the withBody() method, which is provided by the Laminas\Diactoros\

MessageTrait:

$response = $response->withBody($stream) ;

Be sure that $streamis a Psr\Http\Message\StreamInterface object. See below on how to create a new stream.

You can also stream responses from files using Laminas\Diactoros\Stream streams:

// To stream from a file
use Laminas\Diactoros\Stream;

$stream = new Stream('/path/to/file', 'rb');
$response = $response->withBody($stream) ;

You can also stream responses from a callback using the CallbackStream. This is useful when you have resources

like images, CSV files or PDFs you need to stream to the client:

// Streaming from a callback
use Cake\Http\CallbackStream;

// Create an image.
$img = imagecreate(100, 100);
/) ..

$stream = new CallbackStream(function () use ($img) {

imagepng($img) ;
};

$response = $response->withBody($stream) ;

Response

245

CakePHP Book, Release 4.x

Setting the Character Set

Cake\Http\Response: :withCharset ($charser)
Sets the charset that will be used in the response:

$this->response = $this->response->withCharset('UTF-8');

Interacting with Browser Caching

Cake\Http\Response: :withDisabledCache()

You sometimes need to force browsers not to cache the results of a controller action. Cake\Http\
Response: :withDisabledCache () is intended for just that:

public function index()

{
// Disable caching
$this->response = $this->response->withDisabledCache();

Warning: Disabling caching from SSL domains while trying to send files to Internet Explorer can result in errors.

Cake\Http\Response: :withCache ($since, $rime = '+1 day")
You can also tell clients that you want them to cache responses. By using Cake\Http\Response: :withCache():

public function index()
{
// Enable caching
$this->response = $this->response->withCache('-1 minute', '+5 days');

¥

The above would tell clients to cache the resulting response for 5 days, hopefully speeding up your visitors’ experience.
The withCache () method sets the Last-Modified value to the first argument. Expires header and the max-age
directive are set based on the second parameter. Cache-Control’s public directive is set as well.

Fine Tuning HTTP Cache

One of the best and easiest ways of speeding up your application is to use HTTP cache. Under this caching model, you
are only required to help clients decide if they should use a cached copy of the response by setting a few headers such
as modified time and response entity tag.

Rather than forcing you to code the logic for caching and for invalidating (refreshing) it once the data has changed,
HTTP uses two models, expiration and validation, which usually are much simpler to use.

Apart from using Cake\Http\Response: :withCache(), you can also use many other methods to fine-tune HTTP
cache headers to take advantage of browser or reverse proxy caching.

246 Chapter 9. Request & Response Objects

CakePHP Book, Release 4.x

The Cache Control Header

Cake\Http\Response: :withSharable ($public, $time = null)

Used under the expiration model, this header contains multiple indicators that can change the way browsers or proxies
use the cached content. A Cache-Control header can look like this:

Cache-Control: private, max-age=3600, must-revalidate

Response class helps you set this header with some utility methods that will produce a final valid Cache-Control
header. The first is the withSharable () method, which indicates whether a response is to be considered sharable
across different users or clients. This method actually controls the public or private part of this header. Setting a
response as private indicates that all or part of it is intended for a single user. To take advantage of shared caches, the
control directive must be set as public.

The second parameter of this method is used to specify a max-age for the cache, which is the number of seconds after
which the response is no longer considered fresh:

public function view()

{
/) ...
// Set the Cache-Control as public for 3600 seconds
$this->response = $this->response->withSharable(true, 3600);
}
public function my_data()
{
/) ...
// Set the Cache-Control as private for 3600 seconds
$this->response = $this->response->withSharable(false, 3600);
}

Response exposes separate methods for setting each of the directives in the Cache-Control header.

The Expiration Header

Cake\Http\Response: :withExpires ($rime)

You can set the Expires header to a date and time after which the response is no longer considered fresh. This header
can be set using the withExpires() method:

public function view()

{
$this->response = $this->response->withExpires('+5 days');

}

This method also accepts a DateTime instance or any string that can be parsed by the DateTime class.

Response 247

CakePHP Book, Release 4.x

The Etag Header

Cake\Http\Response: :withEtag($rag, $weak = false)

Cache validation in HTTP is often used when content is constantly changing, and asks the application to only generate
the response contents if the cache is no longer fresh. Under this model, the client continues to store pages in the cache,
but it asks the application every time whether the resource has changed, instead of using it directly. This is commonly
used with static resources such as images and other assets.

The withEtag() method (called entity tag) is a string that uniquely identifies the requested resource, as a checksum
does for a file, in order to determine whether it matches a cached resource.

To take advantage of this header, you must either call the checkNotModified() method manually or include the
Request Handling in your controller:

public function index()

{
$articles = $this->Articles->find('all')->all();

// Simple checksum of the article contents.

// You should use a more efficient implementation
// in a real world application.

$checksum = md5(json_encode($articles));

$response = $this->response->withEtag($checksum) ;
if ($response->checkNotModified($this->request)) {
return $response;

}

$this->response = $response;

V/ARTY

Note: Most proxy users should probably consider using the Last Modified Header instead of Etags for performance
and compatibility reasons.

The Last Modified Header

Cake\Http\Response: :withModified ($rime)

Also, under the HTTP cache validation model, you can set the Last-Modified header to indicate the date and time at
which the resource was modified for the last time. Setting this header helps CakePHP tell caching clients whether the
response was modified or not based on their cache.

To take advantage of this header, you must either call the checkNotModified() method manually or include the
Request Handling in your controller:

public function view()
{
$article = $this->Articles->find()->first();
$response = $this->response->withModified($article->modified);
if ($response->checkNotModified($this->request)) {
return $response;
(continues on next page)

248 Chapter 9. Request & Response Objects

CakePHP Book, Release 4.x

(continued from previous page)

}
$this->response;
/) ...

}

The Vary Header

Cake\Http\Response: :withVary ($header)

In some cases, you might want to serve different content using the same URL. This is often the case if you have a
multilingual page or respond with different HTML depending on the browser. Under such circumstances you can use
the Vary header:

$response = $this->response->withVary('User-Agent');
$response = $this->response->withVary('Accept-Encoding', 'User-Agent');
$response = $this->response->withVary('Accept-Language');

Sending Not-Modified Responses

Cake\Http\Response: : checkNotModified (Request $request)

Compares the cache headers for the request object with the cache header from the response and determines whether it
can still be considered fresh. If so, deletes the response content, and sends the 304 Not Modified header:

// In a controller action.
if ($this->response->checkNotModified($this->request)) {
return $this->response;

}

Setting Cookies

Cookies can be added to response using either an array or a Cake\Http\Cookie\Cookie object:

use Cake\Http\Cookie\Cookie;
use DateTime;

// Add a cookie
$this->response = $this->response->withCookie(Cookie: :create(
'remember_me',

'yes',
// All keys are optional
[
'expires' => new DateTime('+1 year'),
'path' = "',
'domain' => "',
'secure' => false,
'"httponly' => false,
'samesite' => null // Or one of Cookielnterface::SAMESITE_* constants
]

));

Response 249

CakePHP Book, Release 4.x

See the Creating Cookies section for how to use the cookie object. You can use withExpiredCookie() to send an
expired cookie in the response. This will make the browser remove its local cookie:

$this->response = $this->response->withExpiredCookie(new Cookie('remember_me'));

Setting Cross Origin Request Headers (CORS)

The cors() method is used to define HTTP Access Control''® related headers with a fluent interface:

$this->response = $this->response->cors($this->request)
->allowOrigin(['*.cakephp.org'])
->allowMethods(['GET', 'POST'])
->allowHeaders(['X-CSRF-Token'])
->allowCredentials()
->exposeHeaders(['Link'])
->maxAge (300)
->buildQ;

CORS related headers will only be applied to the response if the following criteria are met:
1. The request has an Origin header.

2. The request’s Origin value matches one of the allowed Origin values.

Tip: CakePHP has no built-in CORS middleware because dealing with CORS requests is very application specific.
We recommend you build your own CORSMiddleware if you need one and adjust the response object as desired.

Common Mistakes with Inmutable Responses

Response objects offer a number of methods that treat responses as immutable objects. Immutable objects help prevent
difficult to track accidental side-effects, and reduce mistakes caused by method calls caused by refactoring that change
ordering. While they offer a number of benefits, immutable objects can take some getting used to. Any method that
starts with with operates on the response in an immutable fashion, and will always return a new instance. Forgetting
to retain the modified instance is the most frequent mistake people make when working with immutable objects:

$this->response->withHeader('X-CakePHP', 'yes!');

In the above code, the response will be lacking the X-CakePHP header, as the return value of the withHeader () method
was not retained. To correct the above code you would write:

$this->response = $this->response->withHeader('X-CakePHP', 'yes!');

118 https://developer.mozilla.org/en- US/docs/Web/HTTP/ Access_control_CORS

250 Chapter 9. Request & Response Objects

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

CakePHP Book, Release 4.x

Cookie Collections

class Cake\Http\Cookie\CookieCollection

CookieCollection objects are accessible from the request and response objects. They let you interact with groups
of cookies using immutable patterns, which allow the immutability of the request and response to be preserved.

Creating Cookies

class Cake\Http\Cookie\Cookie

Cookie objects can be defined through constructor objects, or by using the fluent interface that follows immutable
patterns:

use Cake\Http\Cookie\Cookie;

// All arguments in the constructor
$cookie = new Cookie(
'remember_me', // name
1, // value
new DateTime('+1 year'), // expiration time, if applicable
'/', // path, if applicable
'example.com', // domain, if applicable
false, // secure only?
true // http only ?
DE

// Using the builder methods

$cookie = (new Cookie('remember_me'))
->withValue('1")
->withExpiry(new DateTime('+1 year'))
->withPath('/")
->withDomain('example.com')
->withSecure(false)
->withHttpOnly(true) ;

Once you have created a cookie, you can add it to a new or existing CookieCollection:

use Cake\Http\Cookie\CookieCollection;

// Create a new collection
$cookies = new CookieCollection([$cookie]);

// Add to an existing collection
$cookies = $cookies->add($cookie);

// Remove a cookie by name
$cookies = $cookies->remove('remember_me');

Note: Remember that collections are immutable and adding cookies into, or removing cookies from a collection,
creates a new collection object.

Cookie Collections 251

CakePHP Book, Release 4.x

Cookie objects can be added to responses:

// Add one cookie
$response = $this->response->withCookie($cookie);

// Replace the entire cookie collection
$response = $this->response->withCookieCollection($cookies);

Cookies set to responses can be encrypted using the encrypted-cookie-middleware.

Reading Cookies

Once you have a CookieCollection instance, you can access the cookies it contains:

// Check if a cookie exists
$cookies->has('remember_me');

// Get the number of cookies in the collection
count ($cookies);

// Get a cookie instance
$cookie = $cookies->get('remember_me');

Once you have a Cookie object you can interact with it’s state and modify it. Keep in mind that cookies are immutable,
so you’ll need to update the collection if you modify a cookie:

// Get the value
$value = $cookie->getValue()

// Access data inside a JSON value
$id = $cookie->read('User.id');

// Check state
$cookie->isHttpOnly();
$cookie->isSecure();

252 Chapter 9. Request & Response Objects

CHAPTER 10

Controllers

class Cake\Controller\Controller

Controllers are the ‘C’ in MVC. After routing has been applied and the correct controller has been found, your con-
troller’s action is called. Your controller should handle interpreting the request data, making sure the correct models
are called, and the right response or view is rendered. Controllers can be thought of as middle layer between the Model
and View. You want to keep your controllers thin, and your models fat. This will help you reuse your code and makes
your code easier to test.

Commonly, a controller is used to manage the logic around a single model. For example, if you were building a site for
an online bakery, you might have a RecipesController managing your recipes and an IngredientsController managing
your ingredients. However, it’s also possible to have controllers work with more than one model. In CakePHP, a
controller is named after the primary model it handles.

Your application’s controllers extend the AppController class, which in turn extends the core Controller class.
The AppController class can be defined in src/Controller/AppController.php and it should contain methods that
are shared between all of your application’s controllers.

Controllers provide a number of methods that handle requests. These are called actions. By default, each public
method in a controller is an action, and is accessible from a URL. An action is responsible for interpreting the request
and creating the response. Usually responses are in the form of a rendered view, but there are other ways to create
responses as well.

253

CakePHP Book, Release 4.x

The App Controller

As stated in the introduction, the AppController class is the parent class to all of your application’s controllers.
AppController itself extends the Cake\Controller\Controller class included in CakePHP. AppController is
defined in src¢/Controller/AppController.php as follows:

namespace App\Controller;
use Cake\Controller\Controller;

class AppController extends Controller
{
}

Controller attributes and methods created in your AppController will be available in all controllers that extend it.
Components (which you’ll learn about later) are best used for code that is used in many (but not necessarily all) con-
trollers.

You can use your AppController to load components that will be used in every controller in your application.
CakePHP provides a initialize() method that is invoked at the end of a Controller’s constructor for this kind of
use:

namespace App\Controller;
use Cake\Controller\Controller;

class AppController extends Controller

{
public function initialize(): void
{
// Always enable the CSRF component.
$this->loadComponent('Csrf');
}
}

Request Flow

When a request is made to a CakePHP application, CakePHP’s Cake\Routing\Router and Cake\Routing\
Dispatcher classes use Connecting Routes to find and create the correct controller instance. The request data is
encapsulated in a request object. CakePHP puts all of the important request information into the $this->request
property. See the section on Request for more information on the CakePHP request object.

254 Chapter 10. Controllers

CakePHP Book, Release 4.x

Controller Actions

Controller actions are responsible for converting the request parameters into a response for the browser/user making the
request. CakePHP uses conventions to automate this process and remove some boilerplate code you would otherwise
need to write.

By convention, CakePHP renders a view with an inflected version of the action name. Returning to our online bakery
example, our RecipesController might contain the view(), share(), and search() actions. The controller would be
found in sr¢/Controller/RecipesController.php and contain:

// src/Controller/RecipesController.php

class RecipesController extends AppController

{
public function view($id)
{
// Action logic goes here.
}
public function share($customerId, $recipeld)
{
// Action logic goes here.
}
public function search($query)
{
// Action logic goes here.
}
}

The template files for these actions would be templates/Recipes/view.php, templates/Recipes/share.php, and tem-
plates/Recipes/search.php. The conventional view file name is the lowercased and underscored version of the action
name.

Controller actions generally use Controller::set() to create a context that View uses to render the view layer.
Because of the conventions that CakePHP uses, you don’t need to create and render the view manually. Instead, once
a controller action has completed, CakePHP will handle rendering and delivering the View.

If for some reason you’d like to skip the default behavior, you can return a Cake\Http\Response object from the
action with the fully created response.

In order for you to use a controller effectively in your own application, we’ll cover some of the core attributes and
methods provided by CakePHP’s controllers.

Interacting with Views

Controllers interact with views in a number of ways. First, they are able to pass data to the views, using
Controller::set(). You can also decide which view class to use, and which view file should be rendered from
the controller.

Controller Actions 255

CakePHP Book, Release 4.x

Setting View Variables

Cake\Controller\Controller: :set(string $var, mixed $value)

The Controller: :set() method is the main way to send data from your controller to your view. Once you’ve used
Controller: :set(), the variable can be accessed in your view:

// First you pass data from the controller:
$this->set('color', 'pink');

// Then, in the view, you can utilize the data:
7>

You have selected <?= h($color) ?> icing for the cake.

The Controller: :set() method also takes an associative array as its first parameter. This can often be a quick way
to assign a set of information to the view:

$data = [
'color' => 'pink',
"type' => 'sugar',
'base_price' => 23.95

1;

// Make $color, $type, and $base_price
// available to the view:

$this->set($data);

Keep in mind that view vars are shared among all parts rendered by your view. They will be available in all parts of
the view: the template, the layout and all elements inside the former two.

Setting View Options

If you want to customize the view class, layout/template paths, helpers or the theme that will be used when rendering
the view, you can use the viewBuilder () method to get a builder. This builder can be used to define properties of the
view before it is created:

$this->viewBuilder)
->addHelper('MyCustom')
->setTheme('Modern"')
->setClassName('Modern.Admin');

The above shows how you can load custom helpers, set the theme and use a custom view class.

256 Chapter 10. Controllers

CakePHP Book, Release 4.x

Rendering a View

Cake\Controller\Controller: :render (string $view, string $layout)

The Controller: :render() method is automatically called at the end of each requested controller action. This
method performs all the view logic (using the data you’ve submitted using the Controller: :set () method), places
the view inside its View: : $1ayout, and serves it back to the end user.

The default view file used by render is determined by convention. If the search() action of the RecipesController is
requested, the view file in templates/Recipes/search.php will be rendered:

namespace App\Controller;

class RecipesController extends AppController

{
/) ...
public function search()
{
// Render the view in templates/Recipes/search.php
return $this->render(Q);
}
/) ...
}

Although CakePHP will automatically call it after every action’s logic (unless you've called
$this->disableAutoRender()), you can use it to specify an alternate view file by specifying a view file
name as first argument of Controller: :render () method.

If $view starts with ¢/, it is assumed to be a view or element file relative to the templates folder. This allows direct
rendering of elements, very useful in AJAX calls:

// Render the element in templates/element/ajaxreturn.php
$this->render('/element/ajaxreturn');

The second parameter $1layout of Controller: :render () allows you to specify the layout with which the view is
rendered.

Rendering a Specific Template

In your controller, you may want to render a different view than the conventional one. You can do this by calling
Controller: :render () directly. Once you have called Controller: :render (), CakePHP will not try to re-render
the view:

namespace App\Controller;

class PostsController extends AppController

{
public function my_action()
{
$this->render('custom_file');
1
}

This would render templates/Posts/custom_file.php instead of templates/Posts/my_action.php.

Interacting with Views 257

CakePHP Book, Release 4.x

You can also render views inside plugins using the following syntax: $this->render('PluginName.
PluginController/custom_file'). For example:

namespace App\Controller;

class PostsController extends AppController

{
public function myAction()
{
$this->render('Users.UserDetails/custom_file');
}
}

This would render plugins/Users/templates/UserDetails/custom_file.php

Content Type Negotiation

Cake\Controller\Controller: :viewClasses()

Controllers can define a list of view classes they support. After the controller’s action is complete CakePHP will use
the view list to perform content-type negotiation. This enables your application to re-use the same controller action to
render an HTML view or render a JSON or XML response. To define the list of supported view classes for a controller
is done with the viewClasses() method:

namespace App\Controller;

use Cake\View\JsonView;
use Cake\View\XmlView;

class PostsController extends AppController

{
public function viewClasses(): array
{
return [JsonView::class, XmlView::class];
3
}

The application’s View class is automatically used as a fallback when no other view can be selected based on the
requests’ Accept header or routing extension. If your application needs to perform different logic for different response
formats you can use $this->request->is() to build the required conditional logic. You can also set your controllers’
supported view classes using the addViewClasses () method which will merge the provided views with those held in
the viewClasses property.

Note: View classes must implement the static contentType () hook method to participate in content-type negotiation.

New in version 4.5.0: addViewClasses() was added.

258 Chapter 10. Controllers

CakePHP Book, Release 4.x

Content Type Negotiation Fallbacks
If no View can be matched with the request’s content type preferences, CakePHP will use the base View class. If you
want to require content-type negotiation, you can use the NegotiationRequiredView which sets a 406 status code:

public function viewClasses(): array

{
// Require Accept header negotiation or return a 406 response.
return [JsonView::class, NegotiationRequiredView::class];

You can use the TYPE_MATCH_ALL content type value to build your own fallback view logic:

namespace App\View;
use Cake\View\View;

class CustomFallbackView extends View

{
public static function contentType(): string
{
return static::TYPE_MATCH_ALL;
}
}

It is important to remember that match-all views are applied only after content-type negotiation is attempted.

New in version 4.4.0: Prior to 4.4 you must use Request Handling instead of viewClasses().

Using AjaxView

In applications that use hypermedia or AJAX clients, you often need to render view contents without the wrapping
layout. You can use the AjaxView that is bundled with the application skeleton:

// In a controller action, or in beforeRender.
if ($this->request->is('ajax')) {
$this->viewBuilder()->setClassName('Ajax');

}

AjaxView will respond as text/html and use the ajax layout. Generally this layout is minimal or contains client
specific markup. This replaces usage of RequestHandlerComponent automatically using the AjaxView.

Content Type Negotiation Fallbacks 259

CakePHP Book, Release 4.x

Redirecting to Other Pages

Cake\Controller\Controller: :redirect (string|array $url, integer $status)

The redirect () method adds a Location header and sets the status code of a response and returns it. You should
return the response created by redirect() to have CakePHP send the redirect instead of completing the controller
action and rendering a view.

You can redirect using routing array values:

return $this->redirect([
'controller' => 'Orders',
'action' => 'confirm',
$order->id,
7' = [
'product' => 'pizza',
'"quantity' => 5
1,
"#' = "top'
D

Or using a relative or absolute URL:

return $this->redirect('/orders/confirm');
return $this->redirect('http://www.example.com');

Or to the referer page:

return $this->redirect($this->referer());

By using the second parameter you can define a status code for your redirect:

// Do a 301 (moved permanently)
return $this->redirect('/order/confirm', 301);

// Do a 303 (see other)
return $this->redirect('/order/confirm', 303);

See the Using Redirects in Component Events section for how to redirect out of a life-cycle handler.

Forwarding to an Action on the Same Controller

Cake\Controller\Controller: :setAction($action, $args...)

If you need to forward the current action to a different action on the same controller, you can use
Controller::setAction() to update the request object, modify the view template that will be rendered and for-
ward execution to the named action:

// From a delete action, you can render the updated
// list page.
$this->setAction('index");

Deprecated since version 4.2.0: Use redirects or call the other action as a method.

260 Chapter 10. Controllers

CakePHP Book, Release 4.x

Loading Additional Models

Cake\Controller\Controller: : fetchModel (string $alias, array $config = [])

The fetchModel () method is useful to load models or ORM tables that are not the controller’s default. Models
retrieved with this method will not be set as properties on your controller:

// Get an ElasticSearch model
$articles = $this->fetchModel ('Articles', 'Elastic');

// Get a webservices model
$github = $this->fetchModel('GitHub', 'Webservice');

New in version 4.5.0.

Cake\Controller\Controller: : fetchTable(string $alias, array $config = [])
The fetchTable () method comes handy when you need to use an ORM table that is not the controller’s default one:

// In a controller method.

$recentArticles = $this->fetchTable('Articles')->find('all', [
'"limit"' => 5,
'order' => 'Articles.created DESC'

D
->allQ);

New in version 4.3.0: Controller::fetchTable() was added. Prior to 4.3 you need to use
Controller::loadModel().

Note: Controller::fetchTable() does not create a proeprty controller property with the name of the table alias,
e.g. $this->Articles, as Controller: :1oadModel () does.

Paginating a Model

Cake\Controller\Controller: :paginate()

This method is used for paginating results fetched by your models. You can specify page sizes, model find conditions
and more. See the pagination section for more details on how to use paginate().

The $paginate attribute gives you a way to customize how paginate() behaves:

class ArticlesController extends AppController

{
public $paginate = [
'Articles' => [
'conditions' => ['published' => 1]
]
1;
}

Loading Additional Models 261

CakePHP Book, Release 4.x

Configuring Components to Load

Cake\Controller\Controller: :loadComponent ($name, $config = [])

In your Controller’s initialize() method you can define any components you want loaded, and any configuration
data for them:

public function initialize(): void

{

parent::initialize();

$this->loadComponent ('Csrf');

$this->loadComponent ('Comments', Configure::read('Comments'));
}

Request Life-cycle Callbacks

CakePHP controllers trigger several events/callbacks that you can use to insert logic around the request life-cycle:

Event List

e Controller.initialize

e Controller.startup

e Controller.beforeRedirect
e Controller.beforeRender

¢ Controller.shutdown

Controller Callback Methods

By default the following callback methods are connected to related events if the methods are implemented by your
controllers
Cake\Controller\Controller: :beforeFilter (Eventinterface $event)

Called during the Controller.initialize event which occurs before every action in the controller. It’s a
handy place to check for an active session or inspect user permissions.

Note: The beforeFilter() method will be called for missing actions.

Returning a response from a beforeFilter method will not prevent other listeners of the same event from being
called. You must explicitly stop the event.

Cake\Controller\Controller: :beforeRender (EventInterface $event)

Called during the Controller.beforeRender event which occurs after controller action logic, but before the
view is rendered. This callback is not used often, but may be needed if you are calling render () manually before
the end of a given action.

262 Chapter 10. Controllers

CakePHP Book, Release 4.x

Cake\Controller\Controller: :afterFilter(Eventinterface $event)

Called during the Controller. shutdown event which is triggered after every controller action, and after ren-
dering is complete. This is the last controller method to run.

In addition to controller life-cycle callbacks, Components also provide a similar set of callbacks.

Remember to call AppController’s callbacks within child controller callbacks for best results:

//use Cake\Event\EventInterface;
public function beforeFilter(EventInterface S$event)

{

parent: :beforeFilter($event);

}

Controller Middleware

Cake\Controller\Controller: :middleware ($middleware, array $options = [])

Middleware can be defined globally, in a routing scope or within a controller. To define middleware for a specific
controller use the middleware () method from your controller’s initialize () method:

public function initialize(): void

{
parent::initialize();
$this->middleware(function ($request, $handler) {
// Do middleware logic.
// Make sure you return a response or call handle()
return $handler->handle($request);
19K
}

Middleware defined by a controller will be called before beforeFilter () and action methods are called.

New in version 4.3.0: Controller: :middleware() was added.

More on Controllers

The Pages Controller

CakePHP’s official skeleton app ships with a default controller PagesController.php. This is a simple and optional
controller for serving up static content. The home page you see after installation is generated using this controller and
the view file templates/Pages/home.php. If you make the view file templates/Pages/about_us.php you can access it
using the URL http://example.com/pages/about_us. You are free to modify the Pages Controller to meet your needs.

When you “bake” an app using Composer the Pages Controller is created in your src¢/Controller/ folder.

Controller Middleware 263

CakePHP Book, Release 4.x

Components

Components are packages of logic that are shared between controllers. CakePHP comes with a fantastic set of core
components you can use to aid in various common tasks. You can also create your own components. If you find yourself
wanting to copy and paste things between controllers, you should consider creating your own component to contain
the functionality. Creating components keeps controller code clean and allows you to reuse code between different
controllers.

For more information on the components included in CakePHP, check out the chapter for each component:

AuthComponent

class AuthComponent (ComponentCollection $collection, array $config = [])

Identifying, authenticating, and authorizing users is a common part of almost every web application. In CakePHP
AuthComponent provides a pluggable way to do these tasks. AuthComponent allows you to combine authentication
objects and authorization objects to create flexible ways of identifying and checking user authorization.

Deprecated since version 4.0.0: The AuthComponent is deprecated as of 4.0.0 and will be replaced by the authoriza-
tion''” and authentication'”" plugins.

Suggested Reading Before Continuing

Configuring authentication requires several steps including defining a users table, creating a model, controller & views,
etc.

This is all covered step by step in the CMS Tutorial.

If you are looking for existing authentication and/or authorization solutions for CakePHP, have a look at the Authenti-
cation and Authorization'”! section of the Awesome CakePHP list.

Authentication

Authentication is the process of identifying users by provided credentials and ensuring that users are who they say
they are. Generally, this is done through a username and password, that are checked against a known list of users. In
CakePHP, there are several built-in ways of authenticating users stored in your application.

* FormAuthenticate allows you to authenticate users based on form POST data. Usually, this is a login form
that users enter information into.

* BasicAuthenticate allows you to authenticate users using Basic HTTP authentication.
* DigestAuthenticate allows you to authenticate users using Digest HTTP authentication.

By default AuthComponent uses FormAuthenticate.

119 hitps://book.cakephp.org/authorization/
120 https://book.cakephp.org/authentication/
121 https://github.com/FriendsOfCake/awesome-cakephp/blob/master/README.md#authentication-and-authorization

264 Chapter 10. Controllers

https://book.cakephp.org/authorization/
https://book.cakephp.org/authorization/
https://book.cakephp.org/authentication/
https://github.com/FriendsOfCake/awesome-cakephp/blob/master/README.md#authentication-and-authorization
https://github.com/FriendsOfCake/awesome-cakephp/blob/master/README.md#authentication-and-authorization

CakePHP Book, Release 4.x

Choosing an Authentication Type

Generally, you’ll want to offer form based authentication. It is the easiest for users using a web-browser to use. If
you are building an API or webservice, you may want to consider basic authentication or digest authentication. The
key differences between digest and basic authentication are mostly related to how passwords are handled. In basic
authentication, the username and password are transmitted as plain-text to the server. This makes basic authentication
un-suitable for applications without SSL, as you would end up exposing sensitive passwords. Digest authentication uses
a digest hash of the username, password, and a few other details. This makes digest authentication more appropriate
for applications without SSL encryption.

You can also use authentication systems like OpenID as well; however, OpenID is not part of CakePHP core.

Configuring Authentication Handlers

You configure authentication handlers using the authenticate config. You can configure one or many handlers for
authentication. Using multiple handlers allows you to support different ways of logging users in. When logging users
in, authentication handlers are checked in the order they are declared. Once one handler is able to identify the user, no
other handlers will be checked. Conversely, you can halt all authentication by throwing an exception. You will need to
catch any thrown exceptions and handle them as needed.

You can configure authentication handlers in your controller’s beforeFilter() or initialize () methods. You can
pass configuration information into each authentication object using an array:

// Simple setup
$this->Auth->setConfig('authenticate', ['Form']);

// Pass settings in

$this->Auth->setConfig('authenticate', [
'Basic' => ['userModel' => 'Members'],
'Form' => ['userModel' => 'Members']

D;

In the second example, you’ll notice that we had to declare the userModel key twice. To help you keep your code
DRY, you can use the all key. This special key allows you to set settings that are passed to every attached object. The
all key is also exposed as AuthComponent: : ALL:

// Pass settings in using 'all’
$this->Auth->setConfig('authenticate', [
AuthComponent: :ALL => ['userModel' => 'Members'],
'Basic',
'Form'

D;

In the above example, both Form and Basic will get the settings defined for the ‘all’ key. Any settings passed to a
specific authentication object will override the matching key in the ‘all’ key. The core authentication objects support
the following configuration keys.

e fields The fields to use to identify a user by. You can use keys username and password to specify your
username and password fields respectively.

¢ userModel The model name of the users table; defaults to Users.
e finder The finder method to use to fetch a user record. Defaults to ‘all’.
¢ passwordHasher Password hasher class; Defaults to Default.

To configure different fields for user in your initialize() method:

More on Controllers 265

CakePHP Book, Release 4.x

public function initialize(): void

{
parent::initialize();
$this->loadComponent('Auth', [
'authenticate' => [
'Form' => [
'fields' => ['username' => 'email', 'password' => 'passwd']
1
]
D;
}

Do not put other Auth configuration keys, such as authError, loginAction, etc., within the authenticate or Form
element. They should be at the same level as the authenticate key. The setup above with other Auth configuration should

look like:

public function initialize(): void

{
parent::initialize();
$this->loadComponent('Auth', [
'loginAction' => [
'controller' => 'Users',
'action' => 'login',
'plugin' => 'Users'
Js
'authError' => 'Did you really think you are allowed to see that?',
'authenticate' => [
'Form' => [
'fields' => ['username' => 'email']
]
Jg
'storage' => 'Session'
D
}

In addition to the common configuration, Basic authentication supports the following keys:
e realm The realm being authenticated. Defaults to env (' SERVER_NAME").

In addition to the common configuration Digest authentication supports the following keys:
* realm The realm authentication is for. Defaults to the servername.
¢ nonce A nonce used for authentication. Defaults to uniqid ().
 gop Defaults to auth; no other values are supported at this time.

* opaque A string that must be returned unchanged by clients. Defaults to md5($config['realm']).

Note: To find the user record, the database is queried only using the username. The password check is done in PHP.
This is necessary because hashing algorithms like berypt (which is used by default) generate a new hash each time,
even for the same string and you can’t just do simple string comparison in SQL to check if the password matches.

266 Chapter 10. Controllers

CakePHP Book, Release 4.x

Customizing Find Query

You can customize the query used to fetch the user record using the finder option in authenticate class config:

public function initialize(): void

{
parent::initialize();
$this->loadComponent ('Auth', [
'authenticate' => [
'Form' => [
'finder' => 'auth'
1
ie
D;
}

This will require your UsersTable to have finder method findAuth(). In the example shown below the query is
modified to fetch only required fields and add a condition. You must ensure that you select the fields you need to
authenticate a user, such as username and password:

public function findAuth(\Cake\ORM\Query $query, array $options)

{
$query
->select(['id', 'username', 'password'])
->where(['Users.active' => 1]);
return $query;
}

Identifying Users and Logging Them In

AuthComponent: :identify ()

You need to manually call $this->Auth->identify() to identify the user using credentials provided in request.
Then use $this->Auth->setUser() to log the user in, i.e., save user info to session.

When authenticating users, attached authentication objects are checked in the order they are attached. Once one of
the objects can identify the user, no other objects are checked. A sample login function for working with a login form
could look like:

public function login()

{
if ($this->request->is('post')) {
$user = $this->Auth->identify();
if ($user) {
$this->Auth->setUser($user);
return $this->redirect($this->Auth->redirectUrl());
} else {
$this->Flash->error(__('Username or password is incorrect'));
}
}
}

More on Controllers 267

CakePHP Book, Release 4.x

The above code will attempt to first identify a user by using the POST data. If successful we set the user info to the
session so that it persists across requests and then redirect to either the last page they were visiting or a URL specified
in the loginRedirect config. If the login is unsuccessful, a flash message is set.

Warning: $this->Auth->setUser($data) will log the user in with whatever data is passed to the method. It
won’t actually check the credentials against an authentication class.

Redirecting Users After Login

AuthComponent: :redirectUrl ()

After logging a user in, you’ll generally want to redirect them back to where they came from. Pass a URL in to set the
destination a user should be redirected to after logging in.

If no parameter is passed, the returned URL will use the following rules:

* Returns the normalized URL from the redirect query string value if it is present and for the same domain the
current app is running on.

« If there is no query string/session value and there is a config with loginRedirect, the loginRedirect value
is returned.

e If there is no redirect value and no loginRedirect, / is returned.

Creating Stateless Authentication Systems

Basic and digest are stateless authentication schemes and don’t require an initial POST or a form. If using only ba-
sic/digest authenticators you don’t require a login action in your controller. Stateless authentication will re-verify the
user’s credentials on each request, this creates a small amount of additional overhead, but allows clients to login without
using cookies and makes AuthComponent more suitable for building APIs.

For stateless authenticators, the storage config should be set to Memory so that AuthComponent does not use a session
to store user record. You may also want to set config unauthorizedRedirect to false so that AuthComponent
throws a ForbiddenException instead of the default behavior of redirecting to referrer.

The unauthorizedRedirect option only applies to authenticated users. When a user is not yet authenticated and you
do not want the user to be redirected, you will need to load one or more stateless authenticators, like Basic or Digest.

Authentication objects can implement a getUser() method that can be used to support user login systems that
don’t rely on cookies. A typical getUser method looks at the request/environment and uses the information there
to confirm the identity of the user. HTTP Basic authentication for example uses $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW'] for the username and password fields.

Note: In case authentication does not work like expected, check if queries are executed at
all (see BaseAuthenticate::_query($username)). In case no queries are executed check if
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] do get populated by the webserver. If you
are using Apache with FastCGI-PHP you might need to add this line to your .htaccess file in webroot:

RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization},L]

On each request, these values, PHP_AUTH_USER and PHP_AUTH_PW, are used to re-identify the user and ensure they
are the valid user. As with authentication object’s authenticate() method, the getUser () method should return an
array of user information on the success or false on failure.

268 Chapter 10. Controllers

CakePHP Book, Release 4.x

public function getUser(ServerRequest $request)

{

$username = env('PHP_AUTH_USER');

$pass = env('PHP_AUTH_PW');

if (empty($username) || empty($pass)) {

return false;

}

return $this->_findUser($username, $pass);
}

The above is how you could implement the getUser method for HTTP basic authentication. The _findUser () method
is part of BaseAuthenticate and identifies a user based on a username and password.

Using Basic Authentication

Basic authentication allows you to create a stateless authentication that can be used in intranet applications or for simple
API scenarios. Basic authentication credentials will be rechecked on each request.

Warning: Basic authentication transmits credentials in plain-text. You should use HTTPS when using Basic
authentication.

To use basic authentication, you’ll need to configure AuthComponent:

$this->loadComponent ('Auth', [
'authenticate' => [
'Basic' => [
'fields' => ['username' => 'username', 'password' => 'api_key'],
'userModel' => 'Users'
ie
1,
'storage' => 'Memory',
'"unauthorizedRedirect' => false

D;

Here we’re using username + API key as our fields and use the Users model.

Creating API Keys for Basic Authentication

Because basic HTTP sends credentials in plain-text, it is unwise to have users send their login password. Instead, an
opaque API key is generally used. You can generate these API tokens randomly using libraries from CakePHP:

namespace App\Model\Table;

use Cake\Auth\DefaultPasswordHasher;
use Cake\Utility\Text;

use Cake\Event\EventInterface;

use Cake\ORM\Table;

use Cake\Utility\Security;

(continues on next page)

More on Controllers 269

CakePHP Book, Release 4.x

(continued from previous page)

class UsersTable extends Table

{
public function beforeSave(EventInterface $event)
{
$entity = $event->getData('entity');
if ($entity->isNew()) {
$hasher = new DefaultPasswordHasher();
// Generate an API 'token'
$entity->api_key_plain = Security::hash(Security::randomBytes(32), 'sha256',.
—false);
// Bcrypt the token so BasicAuthenticate can check
// it during login.
$entity->api_key = S$hasher->hash($entity->api_key_plain);
}
return true;
}
}

The above generates a random hash for each user as they are saved. The above code assumes you have two columns
api_key - to store the hashed API key, and api_key_plain - to the plaintext version of the API key, so we can display
it to the user later on. Using a key instead of a password means that even over plain HTTP, your users can use an opaque
token instead of their original password. It is also wise to include logic allowing API keys to be regenerated at a user’s
request.

Using Digest Authentication

Digest authentication offers an improved security model over basic authentication, as the user’s credentials are never
sent in the request header. Instead, a hash is sent.

To use digest authentication, you’ll need to configure AuthComponent:

$this->loadComponent('Auth', [
'authenticate' => [
'Digest' => [
'fields' => ['username' => 'username', 'password' => 'digest_hash'],
'userModel' => 'Users'
Js
1,
'storage' => 'Memory',
'unauthorizedRedirect' => false

D;

Here we’re using username + digest_hash as our fields and use the Users model.

270 Chapter 10. Controllers

CakePHP Book, Release 4.x

Hashing Passwords For Digest Authentication

Because Digest authentication requires a password hashed in the format defined by the RFC, in order to cor-
rectly hash a password for use with Digest authentication you should use the special password hashing function on
DigestAuthenticate. If you are going to be combining digest authentication with any other authentication strate-
gies, it’s also recommended that you store the digest password in a separate column, from the normal password hash:

namespace App\Model\Table;

use Cake\Auth\DigestAuthenticate;
use Cake\Event\EventInterface;
use Cake\ORM\Table;

class UsersTable extends Table
{
public function beforeSave(EventInterface $event)

{
f$entity = $event->getData('entity');

// Make a password for digest auth.
$entity->digest_hash = DigestAuthenticate: :password(
$entity->username,
$entity->plain_password,
env('SERVER_NAME")
);

return true;

Passwords for digest authentication need a bit more information than other password hashes, based on the RFC for
digest authentication.

Note: The third parameter of DigestAuthenticate::password() must match the ‘realm’ config value
defined when DigestAuthentication was configured in AuthComponent::$authenticate. This defaults to
env('SCRIPT_NAME'). You may wish to use a static string if you want consistent hashes in multiple environments.

Creating Custom Authentication Objects

Because authentication objects are pluggable, you can create custom authentication objects in your application or plu-
gins. If for example, you wanted to create an OpenlD authentication object. In src/Auth/OpenidAuthenticate.php
you could put the following:

namespace App\Auth;

use Cake\Auth\BaseAuthenticate;
use Cake\Http\ServerRequest;
use Cake\Http\Response;

class OpenidAuthenticate extends BaseAuthenticate

{

public function authenticate(ServerRequest S$request, Response S$response)
(continues on next page)

More on Controllers 271

CakePHP Book, Release 4.x

(continued from previous page)

{
// Do things for OpenID here.
// Return an array of user if they could authenticate the user,
// return false if not.

}

Authentication objects should return false if they cannot identify the user and an array of user information if they
can. It’s not required that you extend BaseAuthenticate, only that your authentication object implements Cake\
Event\EventListenerInterface. The BaseAuthenticate class provides a number of helpful methods that are
commonly used. You can also implement a getUser () method if your authentication object needs to support stateless
or cookie-less authentication. See the sections on basic and digest authentication below for more information.

AuthComponent triggers two events, Auth.afterIdentify and Auth.logout, after a user has been identified and
before a user is logged out respectively. You can set callback functions for these events by returning a mapping array
from implementedEvents () method of your authenticate class:

public function implementedEvents()

{
return [
'Auth.afterIdentify' => 'afterIdentify',
'Auth.logout' => 'logout'
1
3

Using Custom Authentication Objects

Once you’'ve created your custom authentication objects, you can use them by including them in AuthComponent’s
authenticate array:

$this->Auth->setConfig('authenticate', [
'Openid', // app authentication object.
'AuthBag.Openid', // plugin authentication object.
D;

Note: Note that when using simple notation there’s no ‘Authenticate’ word when initiating the authentication object.
Instead, if using namespaces, you’ll need to set the full namespace of the class, including the ‘Authenticate’ word.

Handling Unauthenticated Requests

When an unauthenticated user tries to access a protected page first the unauthenticated() method of the last au-
thenticator in the chain is called. The authenticate object can handle sending response or redirection by returning a
response object to indicate no further action is necessary. Due to this, the order in which you specify the authentication
provider in authenticate config matters.

If authenticator returns null, AuthComponent redirects user to the login action. If it’s an AJAX request and config
ajaxLogin is specified that element is rendered else a 403 HTTP status code is returned.

272 Chapter 10. Controllers

CakePHP Book, Release 4.x

Displaying Auth Related Flash Messages

In order to display the session error messages that Auth generates, you need to add the following code to your layout.
Add the following two lines to the templates/layout/default.php file in the body section:

echo $this->Flash->render();
You can customize the error messages and flash settings AuthComponent uses. Using flash config you can configure
the parameters AuthComponent uses for setting flash messages. The available keys are

* key - The key to use, defaults to ‘default’.

* element - The element name to use for rendering, defaults to null.

 params - The array of additional parameters to use, defaults to [].

In addition to the flash message settings you can customize other error messages AuthComponent uses. In your con-
troller’s beforeFilter (), or component settings you can use authError to customize the error used for when au-
thorization fails:

$this->Auth->setConfig('authError', 'Woopsie, you are not authorized to access this area.

="

Sometimes, you want to display the authorization error only after the user has already logged-in. You can suppress this
message by setting its value to boolean false.

In your controller’s beforeFilter () or component settings:

if (!$this->Auth->user()) {
$this->Auth->setConfig('authError', false);

Hashing Passwords

You are responsible for hashing the passwords before they are persisted to the database, the easiest way is to use a setter
function in your User entity:

namespace App\Model\Entity;

use Cake\Auth\DefaultPasswordHasher;
use Cake\ORM\Entity;

class User extends Entity

{
/) ...
protected function _setPassword($password)
{
if (strlen($password) > 0) {
return (new DefaultPasswordHasher)->hash($password);
}
}
/) ...
}

More on Controllers 273

CakePHP Book, Release 4.x

AuthComponent is configured by default to use the Defaul tPasswordHasher when validating user credentials so no
additional configuration is required in order to authenticate users.

DefaultPasswordHasher uses the berypt hashing algorithm internally, which is one of the stronger password hashing
solutions used in the industry. While it is recommended that you use this password hasher class, the case may be that
you are managing a database of users whose password was hashed differently.

Creating Custom Password Hasher Classes

In order to use a different password hasher, you need to create the class in src/Auth/LegacyPasswordHasher.php and
implement the hash () and check () methods. This class needs to extend the AbstractPasswordHasher class:

namespace App\Auth;
use Cake\Auth\AbstractPasswordHasher;

class LegacyPasswordHasher extends AbstractPasswordHasher

{
public function hash($password)
{
return shal($password);
}
public function check($password, $hashedPassword)
{
return shal($password) === $hashedPassword;
}
}

Then you are required to configure the AuthComponent to use your own password hasher:

public function initialize(): void

{
parent::initialize();
$this->loadComponent('Auth', [
'authenticate' => [
'Form' => [
'passwordHasher' => [
'className' => 'Legacy',
1
1
]
D;
}

Supporting legacy systems is a good idea, but it is even better to keep your database with the latest security advance-
ments. The following section will explain how to migrate from one hashing algorithm to CakePHP’s default.

274 Chapter 10. Controllers

CakePHP Book, Release 4.x

Changing Hashing Algorithms

CakePHP provides a clean way to migrate your users’ passwords from one algorithm to another, this is achieved through
the FallbackPasswordHasher class. Assuming you are migrating your app from CakePHP 2.x which uses shal
password hashes, you can configure the AuthComponent as follows:

public function initialize(): void
{
parent::initialize();
$this->loadComponent('Auth', [
'authenticate' => [
'Form' => [
'passwordHasher' => [
'className' => 'Fallback',
'hashers' => [
'Default’,
'Weak' => ['hashType' => 'shal']

]
D;
}

The first name appearing in the hashers key indicates which of the classes is the preferred one, but it will fallback to
the others in the list if the check was unsuccessful.

When using the WeakPasswordHasher you will need to set the Security.salt configure the value to ensure pass-
words are salted.

In order to update old users’ passwords on the fly, you can change the login function accordingly:

public function login()

{
if ($this->request->is('post')) {
$user = $this->Auth->identify(Q);
if ($user) {
$this->Auth->setUser($user);
if ($this->Auth->authenticationProvider()->needsPasswordRehash()) {
$user = $this->Users->get($this->Auth->user('id'));
$user->password = $this->request->getData('password');
$this->Users->save($user);
}
return $this->redirect($this->Auth->redirectUrl());
}
}
}

As you can see we are just setting the plain password again so the setter function in the entity will hash the password
as shown in the previous example and then save the entity.

More on Controllers 275

CakePHP Book, Release 4.x

Manually Logging Users In

AuthComponent : : setUser (array $user)

Sometimes the need arises where you need to manually log a user in, such as just after they registered for your appli-
cation. You can do this by calling $this->Auth->setUser () with the user data you want to ‘login’:

public function register()

{
$user = $this->Users->newEntity($this->request->getData());
if ($this->Users->save($user)) {
$this->Auth->setUser($user->toArray());
return $this->redirect([
'controller' => 'Users',
'action' => 'home'
D;
}
}

Warning: Be sure to manually add the new User id to the array passed to the setUser () method. Otherwise, you
won’t have the user id available.

Accessing the Logged In User

AuthComponent : :user ($key = null)

Once a user is logged in, you will often need some particular information about the current user. You can access the
currently logged in user using AuthComponent: :user():

// From inside a controller or other component.
$this->Auth->user('id');

If the current user is not logged in or the key doesn’t exist, null will be returned.

Logging Users Out

AuthComponent : : logout ()

Eventually, you’ll want a quick way to de-authenticate someone and redirect them to where they need to go. This
method is also useful if you want to provide a ‘Log me out’ link inside a members’ area of your application:

public function logout()

{
return $this->redirect($this->Auth->logout());

¥

Logging out users that logged in with Digest or Basic auth is difficult to accomplish for all clients. Most browsers will
retain credentials for the duration they are still open. Some clients can be forced to logout by sending a 401 status code.
Changing the authentication realm is another solution that works for some clients.

276 Chapter 10. Controllers

CakePHP Book, Release 4.x

Deciding When to run Authentication

In some cases you may want to use $this->Auth->user() in the beforeFilter () method. This is achievable by
using the checkAuthIn config key. The following changes which event for which initial authentication checks should
be done:

//Set up AuthComponent to authenticate in initialize()
$this->Auth->setConfig('checkAuthIn', 'Controller.initialize');

Default value for checkAuthIn is 'Controller.startup' - but by using 'Controller.initialize’ initial au-
thentication is done before beforeFilter () method.

Authorization

Authorization is the process of ensuring that an identified/authenticated user is allowed to access the resources they
are requesting. If enabled AuthComponent can automatically check authorization handlers and ensure that logged in
users are allowed to access the resources they are requesting. There are several built-in authorization handlers and you
can create custom ones for your application or as part of a plugin.

e ControllerAuthorize Calls isAuthorized() on the active controller, and uses the return of that to authorize
a user. This is often the most simple way to authorize users.

Note: The ActionsAuthorize & CrudAuthorize adapter available in CakePHP 2.x have now been moved to a
separate plugin cakephp/acl'??.

Configuring Authorization Handlers

You configure authorization handlers using the authorize config key. You can configure one or many handlers for
authorization. Using multiple handlers allows you to support different ways of checking authorization. When autho-
rization handlers are checked, they will be called in the order they are declared. Handlers should return false, if they
are unable to check authorization, or the check has failed. Handlers should return true if they were able to check
authorization successfully. Handlers will be called in sequence until one passes. If all checks fail, the user will be
redirected to the page they came from. Additionally, you can halt all authorization by throwing an exception. You will
need to catch any thrown exceptions and handle them.

You can configure authorization handlers in your controller’s beforeFilter () or initialize() methods. You can
pass configuration information into each authorization object, using an array:

// Basic setup
$this->Auth->setConfig('authorize', ['Controller']);

// Pass settings in
$this->Auth->setConfig('authorize', [
'"Actions' => ['actionPath' => 'controllers/'],
'Controller’

D;

Much like authenticate, authorize, helps you keep your code DRY, by using the all key. This special key allows
you to set settings that are passed to every attached object. The all key is also exposed as AuthComponent : : ALL:

122 https://github.com/cakephp/acl

More on Controllers 277

https://github.com/cakephp/acl

CakePHP Book, Release 4.x

// Pass settings in using 'all’
$this->Auth->setConfig('authorize', [
AuthComponent::ALL => ['actionPath' => 'controllers/'],
'"Actions’,
'Controller’

D3
In the above example, both the Actions and Controller will get the settings defined for the ‘all’ key. Any settings
passed to a specific authorization object will override the matching key in the ‘all’ key.

If an authenticated user tries to go to a URL they are not authorized to access, they will be redirected back to the
referrer. If you do not want such redirection (mostly needed when using stateless authentication adapter) you can set
config option unauthorizedRedirect to false. This causes AuthComponent to throw a ForbiddenException
instead of redirecting.

Creating Custom Authorize Objects

Because authorize objects are pluggable, you can create custom authorize objects in your application or plugins. If
for example, you wanted to create an LDAP authorize object. In src/Auth/LdapAuthorize.php you could put the
following:

namespace App\Auth;

use Cake\Auth\BaseAuthorize;
use Cake\Http\ServerRequest;

class LdapAuthorize extends BaseAuthorize

{
public function authorize(S$user, ServerRequest $request)
{
// Do things for ldap here.
}
}

Authorize objects should return false if the user is denied access, or if the object is unable to perform a check. If the
object is able to verify the user’s access, true should be returned. It’s not required that you extend BaseAuthorize,
only that your authorize object implements an authorize () method. The BaseAuthorize class provides a number
of helpful methods that are commonly used.

Using Custom Authorize Objects

Once you’ve created your custom authorize object, you can use them by including them in your AuthComponent’s
authorize array:

$this->Auth->setConfig('authorize', [
'Ldap', // app authorize object.
'AuthBag.Combo', // plugin authorize object.
D;

278 Chapter 10. Controllers

CakePHP Book, Release 4.x

Using No Authorization

If youwd like to not use any of the built-in authorization objects and want to handle things entirely outside of
AuthComponent, you can set $this->Auth->setConfig('authorize', false);. By default AuthComponent
starts off with authorize set to false. If you don’t use an authorization scheme, make sure to check authorization
yourself in your controller’s beforeFilter () or with another component.

Making Actions Public

AuthComponent : : allow($actions = null)

There are often times controller actions that you wish to remain entirely public or that don’t require users to be logged
in. AuthComponent is pessimistic and defaults to denying access. You can mark actions as public actions by using
AuthComponent::allow(). By marking actions as public, AuthComponent will not check for a logged in user nor
will authorize objects to be checked:

// Allow all actions
$this->Auth->allow();

// Allow only the index action.
$this->Auth->allow('index');

// Allow only the view and index actions.
$this->Auth->allow(['view', 'index']);

By calling it empty you allow all actions to be public. For a single action, you can provide the action name as a string.
Otherwise, use an array.

Note: You should not add the “login” action of your UsersController to allow list. Doing so would cause problems
with the normal functioning of AuthComponent.

Making Actions Require Authorization

AuthComponent : :deny ($actions = null)

By default all actions require authorization. However, after making actions public you want to revoke the public access.
You can do so using AuthComponent: :deny():

// Deny all actions.
$this->Auth->deny () ;

// Deny one action
$this->Auth->deny('add');

// Deny a group of actions.
$this->Auth->deny(['add', 'edit']);

By calling it empty you deny all actions. For a single action, you can provide the action name as a string. Otherwise,
use an array.

More on Controllers 279

CakePHP Book, Release 4.x

Using ControllerAuthorize

ControllerAuthorize allows you to handle authorization checks in a controller callback. This is ideal when you have
very simple authorization or you need to use a combination of models and components to do your authorization and
don’t want to create a custom authorize object.

The callback is always called isAuthorized() and it should return a boolean as to whether or not the user is allowed
to access resources in the request. The callback is passed the active user so it can be checked:

class AppController extends Controller

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('Auth', [
'authorize' => 'Controller',
D;
3
public function isAuthorized($user = null)
{
// Any registered user can access public functions
if (!$this->request->getParam('prefix')) {
return true;
}
// Only admins can access admin functions
if ($this->request->getParam('prefix') === 'Admin') {
return (bool) ($user['role'] === 'admin');
}
// Default deny
return false;
3
}

The above callback would provide a very simple authorization system where only users with role = admin could access
actions that were in the admin prefix.

Configuration options

The following settings can all be defined either in your controller’s initialize() method or using
$this->Auth->setConfig() in your beforeFilter():

ajaxLogin
The name of an optional view element to render when an AJAX request is made with an invalid or expired
session.

allowedActions
Controller actions for which user validation is not required.

authenticate
Set to an array of Authentication objects you want to use when logging users in. There are several core authen-
tication objects; see the section on Suggested Reading Before Continuing.

280 Chapter 10. Controllers

CakePHP Book, Release 4.x

authError
Error to display when user attempts to access an object or action to which they do not have access.

You can suppress authError message from being displayed by setting this value to boolean false.

authorize
Set to an array of Authorization objects you want to use when authorizing users on each request; see the section
on Authorization.

flash
Settings to use when Auth needs to do a flash message with FlashComponent: :set (). Available keys are:

¢ element - The element to use; defaults to ‘default’.
* key - The key to use; defaults to ‘auth’.
e params - The array of additional parameters to use; defaults to ‘[]’.

loginAction
A URL (defined as a string or array) to the controller action that handles logins. Defaults to /users/login.

loginRedirect
The URL (defined as a string or array) to the controller action users should be redirected to after logging in. This
value will be ignored if the user has an Auth.redirect value in their session.

logoutRedirect
The default action to redirect to after the user is logged out. While AuthComponent does not handle post-logout
redirection, a redirect URL will be returned from AuthComponent: : logout (). Defaults to loginAction.

unauthorizedRedirect
Controls handling of unauthorized access. By default unauthorized user is redirected to the referrer URL or
loginAction or ‘/°. If set to false, a ForbiddenException exception is thrown instead of redirecting.

storage
Storage class to use for persisting user record. When using stateless authenticator you should set this to Memory.
Defaults to Session. You can pass config options to storage class using array format. For example, to use a
custom session key you can set storage to ['className' => 'Session', 'key' => 'Auth.Admin'].

checkAuthlIn
Name of the event in which initial auth checks should be done. Defaults to Controller.startup. You can set
it to Controller.initialize if you want the check to be done before controller’s beforeFilter () method
is run.

You can get current configuration values by calling $this->Auth->getConfig():: only the configuration option:

$this->Auth->getConfig('loginAction');
return $this->redirect($this->Auth->getConfig('loginAction'));

This is useful if you want to redirect a user to the Llogin route for example. Without a parameter, the full configuration
will be returned.

More on Controllers 281

CakePHP Book, Release 4.x

Testing Actions Protected By AuthComponent

See the Testing Actions That Require Authentication section for tips on how to test controller actions that are protected
by AuthComponent.

Flash

class Cake\Controller\Component\FlashComponent (ComponentCollection $collection, array $config = [])

FlashComponent provides a way to set one-time notification messages to be displayed after processing a form or ac-
knowledging data. CakePHP refers to these messages as “flash messages”. FlashComponent writes flash messages to
$_SESSION, to be rendered in a View using FlashHelper.

Setting Flash Messages

FlashComponent provides two ways to set flash messages: its __call() magic method and its set() method. To
furnish your application with verbosity, FlashComponent’s __call () magic method allows you use a method name
that maps to an element located under the templates/element/flash directory. By convention, camelcased methods will
map to the lowercased and underscored element name:

// Uses templates/element/flash/success.php
$this->Flash->success('This was successful');

// Uses templates/element/flash/great_success.php
$this->Flash->greatSuccess('This was greatly successful');

Alternatively, to set a plain-text message without rendering an element, you can use the set () method:

$this->Flash->set('This is a message');

Flash messages are appended to an array internally. Successive calls to set() or __call() with the same key will
append the messages in the $_SESSION. If you want to overwrite existing messages when setting a flash message, set
the clear option to true when configuring the Component.

FlashComponent’s __call() and set () methods optionally take a second parameter, an array of options:
* key Defaults to ‘flash’. The array key found under the Flash key in the session.

e element Defaults to null, but will automatically be set when using the __call () magic method. The element
name to use for rendering.

* params An optional array of keys/values to make available as variables within an element.
» clear expects a bool and allows you to delete all messages in the current stack and start a new one.

An example of using these options:

// In your Controller
$this->Flash->success('The user has been saved', [
'key' => 'positive',
'clear' => true,
'params' => [
'name' => $user->name,
'email' => $user->email

(continues on next page)

282 Chapter 10. Controllers

CakePHP Book, Release 4.x

(continued from previous page)

D;

// In your View
<?= $this->Flash->render('positive') ?>

<!-- In templates/element/flash/success.php -->
<div id="flash-<?= h($key) ?>" class="message-info success">

<?= h($message) ?>: <?= h($params['name']) ?>, <?= h($params['email']) ?>.
</div>

Note that the parameter element will be always overridden while using __call (). In order to retrieve a specific
element from a plugin, you should set the plugin parameter. For example:

// In your Controller
$this->Flash->warning('My message', ['plugin' => 'PluginName']);

The code above will use the warning.php element under plugins/PluginName/templates/element/flash for rendering
the flash message.

Note: By default, CakePHP escapes the content in flash messages to prevent cross site scripting. User data in your
flash messages will be HTML encoded and safe to be printed. If you want to include HTML in your flash messages, you
need to pass the escape option and adjust your flash message templates to allow disabling escaping when the escape
option is passed.

HTML in Flash Messages

It is possible to output HTML in flash messages by using the 'escape' option key:

$this->Flash->info(sprintf('%s %s', h($highlight), h($message)), ['escape' =>.
—false]);

Make sure that you escape the input manually, then. In the above example $highlight and $message are non-HTML
input and therefore escaped.

For more information about rendering your flash messages, please refer to the FlashHelper section.

Security
Deprecated since version 4.0.0: SecurityComponent has been deprecated. Use FormProtection instead for form
tampering protection or HTTPS Enforcer Middleware to enforce use of HTTPS (TLS) for requests.

class SecurityComponent (ComponentCollection $collection, array $config = [])

The Security Component creates a way to integrate tighter security in your application. It provides methods for various
tasks like:

* Restricting which HTTP methods your application accepts.
* Form tampering protection
* Requiring that SSL be used.

 Limiting cross controller communication.

More on Controllers 283

CakePHP Book, Release 4.x

Like all components it is configured through several configurable parameters. All of these properties can be set directly
or through setter methods of the same name in your controller’s beforeFilter().

By using the Security Component you automatically get form tampering protection. Hidden token fields will automat-
ically be inserted into forms and checked by the Security component.

If you are using Security component’s form protection features and other components that process form data in their
startup() callbacks, be sure to place Security Component before those components in your initialize() method.

Note: When using the Security Component you must use the FormHelper to create your forms. In addition, you must
not override any of the fields’ “name” attributes. The Security Component looks for certain indicators that are created
and managed by the FormHelper (especially those created in create() and end()). Dynamically altering the fields
that are submitted in a POST request, such as disabling, deleting or creating new fields via JavaScript, is likely to cause
the request to be send to the blackhole callback.

You should always verify the HTTP method being used before executing to avoid side-effects. You should check the
HTTP method or use Cake\Http\ServerRequest: :allowMethod() to ensure the correct HTTP method is used.

Handling Blackhole Callbacks

SecurityComponent : :blackHole (Controller $controller, string $error =", ?SecurityException $exception =
null)

If an action is restricted by the Security Component it is ‘black-holed’ as an invalid request which will result in a 400
error by default. You can configure this behavior by setting the blackHoleCallback configuration option to a callback
function in the controller.

By configuring a callback method you can customize how the blackhole process works:

public function beforeFilter(EventInterface S$event)

{

parent: :beforeFilter(§$event);

$this->Security->setConfig('blackHoleCallback', 'blackhole');
3

public function blackhole($type, SecurityException S$exception)

{
if ($exception->getMessage() === 'Request is not SSL and the action is required to.
—be secure') {
// Reword the exception message with a translatable string.
$exception->setMessage(__('Please access the requested page through HTTPS'));

}

// Re-throw the conditionally reworded exception.
throw $exception;

// Alternatively, handle the error. For example, set a flash message &

// redirect to HTTPS version of the requested page.

The $type parameter can have the following values:

e ‘auth’ Indicates a form validation error, or a controller/action mismatch error.

284 Chapter 10. Controllers

CakePHP Book, Release 4.x

¢ ‘secure’ Indicates an SSL method restriction failure.

Restrict Actions to SSL

This functionality was removed into HTTPS Enforcer Middleware.

Form Tampering Prevention

By default the SecurityComponent prevents users from tampering with forms in specific ways. The
SecurityComponent will prevent the following things:

¢ Unknown fields cannot be added to the form.
¢ Fields cannot be removed from the form.
* Values in hidden inputs cannot be modified.

Preventing these types of tampering is accomplished by working with the FormHelper and tracking which fields are
in a form. The values for hidden fields are tracked as well. All of this data is combined and turned into a hash. When a
form is submitted, the SecurityComponent will use the POST data to build the same structure and compare the hash.

Note: The SecurityComponent will not prevent select options from being added/changed. Nor will it prevent radio
options from being added/changed.

unlockedFields
Set to a list of form fields to exclude from POST validation. Fields can be unlocked either in the Component, or
with FormHelper: :unlockField(). Fields that have been unlocked are not required to be part of the POST
and hidden unlocked fields do not have their values checked.

validatePost
Set to false to completely skip the validation of POST requests, essentially turning off form validation.

Usage
Configuring the security component is generally done in the controller’s initialize or beforeFilter () callbacks:
namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class WidgetsController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('Security');
}

public function beforeFilter(EventInterface $event)

{
parent: :beforeFilter($event);
(continues on next page)

More on Controllers 285

CakePHP Book, Release 4.x

(continued from previous page)

if ($this->request->getParam('prefix') === 'Admin') {
$this->Security->setConfig('validatePost', false);

}

The above example would disable form tampering prevention for admin prefixed routes.

CSRF Protection

CSRF or Cross Site Request Forgery is a common vulnerability in web applications. It allows an attacker to capture
and replay a previous request, and sometimes submit data requests using image tags or resources on other domains. To
enable CSRF protection features use the Cross Site Request Forgery (CSRF) Middleware.

Disabling Form Tampering for Specific Actions

There may be cases where you want to disable form tampering prevention for an action (ex. AJAX requests). You may
“unlock” these actions by listing them in $this->Security->unlockedActions in your beforeFilter():

namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class WidgetController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('Security');
3
public function beforeFilter(EventInterface $event)
{
parent: :beforeFilter($event) ;
$this->Security->setConfig('unlockedActions', ['edit']);
1
3

This example would disable all security checks for the edit action.

286 Chapter 10. Controllers

CakePHP Book, Release 4.x

Pagination

class Cake\Controller\Component\PaginatorComponent

Deprecated since version 4.4.0: The paginator component is deprecated as of 4.4.0 and will be removed in 5.0. You
can use pagination from controllers as explained here

One of the main obstacles of creating flexible and user-friendly web applications is designing an intuitive user interface.
Many applications tend to grow in size and complexity quickly, and designers and programmers alike find they are
unable to cope with displaying hundreds or thousands of records. Refactoring takes time, and performance and user
satisfaction can suffer.

Displaying a reasonable number of records per page has always been a critical part of every application and used to
cause many headaches for developers. CakePHP eases the burden on the developer by providing a terse way to paginate
data.

Pagination in CakePHP is offered by a component in the controller. You then use PaginatorHelper in your view
templates to generate pagination controls.

Basic Usage

To paginate a query we first need to load the PaginatorComponent:

class ArticlesController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('Paginator');
3
}

Once loaded we can paginate an ORM table class or Query object:

public function index()

{
// Paginate the ORM table.
$this->set('articles', $this->paginate($this->Articles));
// Paginate a partially completed query
$query = $this->Articles->find('published');
$this->set('articles', $this->paginate($query));

}

Advanced Usage

PaginatorComponent supports more complex use cases by configuring the $paginate controller property or as
the $settings argument to paginate(). These conditions serve as the basis for you pagination queries. They are
augmented by the sort, direction, 1imit, and page parameters passed in from the URL:

class ArticlesController extends AppController

{
public $paginate = [

(continues on next page)

More on Controllers 287

CakePHP Book, Release 4.x

(continued from previous page)
'limit"' => 25,
'order' => [
'Articles.title' => 'asc'
]
1;

Tip: Default order options must be defined as an array.

While you can include any of the options supported by find () such as fields in your pagination settings. It is cleaner
and simpler to bundle your pagination options into a Custom Finder Methods. You can use your finder in pagination
by using the finder option:

class ArticlesController extends AppController

{
public $paginate = [
'finder' => 'published',
1;

If your finder method requires additional options you can pass those as values for the finder:

class ArticlesController extends AppController

{
// find articles by tag
public function tags()
{
$tags = $this->request->getParam('pass');
$customFinderOptions = [
'tags' => $tags
1;
// We're using the $settings argument to paginate() here.
// But the same structure could be used in $this->paginate
//
// Our custom finder is called findTagged inside ArticlesTable.php
// which is why we're using ‘tagged’ as the key.
// Our finder should look like:
// public function findTagged(Query $query, array $options) {
$settings = [
'finder' => [
'tagged' => $customFinderOptions
1
1;
$articles = $this->paginate($this->Articles, $settings);
$this->set(compact('articles', 'tags'));
}
3

In addition to defining general pagination values, you can define more than one set of pagination defaults in the con-
troller. The name of each model can be used as a key in the $paginate property:

288 Chapter 10. Controllers

CakePHP Book, Release 4.x

class ArticlesController extends AppController

{
public $paginate = [
'Articles' => [],
'Authors' => [],
1;
}

The values of the Articles and Authors keys could contain all the properties that a basic $paginate array would.

Once you have used paginate() to create results. The controller’s request will be updated with paging parameters.
You can access the pagination metadata at $this->request->getAttribute('paging').

Simple Pagination

By default pagination uses a count() query to calculate the size of the result set so that page number links can be
rendered. On very large datasets this count query can be very expensive. In situations where you only want to show
‘Next’ and ‘Previous’ links you can use the ‘simple’ paginator which does not do a count query:

public function initialize(): void

{
parent::initialize();
// Load the paginator component with the simple paginator strategy.
$this->loadComponent ('Paginator', [
'className' => 'Simple',
1
}

When using the SimplePaginator you will not be able to generate page numbers, counter data, links to the last page,
or total record count controls.

Using the PaginatorComponent Directly

If you need to paginate data from another component you may want to use the PaginatorComponent directly. It
features a similar API to the controller method:

$articles = $this->Paginator->paginate($articleTable->find(), $config);

// Or

$articles = $this->Paginator->paginate($articleTable, $config);

The first parameter should be the query object from a find on table object you wish to paginate results from. Optionally,
you can pass the table object and let the query be constructed for you. The second parameter should be the array of
settings to use for pagination. This array should have the same structure as the $paginate property on a controller.
When paginating a Query object, the finder option will be ignored. It is assumed that you are passing in the query
you want paginated.

More on Controllers 289

CakePHP Book, Release 4.x

Paginating Multiple Queries

You can paginate multiple models in a single controller action, using the scope option both in the controller’s

$paginate property and in the call to the paginate () method

// Paginate property

public $paginate = [
'"Articles' => ['scope' => 'article'],
'Tags' => ['scope' => 'tag']

1;

// In a controller action

$articles = $this->paginate($this->Articles, ['scope' => 'article']);
$tags = $this->paginate($this->Tags, ['scope' => 'tag'l);
$this->set(compact('articles', 'tags'));

The scope option will result in PaginatorComponent looking in scoped query string parameters. For example, the

following URL could be used to paginate both tags and articles at the same time:

/dashboard?article[page]=1&tag[page]=3

See the Paginating Multiple Results section for how to generate scoped HTML elements and URLs for pagination.

Paginating the Same Model multiple Times

To paginate the same model multiple times within a single controller action you need to define an alias for the model.

See Using the TableLocator for additional details on how to use the table registry:

// In a controller action
$this->paginate = [
'ArticlesTable' => [
'scope' => 'published_articles',
'limit"' => 10,
'order' => [
'id'" => 'desc',
i
1,
'UnpublishedArticlesTable' => [
'scope' => 'unpublished_articles',
'limit"' => 10,
'order' => [
'id' => 'desc',
ie
1,
1;

$publishedArticles = $this->paginate(
$this->Articles->find('all', [
'scope' => 'published_articles
1)->where(['published' => true])

);

(continues on next page)

290 Chapter 10. Controllers

CakePHP Book, Release 4.x

(continued from previous page)

// Load an additional table object to allow differentiating in pagination component
$unpublishedArticlesTable = $this->fetchTable('UnpublishedArticles', [

'className' => 'App\Model\Table\ArticlesTable',

'table' => 'articles',

'entityClass' => 'App\Model\Entity\Article',
D

$unpublishedArticles = $this->paginate(
$unpublishedArticlesTable->find('all', [
'scope' => 'unpublished_articles'
1)->where(['published' => false])
E

Control which Fields Used for Ordering

By default sorting can be done on any non-virtual column a table has. This is sometimes undesirable as it allows users
to sort on un-indexed columns that can be expensive to order by. You can set the allowed list of fields that can be sorted
using the sortableFields option. This option is required when you want to sort on any associated data, or computed
fields that may be part of your pagination query:

public $paginate = [
'sortableFields' => [
'id', 'title', 'Users.username', 'created'
]
1;

Any requests that attempt to sort on fields not in the allowed list will be ignored.

Limit the Maximum Number of Rows per Page

The number of results that are fetched per page is exposed to the user as the 1imit parameter. It is generally undesirable
to allow users to fetch all rows in a paginated set. The maxLimit option asserts that no one can set this limit too high
from the outside. By default CakePHP limits the maximum number of rows that can be fetched to 100. If this default is
not appropriate for your application, you can adjust it as part of the pagination options, for example reducing it to 10:

public $paginate = [
// Other keys here.
'maxLimit' => 10

1;

If the request’s limit param is greater than this value, it will be reduced to the maxLimit value.

More on Controllers 291

CakePHP Book, Release 4.x

Joining Additional Associations

Additional associations can be loaded to the paginated table by using the contain parameter:

public function index()

{
$this->paginate = [
'contain' => ['Authors', 'Comments']
1;
$this->set('articles', $this->paginate($this->Articles));
}

Out of Range Page Requests

The PaginatorComponent will throw a NotFoundException when trying to access a non-existent page, i.e. page
number requested is greater than total page count.

So you could either let the normal error page be rendered or use a try catch block and take appropriate action when a
NotFoundException is caught:

use Cake\Http\Exception\NotFoundException;

public function index()

{
try {
$this->paginate();
} catch (NotFoundException $e) {
// Do something here like redirecting to first or last page.
// $this->request->getAttribute('paging'’) will give you required info.
3
}

Pagination in the View

Check the PaginatorHelper documentation for how to create links for pagination navigation.

Request Handling

class RequestHandlerComponent (ComponentCollection $collection, array $config = [])

Deprecated since version 4.4.0: The RequestHandlerComponent is deprecated. See the 4.4 Migration Guide for how
to upgrade your application.

The Request Handler component is used in CakePHP to obtain additional information about the HTTP requests that
are made to your application. You can use it to see what content types clients prefer, automatically parse request input,
define how content types map to view classes or template paths.

By default RequestHandler will automatically detect AJAX requests based on the X-Requested-With HTTP header
that many JavaScript libraries use. When used in conjunction with Cake\Routing\Router: :extensions(), Re-
questHandler will automatically switch the layout and template files to those that match non-HTML media types. Fur-
thermore, if a helper with the same name as the requested extension exists, it will be added to the Controllers Helper

292 Chapter 10. Controllers

CakePHP Book, Release 4.x

array. Lastly, if XML/JSON data is POST ed to your Controllers, it will be parsed into an array which is assigned to
$this->request->getData(), and can then be accessed as you would standard POST data. In order to make use of
RequestHandler it must be included in your initialize () method:

class WidgetsController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('RequestHandler');
}
// Rest of controller
}

Obtaining Request Information

Request Handler has several methods that provide information about the client and its request.

RequestHandlerComponent : : accepts ($type = null)

$type can be a string, or an array, or null. If a string, accepts () will return true if the client accepts the content
type. If an array is specified, accepts () return true if any one of the content types is accepted by the client. If
null returns an array of the content-types that the client accepts. For example:

class ArticlesController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('RequestHandler');
}
public function beforeFilter(EventInterface S$event)
{
if ($this->RequestHandler->accepts('html')) {
// Execute code only if client accepts an HTML (text/html)
// response.
} elseif ($this->RequestHandler->accepts('xml')) {
// Execute XML-only code
1
if ($this->RequestHandler->accepts(['xml', 'rss', 'atom'])) {
// Executes if the client accepts any of the above: XML, RSS
// or Atom.
}
}
}

More on Controllers 293

CakePHP Book, Release 4.x

Automatically Decoding Request Data

This feature has been removed from RequestHandlerComponent in 4.0. You should use body-parser-middleware
instead.

Checking Content-Type Preferences

RequestHandlerComponent : : prefers ($type = null)

Determines which content-types the client prefers. If no parameter is given the most likely content type is returned.
If $type is an array the first type the client accepts will be returned. Preference is determined primarily by the file
extension parsed by Router if one has been provided, and secondly by the list of content-types in HTTP_ACCEPT:

$this->RequestHandler->prefers('json');

Responding To Requests

RequestHandlerComponent : : renderAs ($controller, $type)

Change the render mode of a controller to the specified type. Will also append the appropriate helper to the controller’s
helper array if available and not already in the array:

// Force the controller to render an xml response.
$this->RequestHandler->renderAs($this, 'xml');

This method will also attempt to add a helper that matches your current content type. For example if you render as rss,
the RssHelper will be added.

RequestHandlerComponent : : respondAs ($type, $options)

Sets the response header based on content-type map names. This method lets you set a number of response properties
at once:

$this->RequestHandler->respondAs('xml', [
// Force download
'attachment' => true,
'charset' => 'UTF-8'

D;

RequestHandlerComponent: :responseType ()

Returns the current response type Content-type header or null if one has yet to be set.

Taking Advantage of HTTP Cache Validation

The HTTP cache validation model is one of the processes used for cache gateways, also known as reverse proxies, to
determine if they can serve a stored copy of a response to the client. Under this model, you mostly save bandwidth, but
when used correctly you can also save some CPU processing, reducing this way response times.

Enabling the RequestHandlerComponent in your controller automatically activates a check done before rendering the
view. This check compares the response object against the original request to determine whether the response was not
modified since the last time the client asked for it.

294 Chapter 10. Controllers

CakePHP Book, Release 4.x

If response is evaluated as not modified, then the view rendering process is stopped, saving processing time, saving
bandwidth and no content is returned to the client. The response status code is then set to 304 Not Modified.

You can opt-out this automatic checking by setting the checkHt tpCache setting to false:

public function initialize(): void

{
parent::initialize();
$this->loadComponent ('RequestHandler', [
'checkHttpCache' => false
D
}

Using Custom ViewClasses

When using JsonView/XmlView you might want to override the default serialization with a custom View class, or add
View classes for other types.

You can map existing and new types to your custom classes. You can also set this automatically by using the
viewClassMap setting:

public function initialize(): void

{
parent::initialize();
$this->1loadComponent ('RequestHandler', [
'viewClassMap' => [
'json' => 'ApiKit.MyJson',
'xml' => "ApiKit.MyXml',
'csv' => 'ApiKit.Csv'
]
D;
}

Deprecated since version 4.4.0: Instead of defining viewClassMap you should use Content Type Negotiation instead.

FormProtection

class FormProtection(ComponentCollection $collection, array $config = [])

The FormProtection Component provides protection against form data tampering.

Like all components it is configured through several configurable parameters. All of these properties can be set directly
or through setter methods of the same name in your controller’s initialize () or beforeFilter () methods.

If you are using other components that process form data in their startup () callbacks, be sure to place FormProtection
Component before those components in your initialize() method.

Note: When using the FormProtection Component you must use the FormHelper to create your forms. In addition, you
must not override any of the fields’ “name” attributes. The FormProtection Component looks for certain indicators that
are created and managed by the FormHelper (especially those created in create () and end()). Dynamically altering
the fields that are submitted in a POST request, such as disabling, deleting or creating new fields via JavaScript, is
likely to cause the form token validation to fail.

More on Controllers 295

CakePHP Book, Release 4.x

Form tampering prevention

By default the FormProtectionComponent prevents users from tampering with forms in specific ways. It will prevent
the following things:

¢ Form’s action (URL) cannot be modified.

* Unknown fields cannot be added to the form.
* Fields cannot be removed from the form.

* Values in hidden inputs cannot be modified.

Preventing these types of tampering is accomplished by working with the FormHelper and tracking which fields are in
a form. The values for hidden fields are tracked as well. All of this data is combined and turned into a hash and hidden
token fields are automatically be inserted into forms. When a form is submitted, the FormProtectionComponent will
use the POST data to build the same structure and compare the hash.

Note: The FormProtectionComponent will not prevent select options from being added/changed. Nor will it prevent
radio options from being added/changed.

Usage

Configuring the security component is generally done in the controller’s initialize () or beforeFilter () callbacks
Auvailable options are:

validate
Set to false to completely skip the validation of POST requests, essentially turning off form validation.

unlockedFields
Set to a list of form fields to exclude from POST validation. Fields can be unlocked either in the Component, or
with FormHelper: :unlockField(). Fields that have been unlocked are not required to be part of the POST
and hidden unlocked fields do not have their values checked.

unlockedActions
Actions to exclude from POST validation checks.

validationFailureCallback
Callback to call in case of validation failure. Must be a valid Closure. Unset by default in which case exception
is thrown on validation failure.

Disabling form tampering checks

namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class WidgetsController extends AppController

{
public function initialize(): void
{
parent::initialize();

(continues on next page)

296 Chapter 10. Controllers

CakePHP Book, Release 4.x

(continued from previous page)

$this->loadComponent ('FormProtection');

3

public function beforeFilter(EventInterface $event)

{
parent: :beforeFilter($event);
if ($this->request->getParam('prefix') === 'Admin') {

$this->FormProtection->setConfig('validate', false);

}

}

The above example would disable form tampering prevention for admin prefixed routes.

Disabling form tampering for specific actions

There may be cases where you want to disable form tampering prevention for an action (ex. AJAX requests). You may
“unlock” these actions by listing them in $this->Security->unlockedActions in your beforeFilter():

namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class WidgetController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('FormProtection');
1
public function beforeFilter(EventInterface $event)
{
parent: :beforeFilter($event);
$this->FormProtection->setConfig('unlockedActions', ['edit']);
1
}

This example would disable all security checks for the edit action.

More on Controllers 297

CakePHP Book, Release 4.x

Handling validation failure through callbacks

If form protection validation fails it will result in a 400 error by default. You can configure this behavior by setting the
validationFailureCallback configuration option to a callback function in the controller.

By configuring a callback method you can customize how the failure handling process works:

public function beforeFilter(EventInterface S$event)

{
parent: :beforeFilter($event);
$this->FormProtection->setConfig(
'validationFailureCallback',
function (BadRequestException $exception) {
// You can either return a response instance or throw the exception
// received as argument.
}
DN
}

Checking HTTP Cache

class CheckHttpCacheComponent (ComponentCollection $collection, array $config = [])

New in version 4.4.0: The CheckHttpCacheComponent was added.

The HTTP cache validation model is one of the processes used for cache gateways, also known as reverse proxies, to
determine if they can serve a stored copy of a response to the client. Under this model, you mostly save bandwidth, but
when used correctly you can also save some CPU processing, reducing response times:

// in a Controller
public function initialize(): void
{

parent::initialize();

$this->addComponent ('CheckHttpCache');

Enabling the CheckHttpCacheComponent in your controller automatically activates a beforeRender check. This
check compares caching headers set in the response object to the caching headers sent in the request to determine
whether the response was not modified since the last time the client asked for it. The following request headers are
used:

e If-None-Match is compared with the response’s Etag header.
e If-Modified-Since is compared with the response’s Last-Modified header.

If response headers match the request header criteria, then view rendering is skipped. This saves your application
generating a view, saving bandwidth and time. When response headers match, an empty response is returned with a
304 Not Modified status code.

298 Chapter 10. Controllers

CakePHP Book, Release 4.x

Configuring Components

Many of the core components require configuration. Some examples of components requiring configuration are Se-
curity and FormProtection. Configuration for these components, and for components in general, is usually done via
loadComponent () in your Controller’s initialize () method or via the $components array:

class PostsController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('FormProtection', [
'unlockedActions' => ['index'],
D;
$this->loadComponent('Csrf');
3
3

You can configure components at runtime using the setConfig() method. Often, this is done in your controller’s
beforeFilter() method. The above could also be expressed as:

public function beforeFilter(EventInterface $event)

{

$this->FormProtection->setConfig('unlockedActions', ['index']);

}

Like helpers, components implement getConfig() and setConfig() methods to read and write configuration data:

// Read config data.
$this->FormProtection->getConfig('unlockedActions');

// Set config
$this->Csrf->setConfig('cookieName', 'token');

As with helpers, components will automatically merge their $_defaultConfig property with constructor configura-
tion to create the $_config property which is accessible with getConfig() and setConfig().

Aliasing Components
One common setting to use is the className option, which allows you to alias components. This feature is useful
when you want to replace $this->Auth or another common Component reference with a custom implementation:

// src/Controller/PostsController.php
class PostsController extends AppController

{
public function initialize(): void
{
$this->loadComponent('Auth', [
'className' => 'MyAuth'
D;
}
}

(continues on next page)

More on Controllers 299

CakePHP Book, Release 4.x

(continued from previous page)

// src/Controller/Component/MyAuthComponent.php
use Cake\Controller\Component\AuthComponent;

class MyAuthComponent extends AuthComponent

{

// Add your code to override the core AuthComponent

}

The above would alias MyAuthComponent to $this->Auth in your controllers.

Note: Aliasing a component replaces that instance anywhere that component is used, including inside other Compo-
nents.

Loading Components on the Fly

You might not need all of your components available on every controller action. In situations like this you can load a
component at runtime using the 1oadComponent () method in your controller:

// In a controller action
$this->loadComponent ('OneTimer');
$time = $this->OneTimer->getTime();

Note: Keep in mind that components loaded on the fly will not have missed callbacks called. If you rely on the
beforeFilter or startup callbacks being called, you may need to call them manually depending on when you load
your component.

Using Components

Once you’ve included some components in your controller, using them is pretty simple. Each component you use is
exposed as a property on your controller. If you had loaded up the Cake\Controller\Component\FlashComponent
in your controller, you could access it like so:

class PostsController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent('Flash');
3
public function delete()
{
if ($this->Post->delete($this->request->getData('Post.id")) {
$this->Flash->success('Post deleted.');
return $this->redirect(['action' => 'index']);
}
1

300 Chapter 10. Controllers

CakePHP Book, Release 4.x

Note: Since both Models and Components are added to Controllers as properties they share the same ‘namespace’.
Be sure to not give a component and a model the same name.

Warning: Component methods don’t have access to /development/dependency-injection like Controller actions
have. Use a service class inside your controller actions instead of a component if you need this functionality.

Creating a Component

Suppose our application needs to perform a complex mathematical operation in many different parts of the application.
We could create a component to house this shared logic for use in many different controllers.

The first step is to «create a new component file and class. Create the file in
src/Controller/Component/MathComponent.php. The basic structure for the component would look some-
thing like this:

namespace App\Controller\Component;

use Cake\Controller\Component;

class MathComponent extends Component

{
public function doComplexOperation($amountl, $amount2)
{
return $amountl + $amount2;
3
}

Note: All components must extend Cake\Controller\Component. Failing to do this will trigger an exception.

Including your Component in your Controllers

Once our component is finished, we can use it in the application’s controllers by loading it during the controller’s
initialize() method. Once loaded, the controller will be given a new attribute named after the component, through
which we can access an instance of it:

// In a controller

// Make the new component available at $this->Math,
// as well as the standard $this->Csrf

public function initialize(): void

{
parent::initialize();
$this->loadComponent('Math');
$this->loadComponent('Csrf');
}

When including Components in a Controller you can also declare a set of parameters that will be passed on to the
Component’s constructor. These parameters can then be handled by the Component:

More on Controllers 301

CakePHP Book, Release 4.x

// In your controller.
public function initialize(): void

{
parent::initialize();
$this->loadComponent('Math', [
'precision' => 2,
'randomGenerator' => 'srand'
D;
$this->loadComponent('Csrf');
}

The above would pass the array containing precision and randomGenerator to MathComponent: :initialize() in

the $config parameter.

Using Other Components in your Component

Sometimes one of your components may need to use another component. You can load other components by adding

them to the $components property:

// src/Controller/Component/CustomComponent.php
namespace App\Controller\Component;

use Cake\Controller\Component;

class CustomComponent extends Component

{
// The other component your component uses
protected $components = ['Existing'];
// Execute any other additional setup for your component.
public function initialize(array $config): void
{
$this->Existing->foo();
}
public function bar()
{
/) ...
}
}

// src/Controller/Component/ExistingComponent.php
namespace App\Controller\Component;

use Cake\Controller\Component;

class ExistingComponent extends Component

{
public function foo()
{
/) ..
}
(continues on next page)
302 Chapter 10. Controllers

CakePHP Book, Release 4.x

(continued from previous page)

Note: In contrast to a component included in a controller no callbacks will be triggered on a component’s component.

Accessing a Component’s Controller

From within a Component you can access the current controller through the registry:

$controller = $this->getController();

Component Callbacks

Components also offer a few request life-cycle callbacks that allow them to augment the request cycle.

beforeFilter (Eventinterface $event)

Is called before the controller’s beforeFilter method, but after the controller’s initialize() method.

startup (EventInterface $event)
Is called after the controller’s beforeFilter method but before the controller executes the current action handler.

beforeRender (Eventinterface $event)
Is called after the controller executes the requested action’s logic, but before the controller renders views and
layout.

shutdown (Eventinterface $event)
Is called before output is sent to the browser.

beforeRedirect (Eventinterface $event, $url, Response $response)

Is invoked when the controller’s redirect method is called but before any further action. If this method returns
false the controller will not continue on to redirect the request. The $url, and $response parameters allow you
to inspect and modify the location or any other headers in the response.

Using Redirects in Component Events

To redirect from within a component callback method you can use the following:

public function beforeFilter(EventInterface S$event)
{

$event->stopPropagation();

return $this->getController()->redirect('/");

By stopping the event you let CakePHP know that you don’t want any other component callbacks to run, and that
the controller should not handle the action any further. As of 4.1.0 you can raise a RedirectException to signal a
redirect:

use Cake\Http\Exception\RedirectException;
use Cake\Routing\Router;

(continues on next page)

More on Controllers 303

CakePHP Book, Release 4.x

(continued from previous page)

public function beforeFilter(EventInterface $event)

{

throw new RedirectException(Router::url('/"))

}

Raising an exception will halt all other event listeners and create a new response that doesn’t retain or inherit any of the
current response’s headers. When raising a RedirectException you can include additional headers:

throw new RedirectException(Router::url('/'), 302, [
'Header-Key' => 'value',

D;

New in version 4.1.0.

304 Chapter 10. Controllers

CHAPTER 11

Views

class Cake\View\View

Views are the V in MVC. Views are responsible for generating the specific output required for the request. Often
this is in the form of HTML, XML, or JSON, but streaming files and creating PDFs that users can download are also
responsibilities of the View Layer.

CakePHP comes with a few built-in View classes for handling the most common rendering scenarios:
* To create XML or JSON webservices you can use the JSON and XML views.
* To serve protected files, or dynamically generated files, you can use Sending Files.

* To create multiple themed views, you can use Themes.

The App View
AppView is your application’s default View class. AppView itself extends the Cake\View\View class included in
CakePHP and is defined in src/View/AppView.php as follows:

<?php
namespace App\View;

use Cake\View\View;

class AppView extends View
{

}

You can use your AppView to load helpers that will be used for every view rendered in your application. CakePHP
provides an initialize() method that is invoked at the end of a View’s constructor for this kind of use:

305

CakePHP Book, Release 4.x

<?php
namespace App\View;

use Cake\View\View;

class AppView extends View

{
public function initialize(): void
{
// Always enable the MyUtils Helper
$this->loadHelper('MyUtils');
}
}

View Templates

The view layer of CakePHP is how you speak to your users. Most of the time your views will be rendering
HTML/XHTML documents to browsers, but you might also need to reply to a remote application via JSON, or output
a CSV file for a user.

CakePHP template files are regular PHP files and utilize the alternative PHP syntax'?? for control structures and output.
These files contain the logic necessary to prepare the data received from the controller into a presentation format that
is ready for your audience.

Alternative Echos

Echo, or print a variable in your template:

<?php echo $variable; ?>

Using Short Tag support:

<?= $variable ?>

Alternative Control Structures

Control structures, like 1 f, for, foreach, switch, and while can be written in a simplified format. Notice that there
are no braces. Instead, the end brace for the foreach is replaced with endforeach. Each of the control structures
listed above has a similar closing syntax: endif, endfor, endforeach, and endwhile. Also notice that instead of
using a semicolon after each structure (except the last one), there is a colon.

The following is an example using foreach:

<?php foreach ($todo as S$item): ?>
<?= $item ?></1li>

<?php endforeach; 7>

123 https://php.net/manual/en/control-structures.alternative-syntax.php

306 Chapter 11. Views

https://php.net/manual/en/control-structures.alternative-syntax.php

CakePHP Book, Release 4.x

Another example, using if/elseif/else. Notice the colons:

<?php if ($username === 'sally'): ?>
<h3>Hi Sally</h3>
<?php elseif ($username === 'joe'): ?>

<h3>Hi Joe</h3>
<?php else: ?>

<h3>Hi unknown user</h3>
<?php endif; 7>

If you'd prefer to use a templating language like Twig'>*, checkout the CakePHP Twig Plugin'>

Template files are stored in templates/, in a folder named after the controller that uses the files, and named after the
action it corresponds to. For example, the view file for the Products controller’s view() action, would normally be
found in templates/Products/view.php.

The view layer in CakePHP can be made up of a number of different parts. Each part has different uses, and will be
covered in this chapter:

templates: Templates are the part of the page that is unique to the action being run. They form the meat of your
application’s response.

elements: small, reusable bits of view code. Elements are usually rendered inside views.

layouts: template files that contain presentational code that wraps many interfaces in your application. Most
views are rendered inside a layout.

helpers: these classes encapsulate view logic that is needed in many places in the view layer. Among other
things, helpers in CakePHP can help you build forms, build AJAX functionality, paginate model data, or serve
RSS feeds.

cells: these classes provide miniature controller-like features for creating self contained UI components. See the
View Cells documentation for more information.

View Variables

Any variables you set in your controller with set () will be available in both the view and the layout your action renders.
In addition, any set variables will also be available in any element. If you need to pass additional variables from the
view to the layout you can either call set () in the view template, or use View Blocks.

You should remember to always escape any user data before outputting it as CakePHP does not automatically escape
output. You can escape user content with the h() function:

<?= h($user->bio); ?>

124 https://twig.symfony.com
125 https://github.com/cakephp/twig-view

View Templates 307

https://twig.symfony.com
https://github.com/cakephp/twig-view

CakePHP Book, Release 4.x

Setting View Variables

Cake\View\View: : set(string $var, mixed $value)

Views have a set () method that is analogous to the set () found in Controller objects. Using set() from your view
file will add the variables to the layout and elements that will be rendered later. See Setting View Variables for more
information on using set ().

In your view file you can do:

$this->set('activeMenuButton', 'posts');

Then, in your layout, the $activeMenuButton variable will be available and contain the value ‘posts’.

Extending Views

View extending allows you to wrap one view in another. Combining this with view blocks gives you a powerful way to
keep your views DRY . For example, your application has a sidebar that needs to change depending on the specific view
being rendered. By extending a common view file, you can avoid repeating the common markup for your sidebar, and
only define the parts that change:

<!-- templates/Common/view.php -->
<hl><?= h($this->fetch('title')) 7?></hl>
<?= $this->fetch('content') ?>

<div class="actions">
<h3>Related actions</h3>

<?= $this->fetch('sidebar') 7>

</div>

The above view file could be used as a parent view. It expects that the view extending it will define the sidebar and
title blocks. The content block is a special block that CakePHP creates. It will contain all the uncaptured content
from the extending view. Assuming our view file has a $post variable with the data about our post, the view could
look like:

<!-- templates/Posts/view.php -->
<?php
$this->extend('/Common/view');

$this->assign('title', $post->title);

$this->start('sidebar');

7>

<1li>

<?php

echo $this->Html->link('edit', [
'action' => 'edit',

$post->id,
D;
7>
</1i>

<?php $this->end(); ?>

(continues on next page)

308 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)

// The remaining content will be available as the 'content' block
// In the parent view.
<?= h($post->body) ?>

The post view above shows how you can extend a view, and populate a set of blocks. Any content not already in a
defined block will be captured and put into a special block named content. When a view contains a call to extend (),
execution continues to the bottom of the current view file. Once it is complete, the extended view will be rendered.
Calling extend () more than once in a view file will override the parent view that will be processed next:

$this->extend('/Common/view');
$this->extend('/Common/index");
The above will result in /Common/index.php being rendered as the parent view to the current view.

You can nest extended views as many times as necessary. Each view can extend another view if desired. Each parent
view will get the previous view’s content as the content block.

Note: You should avoid using content as a block name in your application. CakePHP uses this for uncaptured content
in extended views.

Extending Layouts

Just like views, layouts can also be extended. Like views, you use extend () to extend layouts. Layout extensions can
update or replace blocks, and update or replace the content rendered by the child layout. For example if we wanted to
wrap a block with additional markup you could do:

// Our layout extends the application layout.
$this->extend('application');
$this->prepend('content', '<main class="nosidebar">");
$this->append('content', '</main>"');

// Output more markup.

// Remember to echo the contents of the previous layout.
echo $this->fetch('content');

Using View Blocks

View blocks provide a flexible API that allows you to define slots or blocks in your views/layouts that will be defined
elsewhere. For example, blocks are ideal for implementing things such as sidebars, or regions to load assets at the
bottom/top of the layout. Blocks can be defined in two ways: either as a capturing block, or by direct assignment. The
start(), append(), prepend(), assign(), fetch(), and end () methods allow you to work with capturing blocks:

// Create the sidebar block.
$this->start('sidebar');
echo $this->element('sidebar/recent_topics');
echo $this->element('sidebar/recent_comments');
(continues on next page)

Extending Layouts 309

CakePHP Book, Release 4.x

(continued from previous page)

$this->end(Q);

// Append into the sidebar later on.
$this->start('sidebar');

echo $this->fetch('sidebar');

echo $this->element('sidebar/popular_topics');
$this->end();

You can also append into a block using append():

$this->append('sidebar');
echo $this->element('sidebar/popular_topics');
$this->endQ;

// The same as the above.
$this->append('sidebar', $this->element('sidebar/popular_topics'));

If you need to clear or overwrite a block there are a couple of alternatives. The reset () method will clear or overwrite
a block at any time. The assign() method with an empty content string can also be used to clear the specified block.:

// Clear the previous content from the sidebar block.
$this->reset('sidebar');

// Assigning an empty string will also clear the sidebar block.
$this->assign('sidebar', '');

Assigning a block’s content is often useful when you want to convert a view variable into a block. For example, you
may want to use a block for the page title, and sometimes assign the title as a view variable in the controller:

// In view file or layout above $this->fetch('title')
$this->assign('title', $title);

The prepend () method allows you to prepend content to an existing block:

// Prepend to sidebar
$this->prepend('sidebar', 'this content goes on top of sidebar');

Displaying Blocks
You can display blocks using the fetch() method. fetch() will output a block, returning “’ if a block does not exist:

<?= $this->fetch('sidebar') ?>

You can also use fetch to conditionally show content that should surround a block should it exist. This is helpful in
layouts, or extended views where you want to conditionally show headings or other markup:

// In templates/layout/default.php
<?php if ($this->fetch('menu')): 7>
<div class="menu">
<h3>Menu options</h3>
<?= $this->fetch('menu') ?>
(continues on next page)

310 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)
</div>
<?php endif; 7>

You can also provide a default value for a block if it does not exist. This allows you to add placeholder content when a
block does not exist. You can provide a default value using the second argument:

<div class="shopping-cart">

<h3>Your Cart</h3>

<?= $this->fetch('cart', 'Your cart is empty') ?>
</div>

Using Blocks for Script and CSS Files

The HtmlHelper ties into view blocks, and its script (), css(), and meta() methods each update a block with the
same name when used with the block = true option:

<?php

// In your view file
$this->Html->script('carousel', ['block' => true]);
$this->Html->css('carousel', ['block' => true]);
7>

// In your layout file.
<!DOCTYPE html>
<html lang="en">
<head>
<title><?= h($this->fetch('title')) ?></title>
<?= $this->fetch('script') ?>
<?= $this->fetch('css') 7>
</head>
// Rest of the layout follows

The Cake\View\Helper\HtmlHelper also allows you to control which block the scripts and CSS go to:

// In your view
$this->Html->script('carousel', ['block' => 'scriptBottom']);

// In your layout
<?= $this->fetch('scriptBottom') ?>

Layouts

A layout contains presentation code that wraps around a view. Anything you want to see in all of your views should be
placed in a layout.

CakePHP’s default layout is located at templates/layout/default.php. If you want to change the overall look of your
application, then this is the right place to start, because controller-rendered view code is placed inside of the default
layout when the page is rendered.

Other layout files should be placed in templates/layout. When you create a layout, you need to tell CakePHP where
to place the output of your views. To do so, make sure your layout includes a place for $this->fetch('content')

Layouts 311

CakePHP Book, Release 4.x

Here’s an example of what a default layout might look like:

<!DOCTYPE html>

<html lang="en">

<head>

<title><?= h($this->fetch('title')) ?></title>

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon">
<!-- Include external files and scripts here (See HTML helper for more info.) -->
<?php

echo $this->fetch('meta');

echo $this->fetch('css');

echo $this->fetch('script');

7>

</head>

<body>

<l-- If you'd like some sort of menu to
show up on all of your views, include it here -->
<div id="header">
<div id="menu">...</div>
</div>

<!-- Here's where I want my views to be displayed -->
<?= $this->fetch('content') ?>

<!-- Add a footer to each displayed page -->
<div id="footer">...</div>

</body>
</html>

The script, css and meta blocks contain any content defined in the views using the built-in HTML helper. Useful
for including JavaScript and CSS files from views.

Note: When using HtmlHelper: :css() or HtmlHelper: :script () in template files, specify 'block' => true
to place the HTML source in a block with the same name. (See API for more details on usage).

The content block contains the contents of the rendered view.

You can set the title block content from inside your view file:

$this->assign('title', 'View Active Users');

Empty values for the title block will be automatically replaced with a representation of the current template path,
such as 'Admin/Articles’.

You can create as many layouts as you wish: just place them in the templates/layout directory, and switch between
them inside of your controller actions using the controller or view’s $1ayout property:

// From a controller
public function view()
{
// Set the layout.
$this->viewBuilder()->setLayout('admin');
(continues on next page)

312 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)

}

// From a view file
$this->layout = 'loggedin';

For example, if a section of my site included a smaller ad banner space, I might create a new layout with the smaller
advertising space and specify it as the layout for all controllers’ actions using something like:

namespace App\Controller;

class UsersController extends AppController

{
public function viewActive()
{
$this->set('title', 'View Active Users');
$this->viewBuilder () ->setLayout('default_small_ad');
3
public function viewImage()
{
$this->viewBuilder () ->setLayout('image');
// Output user image
3
}

Besides a default layout CakePHP’s official skeleton app also has an ‘ajax’ layout. The Ajax layout is handy for crafting
AJAX responses - it’s an empty layout. (Most AJAX calls only require a bit of markup in return, rather than a fully-
rendered interface.)

The skeleton app also has a default layout to help generate RSS.

Using Layouts from Plugins

If you want to use a layout that exists in a plugin, you can use pl/ugin syntax. For example, to use the contact layout
from the Contacts plugin:

namespace App\Controller;

class UsersController extends AppController

{
public function viewActive()
{
$this->viewBuilder () ->setLayout('Contacts.contact');
3
}

Layouts 313

CakePHP Book, Release 4.x

Elements

Cake\View\View: :element (string $elementPath, array $data, array $options = [])

Many applications have small blocks of presentation code that need to be repeated from page to page, sometimes
in different places in the layout. CakePHP can help you repeat parts of your website that need to be reused. These
reusable parts are called Elements. Ads, help boxes, navigational controls, extra menus, login forms, and callouts are
often implemented in CakePHP as elements. An element is basically a mini-view that can be included in other views,
in layouts, and even within other elements. Elements can be used to make a view more readable, placing the rendering
of repeating elements in its own file. They can also help you re-use content fragments in your application.

Elements live in the templates/element/ folder, and have the .php filename extension. They are output using the element
method of the view:

echo $this->element('helpbox');

Passing Variables into an Element

You can pass data to an element through the element’s second argument:

echo $this->element('helpbox', [
'helptext' => 'Oh, this text is very helpful.',
D;

Inside the element file, all the passed variables are available as members of the parameter array (in the same
way that Controller::set() in the controller works with template files). In the above example, the tem-
plates/element/helpbox.php file can use the $helptext variable:

// Inside templates/element/helpbox.php
echo $helptext; // Outputs ‘Oh, this text is very helpful.’

Keep in mind that in those view vars are merged with the view vars from the view itself. So all view vars set using
Controller::set() in the controller and View: :set () in the view itself are also available inside the element.

The View: :element () method also supports options for the element. The options supported are ‘cache’ and ‘call-
backs’. An example:

echo $this->element('helpbox', [
'helptext' => "This is passed to the element as ,
'foobar' => "This is passed to the element as ,

1,
[
// uses the ‘long_view cache configuration
'cache' => 'long_view',
// set to true to have before/afterRender called for the element
'callbacks' => true,
]

);

Element caching is facilitated through the Cache class. You can configure elements to be stored in any Cache configu-
ration you’ve set up. This gives you a great amount of flexibility to decide where and for how long elements are stored.
To cache different versions of the same element in an application, provide a unique cache key value using the following
format:

314 Chapter 11. Views

CakePHP Book, Release 4.x

$this->element ('helpbox', [1, [
'cache' => ['config' => 'short', 'key' => 'unique value'],
]
);

If you need more logic in your element, such as dynamic data from a datasource, consider using a View Cell instead of
an element. Find out more about View Cells.

Caching Elements

You can take advantage of CakePHP view caching if you supply a cache parameter. If set to true, it will cache the
element in the ‘default’ Cache configuration. Otherwise, you can set which cache configuration should be used. See
Caching for more information on configuring Cache. A simple example of caching an element would be:

echo $this->element('helpbox', [], ['cache' => truel);

If you render the same element more than once in a view and have caching enabled, be sure to set the ‘key’ parameter
to a different name each time. This will prevent each successive call from overwriting the previous element () call’s
cached result. For example:

echo $this->element(

'helpbox',

['var' => $var],

['cache' => ['key' => 'first_use', 'config' => 'view_long']]
);
echo $this->element(

'helpbox',

['var' => $differenVar],

['cache' => ['key' => 'second_use', 'config' => 'view_long']]

s

The above will ensure that both element results are cached separately. If you want all element caching to use the same
cache configuration, you can avoid some repetition by setting View: : $elementCache to the cache configuration you
want to use. CakePHP will use this configuration when none is given.

Requesting Elements from a Plugin

If you are using a plugin and wish to use elements from within the plugin, just use the familiar plugin syntax. If the
view is being rendered for a plugin controller/action, the plugin name will automatically be prefixed onto all elements
used, unless another plugin name is present. If the element doesn’t exist in the plugin, it will look in the main APP
folder:

echo $this->element('Contacts.helpbox');

If your view is a part of a plugin, you can omit the plugin name. For example, if you are in the ContactsController
of the Contacts plugin, the following:

echo $this->element('helpbox');

// and
echo $this->element('Contacts.helpbox');

Elements 315

CakePHP Book, Release 4.x

are equivalent and will result in the same element being rendered.

For elements inside subfolder of a plugin (for example, plugins/Contacts/Template/element/sidebar/helpbox.php),
use the following:

echo $this->element('Contacts.sidebar/helpbox');

Routing prefix and Elements

If you have a Routing prefix configured, the Element path resolution can switch to a prefix location, as Layouts and
action View do. Assuming you have a prefix “Admin” configured and you call:

echo $this->element('my_element');

The element first be looked for in templates/Admin/element/. If such a file does not exist, it will be looked for in the
default location.

Caching Sections of Your View

Cake\View\View: :cache(callable $block, array $options = [])

Sometimes generating a section of your view output can be expensive because of rendered View Cells or expensive
helper operations. To help make your application run faster CakePHP provides a way to cache view sections:

// Assuming some local variables

echo $this->cache(function () use ($user, $article) {
echo $this->cell('UserProfile', [$user]);
echo $this->cell('ArticleFull', [$article]);

}, ['key' == 'my_view_key']);

By default cached view content will go into the View: : $elementCache cache config, but you can use the config
option to change this.

View Events

Like Controller, view trigger several events/callbacks that you can use to insert logic around the rendering life-cycle:

Event List

* View.beforeRender

e View.beforeRenderFile
* View.afterRenderFile
e View.afterRender

e View.beforeLayout

e View.afterLayout

You can attach application event listeners to these events or use Helper Callbacks.

316 Chapter 11. Views

CakePHP Book, Release 4.x

Creating Your Own View Classes

You may need to create custom view classes to enable new types of data views, or add additional custom view-rendering
logic to your application. Like most components of CakePHP, view classes have a few conventions:

* View class files should be put in src/View. For example: src¢/View/PdfView.php
* View classes should be suffixed with View. For example: PdfView.

e When referencing view class names you should omit the View suffix. For example:
$this->viewBuilder()->setClassName('Pdf');.

You’ll also want to extend View to ensure things work correctly:

// In src/View/PdfView.php
namespace App\View;

use Cake\View\View;

class PdfView extends View

{
public function render($view = null, $layout = null)
{
// Custom logic here.
3
}

Replacing the render method lets you take full control over how your content is rendered.

More About Views

View Cells

View cells are small mini-controllers that can invoke view logic and render out templates. The idea of cells is borrowed
from cells in Ruby'?®, where they fulfill a similar role and purpose.

When to use Cells

Cells are ideal for building reusable page components that require interaction with models, view logic, and rendering
logic. A simple example would be the cart in an online store, or a data-driven navigation menu in a CMS.

126 https://github.com/trailblazer/cells

Creating Your Own View Classes 317

https://github.com/trailblazer/cells

CakePHP Book, Release 4.x

Creating a Cell
To create a cell, define a class in src/View/Cell and a template in templates/cell/. In this example, we’ll be making

a cell to display the number of messages in a user’s notification inbox. First, create the class file. Its contents should
look like:

namespace App\View\Cell;
use Cake\View\Cell;

class InboxCell extends Cell

{
public function display()
{
}

}

Save this file into src/View/Cell/InboxCell.php. As you can see, like other classes in CakePHP, Cells have a few
conventions:

¢ Cells live in the App\View\Cell namespace. If you are making a cell in a plugin, the namespace would be
PluginName\View\Cell.

¢ Class names should end in Cell.
¢ Classes should inherit from Cake\View\Cell.

We added an empty display () method to our cell; this is the conventional default method when rendering a cell.
We’ll cover how to use other methods later in the docs. Now, create the file templates/cell/Inbox/display.php. This
will be our template for our new cell.

You can generate this stub code quickly using bake:

bin/cake bake cell Inbox

Would generate the code we created above.

Implementing the Cell
Assume that we are working on an application that allows users to send messages to each other. We have a Messages

model, and we want to show the count of unread messages without having to pollute AppController. This is a perfect
use case for a cell. In the class we just made, add the following:

namespace App\View\Cell;
use Cake\View\Cell;

class InboxCell extends Cell

{
public function display()
{
$unread = $this->fetchTable('Messages')->find('unread');
$this->set('unread_count', $unread->count());
1
}

318 Chapter 11. Views

CakePHP Book, Release 4.x

Because Cells use the LocatorAwareTrait and ViewVarsTrait, they behave very much like a controller would.
We can use the fetchTable() and set() methods just like we would in a controller. In our template file, add the
following:

<!-- templates/cell/Inbox/display.php -->
<div class="notification-icon">

You have <?7= S$unread_count 7> unread messages.
</div>

Note: Cell templates have an isolated scope that does not share the same View instance as the one used to render
template and layout for the current controller action or other cells. Hence they are unaware of any helper calls made or
blocks set in the action’s template / layout and vice versa.

Loading Cells

Cells can be loaded from views using the cell () method and works the same in both contexts:

// Load an application cell
$cell = $this->cell('Inbox");

// Load a plugin cell
$cell = $this->cell('Messaging.Inbox');

The above will load the named cell class and execute the display () method. You can execute other methods using
the following:

// Run the expanded() method on the Inbox cell
$cell = $this->cell('Inbox::expanded');

If you need controller logic to decide which cells to load in a request, you can use the Cel1Trait in your controller to
enable the cell () method there:

namespace App\Controller;

use App\Controller\AppController;
use Cake\View\CellTrait;

class DashboardsController extends AppController
{
use CellTrait;

// More code.

More About Views 319

CakePHP Book, Release 4.x

Passing Arguments to a Cell

You will often want to parameterize cell methods to make cells more flexible. By using the second and third arguments
of cell(), you can pass action parameters and additional options to your cell classes, as an indexed array:

$cell = $this->cell('Inbox::recent', ['-3 days']);

The above would match the following function signature:

public function recent($since)
{
}

Rendering a Cell

Once a cell has been loaded and executed, you’ll probably want to render it. The easiest way to render a cell is to echo
it:

<?= $cell 7>

This will render the template matching the lowercased and underscored version of our action name like display.php.

Because cells use View to render templates, you can load additional cells within a cell template if required.

Note: Echoing a cell uses the PHP __toString() magic method which prevents PHP from showing the filename
and line number for any fatal errors raised. To obtain a meaningful error message, it is recommended to use the
Cell::render () method, for example <?= $cell->render() 7>.

Rendering Alternate Templates

By convention cells render templates that match the action they are executing. If you need to render a different view
template, you can specify the template to use when rendering the cell:

// Calling render() explicitly
echo $this->cell('Inbox::recent', ['-3 days'])->render('messages');

// Set template before echoing the cell.
$cell = $this->cell('Inbox");

$cell->viewBuilder()->setTemplate('messages');

echo $cell;

320 Chapter 11. Views

CakePHP Book, Release 4.x

Caching Cell Output

When rendering a cell you may want to cache the rendered output if the contents don’t change often or to help improve
performance of your application. You can define the cache option when creating a cell to enable & configure caching:

// Cache using the default config and a generated key
$cell = $this->cell('Inbox', [], ['cache' => true]);

// Cache to a specific cache config and a generated key
$cell = $this->cell('Inbox', [], ['cache' => ['config' => 'cell_cache']]);

// Specify the key and config to use.
$cell = $this->cell('Inbox', [1, L[
'cache' => ['config' => 'cell_cache', 'key' => 'inbox_' . $user->id]

D;

If a key is generated the underscored version of the cell class and template name will be used.

Note: A new View instance is used to render each cell and these new objects do not share context with the main template
/ layout. Each cell is self-contained and only has access to variables passed as arguments to the View: :cell() call.

Paginating Data inside a Cell

Creating a cell that renders a paginated result set can be done by leveraging a paginator class of the ORM. An example
of paginating a user’s favorite messages could look like:

namespace App\View\Cell;

use Cake\View\Cell;
use Cake\Datasource\Paging\NumericPaginator;

class FavoritesCell extends Cell
{
public function display($user)
{
// Create a paginator
$paginator = new NumericPaginator();

// Paginate the model

$results = $paginator->paginate(
$this->fetchTable('Messages'),
$this->request->getQueryParams(),

[
// Use a parameterized custom finder.
'finder' => ['favorites' => [$user]],
// Use scoped query string parameters.
'scope' => 'favorites',

]

(continues on next page)

More About Views 321

CakePHP Book, Release 4.x

(continued from previous page)

// Set the paging params as a request attribute for use the PaginatorHelper

$paging = $paginator->getPagingParams() + (array)$this->request->getAttribute(
—'paging’);

$this->request = $this->request->withAttribute('paging', $paging);

$this->set('favorites', $results);

The above cell would paginate the Messages model using scoped pagination parameters.

Cell Options

Cells can declare constructor options that are converted into properties when creating a cell object:

namespace App\View\Cell;
use Cake\View\Cell;

class FavoritesCell extends Cell

{
protected $ validCellOptions = ['limit'];
protected $limit = 3;
public function display($userld)
{
$result = $this->fetchTable('Users')->find('friends', ['for' => $userId])
->limit($this->1limit)
->allQ);
$this->set('favorites', $result);
3
}

Here we have defined a $1imit property and add 1imit as a cell option. This will allow us to define the option when
creating the cell:

$cell = $this->cell('Favorites', [$user->id], ['limit' => 10])

Cell options are handy when you want data available as properties allowing you to override default values.

Using Helpers inside a Cell

Cells have their own context and their own View instance but Helpers loaded inside your AppView: :initialize()
function are still loaded as usual.

Loading a specific Helper just for a specific cell can be done via the following example:

namespace App\View\Cell;
use Cake\View\Cell;

(continues on next page)

322 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)

class FavoritesCell extends Cell

{
public function initialize(): void {
$this->viewBuilder () ->addHelper ('MyCustomHelper');
}
}
Themes

Themes in CakePHP are simply plugins that focus on providing template files. See the section on Creating Your Own
Plugins. You can take advantage of themes, allowing you to switch the look and feel of your page quickly. In addition
to template files, they can also provide helpers and cells if your theming requires that. When using cells and helpers
from your theme, you will need to continue using the plugin syntax.

First ensure your theme plugin is loaded in your application’s bootstrap method. For example:

// Load our plugin theme residing in the folder /plugins/Modern
$this->addPlugin('Modern');

To use themes, set the theme name in your controller’s action or beforeRender () callback:

class ExamplesController extends AppController

{
public function beforeRender (\Cake\Event\EventInterface $event)
{
$this->viewBuilder () ->setTheme('Modern');
}
}

Theme template files need to be within a plugin with the same name. For example, the above theme would be found
in plugins/Modern/templates. It’s important to remember that CakePHP expects PascalCase plugin/theme names.
Beyond that, the folder structure within the plugins/Modern/templates folder is exactly the same as templates/.

For example, the view file for an edit action of a Posts controller would reside at plug-
ins/Modern/templates/Posts/edit.php. Layout files would reside in plugins/Modern/templates/layout/. You
can provide customized templates for plugins with a theme as well. If you had a plugin named ‘Cms’, that contained a
TagsController, the Modern theme could provide plugins/Modern/templates/plugin/Cms/Tags/edit.php to replace
the edit template in the plugin.

If a view file can’t be found in the theme, CakePHP will try to locate the view file in the templates/ folder. This way,
you can create master template files and simply override them on a case-by-case basis within your theme folder.

Theme Assets

Because themes are standard CakePHP plugins, they can include any necessary assets in their webroot direc-
tory. This allows for packaging and distribution of themes. Whilst in development, requests for theme as-
sets will be handled by CakeRoutingMiddlewareAssetMiddleware (which is loaded by default in cakephp/app
Application: :middleware()). To improve performance for production environments, it’s recommended that you
Improve Your Application’s Performance.

All of CakePHP’s built-in helpers are aware of themes and will create the correct paths automatically. Like template
files, if a file isn’t in the theme folder, it will default to the main webroot folder:

More About Views 323

CakePHP Book, Release 4.x

// When in a theme with the name of 'purple_cupcake'
$this->Html->css('main.css');

// creates a path like
/purple_cupcake/css/main.css

// and links to
plugins/PurpleCupcake/webroot/css/main.css

JSON and XML views

The JsonView and XmlView integration with CakePHP’s Content Type Negotiation features and let you create JSON
and XML responses.

These view classes are most commonly used alongside CakeControllerController: :viewClasses().

There are two ways you can generate data views. The first is by using the serialize option, and the second is by
creating normal template files.

Enabling Data Views in Your Application

In your AppController or in an individual controller you can implement the viewClasses () method and provide
all of the views you want to support:

use Cake\View\JsonView;
use Cake\View\XmlView;

public function viewClasses(): array
{
return [JsonView::class, XmlView::class];

}

You can optionally enable the json and/or xml extensions with Routing File Extensions. This will allow you to access
the JSON, XML or any other special format views by using a custom URL ending with the name of the response type as
a file extension such as http://example.com/articles. json.

By default, when not enabling Routing File Extensions, the request, the Accept header is used for, selecting which
type of format should be rendered to the user. An example Accept format that is used to render JSON responses is
application/json.

Changed in version 4.4.0: Prior to 4.4.0, You need to use the RequestHandlerComponent to do content-type negoti-
tation.

Using Data Views with the Serialize Key

The serialize option indicates which view variable(s) should be serialized when using a data view. This lets you
skip defining template files for your controller actions if you don’t need to do any custom formatting before your data
is converted into json/xml.

If you need to do any formatting or manipulation of your view variables before generating the response, you should use
template files. The value of serialize can be either a string or an array of view variables to serialize:

324 Chapter 11. Views

CakePHP Book, Release 4.x

namespace App\Controller;
use Cake\View\JsonView;

class ArticlesController extends AppController

{
public function viewClasses(): array
{
return [JsonView::class];
3
public function index()
{
// Set the view vars that have to be serialized.
$this->set('articles', $this->paginate());
// Specify which view vars JsonView should serialize.
$this->viewBuilder()->setOption('serialize', 'articles');
3
}

You can also define serialize as an array of view variables to combine:

namespace App\Controller;
use Cake\View\JsonView;

class ArticlesController extends AppController

{
public function viewClasses(): array
{
return [JsonView::class];
3
public function index()
{
// Some code that created $articles and $comments
// Set the view vars that have to be serialized.
$this->set(compact('articles', 'comments'));
// Specify which view vars JsonView should serialize.
$this->viewBuilder()->setOption('serialize', ['articles', 'comments']);
}
3

Defining serialize as an array has added the benefit of automatically appending a top-level <response> element
when using XmlView. If you use a string value for serialize and XmlView, make sure that your view variable has a
single top-level element. Without a single top-level element the Xml will fail to generate.

More About Views 325

CakePHP Book, Release 4.x

Using a Data View with Template Files

You should use template files if you need to manipulate your view content before creating the final output. For example,
if we had articles with a field containing generated HTML, we would probably want to omit that from a JSON response.
This is a situation where a view file would be useful:

// Controller code
class ArticlesController extends AppController

{
public function index()
{
$articles = $this->paginate('Articles');
$this->set(compact('articles'));
1
}

// View code - templates/Articles/json/index.php
foreach ($articles as $article) {
unset($article->generated_html);

}

echo json_encode(compact('articles'));

You can do more complex manipulations, or use helpers to do formatting as well. The data view classes don’t support
layouts. They assume that the view file will output the serialized content.

Creating XML Views

class XmlView

By default when using serialize the XmlView will wrap your serialized view variables with a <response> node.
You can set a custom name for this node using the rootNode option.

The XmlView class supports the xmlOptions option that allows you to customize the options, such as tags or
attributes, used to generate XML.

An example of using Xm1View would be to generate a sitemap.xml'?’. This document type requires that you change
rootNode and set attributes. Attributes are defined using the @ prefix:

public function sitemap()

{
$pages = $this->Pages->find()->allQ);
$urls = [1;
foreach ($pages as $page) {
$urls[] = [
'loc' => Router::url(['controller' => 'Pages', 'action' => 'view', $page->

—slug, '_full' => true]),
'lastmod' => $page->modified->format('Y-m-d'),
'changefreq' => 'daily’,
'priority' => '0.5'
1;
}

// Define a custom root node in the generated document.
(continues on next page)

127 https://www.sitemaps.org/protocol.html

326 Chapter 11. Views

https://www.sitemaps.org/protocol.html

CakePHP Book, Release 4.x

(continued from previous page)

$this->viewBuilder ()
->setOption('rootNode', 'urlset')
->setOption('serialize', ['@xmlns', 'url']);
$this->set ([
// Define an attribute on the root node.
'@xmlns' => 'http://www.sitemaps.org/schemas/sitemap/0.9',
'url' => $urls

D;

Creating JSON Views

class JsonView

The JsonView class supports the jsonOptions option that allows you to customize the bit-mask used to generate
JSON. See the json_encode'”® documentation for the valid values of this option.

For example, to serialize validation error output of CakePHP entities in a consistent form of JSON do:

// In your controller's action when saving failed
$this->set('errors', $articles->errors());
$this->viewBuilder ()
->setOption('serialize', ['errors'])
->setOption('jsonOptions', JSON_FORCE_OBJECT);

JSONP Responses

When using JsonView you can use the special view variable jsonp to enable returning a JSONP response. Setting it to
true makes the view class check if query string parameter named “callback™ is set and if so wrap the json response in
the function name provided. If you want to use a custom query string parameter name instead of “callback” set jsonp
to required name instead of true.

Choosing a View Class

While you can use the viewClasses hook method most of the time, if you want total control over view class selection
you can directly choose the view class:

// src/Controller/VideosController.php
namespace App\Controller;

use App\Controller\AppController;
use Cake\Http\Exception\NotFoundException;

class VideosController extends AppController

{

public function export($format = ''")

{
$format = strtolower($format);
(continues on next page)

128 https://php.net/json_encode

More About Views 327

https://php.net/json_encode

CakePHP Book, Release 4.x

(continued from previous page)

// Format to view mapping
$formats = [

'xml' => "Xml',

'json' => 'Json',

18

// Error on unknown type
if (lisset($formats[$format])) {
throw new NotFoundException(__('Unknown format.'));

}

// Set Out Format View
$this->viewBuilder()->setClassName($formats[$format]);

// Get data
$videos = $this->Videos->find('latest')->all();

// Set Data View
$this->set(compact('videos'));
$this->viewBuilder ()->setOption('serialize', ['videos']);

// Set Force Download
return $this->response->withDownload('report-' . date('YmdHis') . '.' . $format);

Helpers

Helpers are the component-like classes for the presentation layer of your application. They contain presentational logic
that is shared between many views, elements, or layouts. This chapter will show you how to configure helpers. How to
load helpers and use those helpers, and outline the simple steps for creating your own custom helpers.

CakePHP includes a number of helpers that aid in view creation. They assist in creating well-formed markup (including
forms), aid in formatting text, times and numbers, and can even speed up AJAX functionality. For more information
on the helpers included in CakePHP, check out the chapter for each helper:

328 Chapter 11. Views

CakePHP Book, Release 4.x

Breadcrumbs

class Cake\View\Helper\BreadcrumbsHelper (View $view, array $config =[])

BreadcrumbsHelper provides a way to easily deal with the creation and rendering of a breadcrumbs trail for your app.

Creating a Breadcrumbs Trail

You can add a crumb to the list using the add () method. It takes three arguments:
« title The string to be displayed as a the title of the crumb
* url A string or an array of parameters that will be given to the Url

* options An array of attributes for the item and itemWithoutLink templates. See the section about defining
attributes for the item for more information.

In addition to adding to the end of the trail, you can do a variety of operations:

// Add at the end of the trail
$this->Breadcrumbs->add(

'Products’',

['controller' => 'products', 'action' => 'index']

);

// Add multiple crumbs at the end of the trail
$this->Breadcrumbs->add([

['title' => 'Products', 'url' => ['controller' => 'products', 'action' => 'index']],
['title' => 'Product name', 'url' => ['controller' => 'products', 'action' => 'view',
— 1234]]

D;

// Prepended crumbs will be put at the top of the list
$this->Breadcrumbs->prepend(

'Products’,

['controller' => 'products', 'action' => 'index']

);

// Prepend multiple crumbs at the top of the trail, in the order given
$this->Breadcrumbs->prepend([

['title' => 'Products', 'url' => ['controller' => 'products', 'action' => 'index']],
['title' => 'Product name', 'url' => ['controller' => 'products', 'action' => 'view',
- 1234]]

D;

// Insert in a specific slot. If the slot is out of
// bounds, an exception will be raised.
$this->Breadcrumbs->insertAt(

2,

'Products’,

['controller' => 'products', 'action' => 'index']

);

// Insert before another crumb, based on the title.
// If the named crumb title cannot be found,
(continues on next page)

More About Views 329

CakePHP Book, Release 4.x

(continued from previous page)

// an exception will be raised.
$this->Breadcrumbs->insertBefore(
'A product name', // the title of the crumb to insert before
'Products’',
['controller' => 'products', 'action' => 'index']

);

// Insert after another crumb, based on the title.
// If the named crumb title cannot be found,
// an exception will be raised.
$this->Breadcrumbs->insertAfter(
'A product name', // the title of the crumb to insert after
'Products’',
['controller' => 'products', 'action' => 'index']

);

Using these methods gives you the ability to work with CakePHP’s 2-step rendering process. Since templates and
layouts are rendered from the inside out (meaning, included elements are rendered first), this allows you to define
precisely where you want to add a breadcrumb.

Rendering the Breadcrumbs Trail

After adding crumbs to the trail, you can easily render it using the render () method. This method accepts two array
arguments:

* $attributes : An array of attributes that will applied to the wrapper template. This gives you the ability
to add attributes to the HTML tag. It accepts the special templateVars key to allow the insertion of custom
template variables in the template.

* $separator : An array of attributes for the separator template. Possible properties are:
— separator The string to be displayed as a separator
— innerAttrs To provide attributes in case your separator is divided in two elements
— templateVars Allows the insertion of custom template variable in the template

All other properties will be converted as HTML attributes and will replace the attrs key in the template. If you
use the default for this option (empty), it will not render a separator.

Here is an example of how to render a trail:

echo $this->Breadcrumbs->render(
['class' => 'breadcrumbs-trail'],
['separator' => '<i class="fa fa-angle-right"></i>"]

);

330 Chapter 11. Views

CakePHP Book, Release 4.x

Customizing the Output

The BreadcrumbsHelper internally uses the StringTemplateTrait, which gives the ability to easily customize output
of various HTML strings. It includes four templates, with the following default declaration:

[

'wrapper' => '<ul{{attrs}}>{{content}}",

"item' => '<li{{attrs}}>{{title}}</1i>{
—{separator}}’,

'"itemWithoutLink' => '<li{{attrs}}><span{{innerAttrs}}>{{title}}</1i>{
- {separator}}"',

'separator' => '<li{{attrs}}><span{{innerAttrs}}>{{separator}}</1i>"'

]

You can easily customize them using the setTemplates() method from the StringTemplateTrait:

$this->Breadcrumbs->setTemplates([
'wrapper' => '<nav class="breadcrumbs'"><ul{{attrs}}>{{content}}</nav>",

D;

Since your templates will be rendered, the templateVars option allows you to add your own template variables in the
various templates:

$this->Breadcrumbs->setTemplates([
'item' => '<li{{attrs}}>{{icon}}{{title}}</1i>{
—{separator}}’'

D;

And to define the {{icon}} parameter, just specify it when adding the crumb to the trail:

$this->Breadcrumbs->add(
'Products’',
['controller' => 'products', 'action' => 'index'],
[
'templateVars' => [
'icon' => '<i class="fa fa-money"></i>'

]

);

Defining Attributes for the ltem

If you want to apply specific HTML attributes to both the item and its sub-item , you can leverage the innerAttrs
key, which the $options argument provides. Everything except innerAttrs and templateVars will be rendered as
HTML attributes:

$this->Breadcrumbs->add(
'Products’,
['controller' => 'products', 'action' => 'index'],
[
'class' => 'products-crumb',
'data-foo' => 'bar',

(continues on next page)

More About Views 331

CakePHP Book, Release 4.x

(continued from previous page)

'innerAttrs' => [
'class' => 'inner-products-crumb',
'id'" => 'the-products-crumb'

);

// Based on the default template, this will render the following HTML:
<li class="products-crumb" data-foo="bar">

—Products
</1li>

Clearing the Breadcrumbs

You can clear the bread crumbs using the reset () method. This can be useful when you want to transform the crumbs
and overwrite the list:

$crumbs = $this->Breadcrumbs->getCrumbs();

$crumbs = collection($crumbs)->map(function ($crumb) {
$crumb['options']['class'] = 'breadcrumb-item';
return $crumb;

}->toArray(Q;

$this->Breadcrumbs->reset () ->add($crumbs) ;

Flash

class Cake\View\Helper\FlashHelper (View $view, array $config = [])

FlashHelper provides a way to render flash messages that were set in $_SESSION by FlashComponent. FlashCom-
ponent and FlashHelper primarily use elements to render flash messages. Flash elements are found under the tem-
plates/element/flash directory. You’ll notice that CakePHP’s App template comes with three flash elements: suc-
cess.php, default.php, and error.php.

Rendering Flash Messages

To render a flash message, you can simply use FlashHelper’s render () method in your template file:

<?= $this->Flash->render() ?>

By default, CakePHP uses a “flash” key for flash messages in a session. But, if you’ve specified a key when setting the
flash message in FlashComponent, you can specify which flash key to render:

<?= $this->Flash->render('other') ?>

You can also override any of the options that were set in FlashComponent:

332 Chapter 11. Views

CakePHP Book, Release 4.x

// In your Controller
$this->Flash->set('The user has been saved.', [
'element' => 'success'

D;

// In your template file: Will use great_success.php instead of success.php
<?= $this->Flash->render('flash', [
'element' => 'great_success'

D;

// In your template file: the flashy element file from the Company Plugin
<?= $this->Flash->render('flash', [
'element' => 'Company.flashy'

D;

Note: When building custom flash message templates, be sure to properly HTML encode any user data. CakePHP
won’t escape flash message parameters for you.

For more information about the available array options, please refer to the FlashComponent section.

Routing Prefix and Flash Messages

If you have a Routing prefix configured, you can now have your Flash elements stored in tem-
plates/{Prefix}/element/flash. This way, you can have specific messages layouts for each part of your application. For
instance, using different layouts for your front-end and admin section.

Flash Messages and Themes

The FlashHelper uses normal elements to render the messages and will therefore obey any theme you might have
specified. So when your theme has a templates/element/flash/error.php file it will be used, just as with any Elements
and Views.

Form

class Cake\View\Helper\FormHelper (View $view, array $config = [])

The FormHelper does most of the heavy lifting in form creation. The FormHelper focuses on creating forms quickly,
in a way that will streamline validation, re-population and layout. The FormHelper is also flexible - it will do almost
everything for you using conventions, or you can use specific methods to get only what you need.

More About Views 333

CakePHP Book, Release 4.x

Starting a Form

Cake\View\Helper\FormHelper: : create (mixed $context = null, array $options = [])

* $context - The context for which the form is being defined. Can be an ORM entity, ORM resultset, Form
instance, array of metadata or null (to make a model-less form).

* $options - An array of options and/or HTML attributes.

The first method you’ll need to use in order to take advantage of the FormHelper is create(). This method outputs
an opening form tag.

All parameters are optional. If create() is called with no parameters supplied, it assumes you are building a form
that submits to the current controller, via the current URL. The default method for form submission is POST. If you
were to call create() inside the view for UsersController: :add(), you would see something like the following
output in the rendered view:

<form method="post" action="/users/add">

The $context argument is used as the form’s ‘context’. There are several built-in form contexts and you can add your
own, which we’ll cover below, in a following section. The built-in providers map to the following values of $context:

+ An Entity instance or an iterator will map to EntityContext'?’; this context class allows FormHelper to work
with results from the built-in ORM.

 An array containing the 'schema' key, will map to ArrayContext'’

structures to build forms against.

which allows you to create simple data

 null will map to NullContext'’'; this context class simply satisfies the interface FormHelper requires. This
context is useful if you want to build a short form that doesn’t require ORM persistence.

Once a form has been created with a context, all controls you create will use the active context. In the case of an ORM
backed form, FormHelper can access associated data, validation errors and schema metadata. You can close the active
context using the end () method, or by calling create () again.

To create a form for an entity, do the following:

// If you are on /articles/add
// $article should be an empty Article entity.
echo $this->Form->create($article);

Output:

<form method="post" action="/articles/add">

This will POST the form data to the add() action of ArticlesController. However, you can also use the same logic to
create an edit form. The FormHelper uses the Entity object to automatically detect whether to create an add or edit
form. If the provided entity is not ‘new’, the form will be created as an edit form.

For example, if we browse to http://example.org/articles/edit/5, we could do the following:

// src/Controller/ArticlesController.php:
public function edit($id = null)
{

if (empty($id)) {

(continues on next page)

129 https://api.cakephp.org/4.x/class-Cake. View.Form.EntityContext.html
130 https://api.cakephp.org/4.x/class-Cake. View.Form. ArrayContext.html
131 https://api.cakephp.org/4.x/class-Cake. View.Form.NullContext.htm]

334 Chapter 11. Views

https://api.cakephp.org/4.x/class-Cake.View.Form.EntityContext.html
https://api.cakephp.org/4.x/class-Cake.View.Form.ArrayContext.html
https://api.cakephp.org/4.x/class-Cake.View.Form.NullContext.html

CakePHP Book, Release 4.x

(continued from previous page)

throw new NotFoundException;

1

$article = $this->Articles->get($id);
// Save logic goes here
$this->set('article', $article);

}

// View/Articles/edit.php:
// Since $article->isNew() is false, we will get an edit form
<?= $this->Form->create($article) ?>

Output:

<form method="post" action="/articles/edit/5">
<input type="hidden" name="_method" value="PUT" />

Note: Since this is an edit form, a hidden input field is generated to override the default HTTP method.

In some cases, the entity’s ID is automatically appended to the end of the form’s action URL. If you would like
to avoid an ID being added to the URL, you can pass a string to $options['url'], such as '/my-account' or
\Cake\Routing\Router: :url(['controller' => 'Users', 'action' => 'myAccount']).

Options for Form Creation

The $options array is where most of the form configuration happens. This special array can contain a number of
different key-value pairs that affect the way the form tag is generated. Valid values:

e 'type' - Allows you to choose the type of form to create. If no type is provided then it will be autodetected
based on the form context. Valid values:

— 'get' - Will set the form method to HTTP GET.

'file' - Will set the form method to POST and the 'enctype' to “multipart/form-data”.

'post' - Will set the method to POST.

- 'put', 'delete', 'patch' - Will override the HTTP method with PUT, DELETE or PATCH respec-
tively, when the form is submitted.

* 'method’ - Valid values are the same as above. Allows you to explicitly override the form’s method.
e 'url' - Specify the URL the form will submit to. Can be a string or a URL array.

* 'encoding' - Sets the accept-charset encoding for the form. Defaults to Configure::read('App.
encoding').

e "enctype' - Allows you to set the form encoding explicitly.

e 'templates' - The templates you want to use for this form. Any templates provided will be merged on top of the
already loaded templates. Can be either a filename (without extension) from /config or an array of templates
to use.

* 'context' - Additional options for the form context class. (For example the EntityContext acceptsa 'table’
option that allows you to set the specific Table class the form should be based on.)

e 'idPrefix' - Prefix for generated ID attributes.

More About Views 335

CakePHP Book, Release 4.x

* "templateVars' - Allows you to provide template variables for the formStart template.

* autoSetCustomValidity - Set to true to use custom required and notBlank validation messages in the con-
trol’s HTMLS validity message. Default is true.

Tip: Besides the above options you can provide, in the $options argument, any valid HTML attributes that you want
to pass to the created form element.

Getting form values from other values sources

A FormHelper’s values sources define where its rendered elements, such as input-tags, receive their values from.

The supported sources are context, data and query. You can use one or more sources by setting valueSources
option or by using setValuesSource(). Any widgets generated by FormHelper will gather their values from the
sources, in the order you setup.

By default FormHelper draws its values from data or context, i.e. it will fetch data from $request->getData()
or, if not present, from the active context’s data, that are the entity’s data in the case of EntityContext.

If however, you are building a form that needs to read from the query string, you can change where FormHelper reads
input data from:

// Use query string instead of request data:
echo $this->Form->create($article, [

'type' => 'get',

'valueSources' => ['query', 'context']

D;

// Same effect:

echo $this->Form
->setValueSources(['query', 'context'])
->create($articles, ['type' => 'get']);

When input data has to be processed by the entity, i.e. marshal transformations, table query result or entity computa-
tions, and displayed after one or multiple form submissions where request data is retained, you need to put context
first:

// Prioritize context over request data:
echo $this->Form->create($article,
'valueSources' => ['context', 'data'l]

D;

The value sources will be reset to the default ['data', 'context'] when end() is called.

336 Chapter 11. Views

CakePHP Book, Release 4.x

Changing the HTTP Method for a Form

By using the type option you can change the HTTP method a form will use:

echo $this->Form->create($article, ['type' => 'get']l);

Output:

<form method="get" action="/articles/edit/5">

Specifying a 'file' value for type, changes the form submission method to ‘post’, and includes an enctype of
“multipart/form-data” on the form tag. This is to be used if there are any file elements inside the form. The absence of
the proper enctype attribute will cause the file uploads not to function.

For example:

echo $this->Form->create($article, ['type' => 'file']);

Output:

<form enctype="multipart/form-data" method="post" action="/articles/add">

Whenusing 'put’, 'patch’ or 'delete’ as 'type' values, your form will be functionally equivalent to a ‘post’ form,
but when submitted, the HTTP request method will be overridden with ‘PUT’, ‘PATCH’ or ‘DELETE’, respectively.
This allows CakePHP to emulate proper REST support in web browsers.

Setting a URL for the Form

Using the "url' option allows you to point the form to a specific action in your current controller or another controller
in your application.

For example, if you’d like to point the form to the publish() action of the current controller, you would supply an
$options array, like the following:

echo $this->Form->create($article, ['url' => ['action' => 'publish']]);

Output:

<form method="post" action="/articles/publish">

If the desired form action isn’t in the current controller, you can specify a complete URL for the form action. The
supplied URL can be relative to your CakePHP application:

echo $this->Form->create(null, [
'url' => [
'controller' => 'Articles',
'action' => 'publish'
]
D;

Output:

<form method="post" action="/articles/publish">

Or you can point to an external domain:

More About Views 337

CakePHP Book, Release 4.x

echo $this->Form->create(null, [
'url' => 'https://www.google.com/search',
"type' => 'get'

D;

Output:

<form method="get" action="https://www.google.com/search">

Use 'url' => false if you don’t want to output a URL as the form action.

Using Custom Validators

Often models will have multiple validator sets, you can have FormHelper mark fields required based on the specific
validator your controller action is going to apply. For example, your Users table has specific validation rules that only
apply when an account is being registered:

echo $this->Form->create($user, [
'context' => ['validator' => 'register']

D;

The above will use validation rules defined in the register wvalidator, which are defined by
UsersTable::validationRegister (), for $user and all related associations. If you are creating a form for
associated entities, you can define validation rules for each association by using an array:

echo $this->Form->create($user, [
'context' => [
'validator' => [
'Users' => 'register',
'Comments' => 'default'

D;
The above would use register for the user, and default for the user’s comments. FormHelper uses validators to

generate HTMLS5 required attributes, relevant ARIA attributes, and set error messages with the browser validator API'*?
. If you would like to disable HTMLS5 validation messages use:

$this->Form->setConfig('autoSetCustomValidity', false);

This will not disable required/aria-required attributes.

132 https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation#Customized_error_messages

338 Chapter 11. Views

https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation#Customized_error_messages

CakePHP Book, Release 4.x

Creating context classes

While the built-in context classes are intended to cover the basic cases you’ll encounter you may need to
build a new context class if you are using a different ORM. In these situations you need to implement the
Cake\View\Form\ContextInterface'** . Once you have implemented this interface you can wire your new context into
the FormHelper. It is often best to do this in a View.beforeRender event listener, or in an application view class:

$this->Form->addContextProvider('myprovider', function ($request, $data) {
if ($data['entity'] instanceof MyOrmClass) {
return new MyProvider($data);
}
9N

Context factory functions are where you can add logic for checking the form options for the correct type of entity. If
matching input data is found you can return an object. If there is no match return null.

Creating Form Controls

Cake\View\Helper\FormHelper: : control (string $fieldName, array $options = [])

e $fieldName - A field name in the form 'Modelname. fieldname'.

* $options - Anoptional array that can include both Options for Control, and options of the other methods (which
control () employs internally to generate various HTML elements) as well as any valid HTML attributes.

The control () method lets you generate complete form controls. These controls will include a wrapping div, label,
control widget, and validation error if necessary. By using the metadata in the form context, this method will choose
an appropriate control type for each field. Internally control () uses the other methods of FormHelper.

Tip: Please note that while the fields generated by the control () method are called generically “inputs” on this page,
technically speaking, the control () method can generate not only all of the HTML input type elements, but also
other HTML form elements such as select, button, textarea.

By default the control () method will employ the following widget templates:

"inputContainer' => '<div class="input {{type}}{{required}}">{{content}}</div>"
"input' => '<input type="{{type}}" name="{{name}}"{{attrs}}/>'
'requiredClass' => 'required'

In case of validation errors it will also use:

"inputContainerError' => '<div class="input {{type}}{{required}} error">{{content}}{
—{error}}t</div>"'

The type of control created (when we provide no additional options to specify the generated element type) is inferred
via model introspection and depends on the column datatype:

Column Type
Resulting Form Field

string, uuid (char, varchar, etc.)
text

133 https://api.cakephp.org/4.x/interface- Cake. View.Form.ContextInterface. html

More About Views 339

https://api.cakephp.org/4.x/interface-Cake.View.Form.ContextInterface.html

CakePHP Book, Release 4.x

boolean, tinyint(1)
checkbox

decimal
number

float
number

integer
number

text
textarea

text, with name of password, passwd
password

text, with name of email
email

text, with name of tel, telephone, or phone
tel

date
date

datetime, timestamp
datetime-local

datetimefractional, timestampfractional
datetime-local

time
time

month
month

year
select with years

binary
file

The $options parameter allows you to choose a specific control type if you need to:

echo $this->Form->control('published', ['type' => 'checkbox']);

Tip: As a small subtlety, generating specific elements via the control () form method will always also gener-
ate the wrapping div, by default. Generating the same type of element via one of the specific form methods (e.g.
$this->Form->checkbox('published') ;) in most cases won’t generate the wrapping div. Depending on your
needs you can use one or another.

The wrapping div will have a required class name appended if the validation rules for the model’s field indicate
that it is required and not allowed to be empty. You can disable automatic required flagging using the 'required’
option:

echo $this->Form->control('title', ['required' => false]);

340 Chapter 11. Views

CakePHP Book, Release 4.x

To skip browser validation triggering for the whole form you can set option 'formnovalidate' => true for the
input button you generate using submit () or set 'novalidate' => true in options for create().

For example, let’s assume that your Users model includes fields for a username (varchar), password (varchar), approved
(datetime) and quote (text). You can use the control () method of the FormHelper to create appropriate controls for
all of these form fields:

echo $this->Form->create($user);

// The following generates a Text input

echo $this->Form->control('username');

// The following generates a Password input

echo $this->Form->control('password');

// Assuming 'approved' is a datetime or timestamp field the following
//generates an input of type '"datetime-local"

echo $this->Form->control('approved');

// The following generates a Textarea element

echo $this->Form->control('quote');

echo $this->Form->button('Add');
echo $this->Form->end();

A more extensive example showing some options for a date field:

echo $this->Form->control('birth_date', [
'label' => 'Date of birth',
'min' => date(C'Y') - 70,
'max' => date('Y') - 18,

D;

Besides the specific Options for Control, you also can specify any option accepted by corresponding specific method
for the chosen (or inferred by CakePHP) control type and any HTML attribute (for instance onfocus).

If you want to create a select form field while using a belongsTo (or hasOne) relation, you can add the following to
your UsersController (assuming your User belongsTo Group):

$this->set('groups', $this->Users->Groups->find('list')->all());

Afterwards, add the following to your view template:

echo $this->Form->control('group_id', ['options' => $groups]);
To make a select box for a belongsToMany Groups association you can add the following to your UsersController:
$this->set('groups', $this->Users->Groups->find('list')->all());

Afterwards, add the following to your view template:

echo $this->Form->control('groups._ids', ['options' => $groups]);

If your model name consists of two or more words (e.g. “UserGroups”), when passing the data using set () you should
name your data in a pluralised and lower camelCased'** format as follows:

$this->set('userGroups', $this->UserGroups->find('list')->all());

134 https://en.wikipedia.org/wiki/Camel_case#Variations_and_synonyms

More About Views 341

https://en.wikipedia.org/wiki/Camel_case#Variations_and_synonyms

CakePHP Book, Release 4.x

Note: You should not use FormHelper: :control () to generate submit buttons. Use submit () instead.

Field Naming Conventions

When creating control widgets you should name your fields after the matching attributes in the form’s entity. For
example, if you created a form for an $article entity, you would create fields named after the properties. E.g. title,
body and published.

You can create controls for associated models, or arbitrary models by passing in association. fieldname as the first
parameter:

echo $this->Form->control ('association.fieldname');

Any dots in your field names will be converted into nested request data. For example, if you created a field with a name
0.comments.body you would get a name attribute that looks like O [comments] [body]. This convention matches the
conventions you use with the ORM. Details for the various association types can be found in the Creating Inputs for
Associated Data section.

When creating datetime related controls, FormHelper will append a field-suffix. You may notice additional fields
named year, month, day, hour, minute, or meridian being added. These fields will be automatically converted into
DateTime objects when entities are marshalled.

Options for Control

FormHelper: :control () supports a large number of options via its $options argument. In addition to its own
options, control () accepts options for the inferred/chosen generated control types (e.g. for checkbox or textarea),
as well as HTML attributes. This subsection will cover the options specific to FormHelper: :control().

* $options['type'] - A string that specifies the widget type to be generated. In addition to the field types found
in the Creating Form Controls, you can also create 'file', 'password', and any other type supported by
HTMLS. By specifyinga 'type' you will force the type of the generated control, overriding model introspection.
Defaults to null.

For example:

echo $this->Form->control('field', ['type' => 'file']);
echo $this->Form->control('email', ['type' => 'email']);

Output:

<div class="input file">
<label for="field">Field</label>
<input type="file" name="field" value="" id="field" />
</div>
<div class="input email">
<label for="email">Email</label>
<input type="email" name="email" value=
</div>

id="email" />

* $options['label'] - Either a string caption or an array of options for the label. You can set this key to
the string you would like to be displayed within the label that usually accompanies the input HTML element.
Defaults to null.

342 Chapter 11. Views

CakePHP Book, Release 4.x

For example:

echo $this->Form->control('name', [
'label' => 'The User Alias'
D;

Output:

<div class="input">
<label for="name'">The User Alias</label>
<input name="name" type="text" value=""
</div>

id="name" />

Alternatively, set this key to false to disable the generation of the 1abel element.

For example:

echo $this->Form->control('name', ['label' => false]);

Output:

<div class="input">
<input name="name" type="text" value=
</div>

id="name" />

If the label is disabled, and a placeholder attribute is provided, the generated input will have aria-label set.

Set the 1abel option to an array to provide additional options for the 1abel element. If you do this, you can use
a "text' key in the array to customize the label text.

For example:

echo $this->Form->control('name', [
'label’ => [
'class' => 'thingy',
'"text' => 'The User Alias'
]
D;

Output:

<div class="input">
<label for="name" class="thingy">The User Alias</label>
<input name="name" type="text" value="" id="name" />
</div>

* $options['options'] - You can provide in here an array containing the elements to be generated for widgets
such as radio or select, which require an array of items as an argument (see Creating Radio Buttons and
Creating Select Pickers for more details). Defaults to null.

* $options['error'] - Using this key allows you to override the default model error messages and can be used,
for example, to set i18n messages. To disable the error message output & field classes set the 'error' key to
false. Defaults to null.

For example:

echo $this->Form->control('name', ['error' => false]);

More About Views 343

CakePHP Book, Release 4.x

To override the model error messages use an array with the keys matching the original validation error messages.

For example:

$this->Form->control ('name', [
'error' => ['Not long enough' => __('This is not long enough')]

D;

As seen above you can set the error message for each validation rule you have in your models. In addition you
can provide i18n messages for your forms.

To disable the HTML entity encoding for error messages only, the 'escape' sub key can be used:

$this->Form->control ('name', [
'error' => ['escape' => false],

D;

e $options['nestedInput'] - Used with checkboxes and radio buttons. Controls whether the input element is
generated inside or outside the 1abel element. When control () generates a checkbox or a radio button, you
can set this to false to force the generation of the HTML input element outside of the 1abel element.

On the other hand you can set this to true for any control type to force the generated input element inside the
label. If you change this for radio buttons then you need to also modify the default radioWrapper template.
Depending on the generated control type it defaults to true or false.

* $options['templates'] - Thetemplates you want to use for this input. Any specified templates will be merged
on top of the already loaded templates. This option can be either a filename (without extension) in /config that
contains the templates you want to load, or an array of templates to use.

e $options['labelOptions'] - Set this to false to disable labels around nestedWidgets or set it to an array
of attributes to be provided to the 1label tag.

e $options['readonly'] - Set the field to readonly in form.

For example:

echo $this->Form->control('name', ['readonly' => true]);

Generating Specific Types of Controls

In addition to the generic control () method, FormHelper has specific methods for generating a number of different
types of controls. These can be used to generate just the control widget itself, and combined with other methods like
label() and error() to generate fully custom form layouts.

Common Options For Specific Controls

Many of the various control element methods support a common set of options which, depending on the form method
used, must be provided inside the $options or in the $attributes array argument. All of these options are also
supported by the control () method. To reduce repetition, the common options shared by all control methods are as
follows:

e 'id' - Set this key to force the value of the DOM id for the control. This will override the 'idPrefix' that may
be set.

e 'default' - Used to set a default value for the control field. The value is used if the data passed to the form
does not contain a value for the field (or if no data is passed at all). If no default value is provided, the column’s
default value will be used.

344 Chapter 11. Views

CakePHP Book, Release 4.x

Example usage:

echo $this->Form->text('ingredient', ['default' => 'Sugar']);

Example with select field (size “Medium” will be selected as default):

$sizes = ['s' => 'Small', 'm' => 'Medium', 'l' => 'Large'];
echo $this->Form->select('size', $sizes, ['default' => 'm']);

Note: You cannot use default to check a checkbox - instead you might set the value in
$this->request->getData() in your controller, or set the control option 'checked' to true.

Beware of using false to assign a default value. A false value is used to disable/exclude options of a control
field, so '"default' => false would not set any value at all. Instead use 'default' => 0.

e 'value' - Used to set a specific value for the control field. This will override any value that may else be injected
from the context, such as Form, Entity or request->getData() etc.

Note: If you want to set a field to not render its value fetched from context or valuesSource you will need to set
'value' to "' (instead of setting it to null).

In addition to the above options, you can mixin any HTML attribute you wish to use. Any non-special option name
will be treated as an HTML attribute, and applied to the generated HTML control element.

Creating Input Elements

The rest of the methods available in the FormHelper are for creating specific form elements. Many of these methods also
make use of a special $options or $attributes parameter. In this case, however, this parameter is used primarily
to specify HTML tag attributes (such as the value or DOM id of an element in the form).

Creating Text Inputs

Cake\View\Helper\FormHelper: : text (string $name, array $options)

¢ $name - A field name in the form 'Modelname.fieldname'.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

Creates a simple input HTML element of text type.

For example:

echo $this->Form->text('username', ['class' => 'users']);

Will output:

<input name="username" type="text" class="users'">

More About Views 345

CakePHP Book, Release 4.x

Creating Password Inputs

Cake\View\Helper\FormHelper: :password(string $fieldName, array $options)

e $fieldName - A field name in the form 'Modelname.fieldname’.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

Creates a simple input element of password type.

For example:
echo $this->Form->password('password');

Will output:

<input name="password" value= type="password">

Creating Hidden Inputs

Cake\View\Helper\FormHelper: :hidden(string $fieldName, array $options)

e $fieldName - A field name in the form 'Modelname. fieldname'.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

Creates a hidden form input.

For example:

echo $this->Form->hidden('id");

Will output:

<input name="id" type="hidden" />

Creating Textareas

Cake\View\Helper\FormHelper: : textarea(string $fieldName, array $options)

e $fieldName - A field name in the form 'Modelname.fieldname’.

* $options - Anoptional array including any of the Common Options For Specific Controls, of the specific textarea
options (see below) as well as any valid HTML attributes.

Creates a textarea control field. The default widget template used is:

'textarea' => '<textarea name="{{name}}"{{attrs}}>{{value}}</textarea>'

For example:

echo $this->Form->textarea('notes');

Will output:

346 Chapter 11. Views

CakePHP Book, Release 4.x

<textarea name="notes'></textarea>
If the form is being edited (i.e. the array $this->request->getData() contains the information previously saved
for the User entity), the value corresponding to notes field will automatically be added to the HTML generated.

Example:

<textarea name="notes" id="notes">
This text is to be edited.
</textarea>
Options for Textarea
In addition to the Common Options For Specific Controls, textarea() supports a couple of specific options:
* 'escape' - Determines whether or not the contents of the textarea should be escaped. Defaults to true.

For example:

echo $this->Form->textarea('notes', ['escape' => false]);

// OR....
echo $this->Form->control('notes', ['type' => 'textarea', 'escape' => false]);
e 'rows', 'cols' - You can use these two keys to set the HTML attributes which specify the number of rows

and columns for the textarea field.

For example:

echo $this->Form->textarea('comment', ['rows' => '5', 'cols' => '5']);

Output:

<textarea name="comment" cols="5" rows="5">
</textarea>

Creating Select, Checkbox and Radio Controls

These controls share some commonalities and a few options and thus, they are all grouped in this subsection for easier
reference.

Options for Select, Checkbox and Radio Controls

You can find below the options which are shared by select (), checkbox() and radio() (the options particular only
to one of the methods are described in each method’s own section.)

e 'value' - Sets or selects the value of the affected element(s):

— For checkboxes, it sets the HTML 'value' attribute assigned to the input element to whatever you provide
as value.

— For radio buttons or select pickers it defines which element will be selected when the form is rendered (in
this case 'value' must be assigned a valid, existent element value). May also be used in combination with
any select-type control, such as date(), time(), dateTime():

More About Views 347

CakePHP Book, Release 4.x

echo $this->Form->time('close_time', [
'value' => "'13:30:00'
D;

Note: The 'value' key for date() and dateTime() controls may also have as value a UNIX timestamp, or
a DateTime object.

For a select control where you set the 'multiple’ attribute to true, you can provide an array with the values
you want to select by default:

// HTML <option> elements with values 1 and 3 will be rendered preselected
echo $this->Form->select(
'rooms',
[1, 2, 3, 4, 5],
[
'multiple' => true,
'value' => [1, 3]

);

e "empty' - Applies to radio() and select(). Defaults to false.

— When passed to radio() and set to true it will create an extra input element as the first radio button, with
a value of '' and a label caption equal to the string 'empty'. If you want to control the label caption set
this option to a string instead.

— When passed to a select method, this creates a blank HTML option element with an empty value in
your drop down list. If you want to have an empty value with text displayed instead of just a blank option,
pass a string to 'empty':

echo $this->Form->select(
'field',
[1, 2, 3, 4, 5],
['empty' => '(choose one)']

DE

Output:

<select name="field">
<option value="">(choose one)</option>
<option value="0">1</option>
<option value="1">2</option>
<option value="2">3</option>
<option value="3">4</option>
<option value="4">5</option>
</select>

e 'hiddenField' - For checkboxes and radio buttons, by default, a hidden input element is also created, along
with the main element, so that the key in $this->request->getData() will exist even without a value speci-
fied. For checkboxes its value defaults to ® and for radio buttons to ' '.

Example of default output:

348 Chapter 11. Views

CakePHP Book, Release 4.x

<input type="hidden" name="published" value="0" />
<input type="checkbox" name="published" value="1" />

This can be disabled by setting 'hiddenField' to false:

echo $this->Form->checkbox('published', ['hiddenField' => false]);

Which outputs:

<input type="checkbox" name="published" value="1">

If you want to create multiple blocks of controls on a form, that are all grouped together, you should set this
parameter to false on all controls except the first. If the hidden input is on the page in multiple places, only the
last group of inputs’ values will be saved.

In this example, only the tertiary colors would be passed, and the primary colors would be overridden:

<h2>Primary Colors</h2>

<input type="hidden" name="color" value="0" />

<label for="color-red">
<input type="checkbox" name="color[]" value="5" id="color-red" />
Red

</label>

<label for="color-blue">
<input type="checkbox" name="color[]" value="5" id="color-blue" />
Blue

</label>

<label for="color-yellow'">
<input type="checkbox" name="color[]" value="5" id="color-yellow" />
Yellow

</label>

<h2>Tertiary Colors</h2>

<input type="hidden" name="color" value="0" />

<label for="color-green">
<input type="checkbox" name="color[]" value="5" id="color-green" />
Green

</label>

<label for="color-purple'">
<input type="checkbox" name="color[]" value="5" id="color-purple" />
Purple

</label>

<label for="color-orange">
<input type="checkbox" name="color[]" value="5" id="color-orange" />
Orange

</label>

Disabling 'hiddenField' on the second control group would prevent this behavior.

You can set a hidden field to a value other than 0, such as ‘N’:

echo $this->Form->checkbox('published', [
'value' => 'Y',
(continues on next page)

More About Views 349

CakePHP Book, Release 4.x

(continued from previous page)
'hiddenField' => 'N',
D;

Using Collections to build options

It’s possible to use the Collection class to build your options array. This approach is ideal if you already have a collection
of entities and would like to build a select element from them.

You can use the combine method to build a basic options array.:

$options = $examples->combine('id', 'name');

It’s also possible to add extra attributes by expanding the array. The following will create a data attribute on the option
element, using the map collection method.:

$options = $examples->map(function ($value, S$key) {
return [
'value' => $value->id,
'text' => $value->name,
'data-created' => $value->created
1;
s

Creating Checkboxes

Cake\View\Helper\FormHelper: : checkbox (string $fieldName, array $options)

e $fieldName - A field name in the form 'Modelname. fieldname'.

* $options - An optional array including any of the Common Options For Specific Controls, or of the Options for
Select, Checkbox and Radio Controls above, of the checkbox-specific options (see below), as well as any valid
HTML attributes.

Creates a checkbox form element. The widget template used is:

'checkbox' => '<input type="checkbox" name="{{name}}" value="{{value}}"{{attrs}}>'

Options for Checkboxes
¢ 'checked' - Boolean to indicate whether this checkbox will be checked. Defaults to false.
e 'disabled' - Create a disabled checkbox input.

This method also generates an associated hidden form input element to force the submission of data for the specified
field.

For example:

echo $this->Form->checkbox('done');

Will output:

<input type="hidden" name="done" value="0">
<input type="checkbox" name="done" value="1">

350 Chapter 11. Views

CakePHP Book, Release 4.x

It is possible to specify the value of the checkbox by using the $options array.

For example:

echo $this->Form->checkbox('done', ['value' => 555]);

Will output:

<input type="hidden" name="done" value="0">

<input type="checkbox" name="done" value="555">

If you don’t want the FormHelper to create a hidden input use '"hiddenField".

For example:

echo $this->Form->checkbox('done', ['hiddenField' => false]);

Will output:

<input type="checkbox" name="done" value="1">

Creating Radio Buttons

Cake\View\Helper\FormHelper: :radio(string $ficldName, array $options, array $attributes)

e $fieldName - A field name in the form 'Modelname. fieldname'.

* $options - An optional array containing at minimum the labels for the radio buttons. Can also contain values
and HTML attributes. When this array is missing, the method will either generate only the hidden input (if
'hiddenField' is true) or no clement at all (if 'hiddenField' is false).

e $attributes - An optional array including any of the Common Options For Specific Controls, or of the Options
Jor Select, Checkbox and Radio Controls, of the radio button specific attributes (see below), as well as any valid
HTML attributes.

Creates a set of radio button inputs. The default widget templates used are:

'radio' => '<input type="radio" name="{{name}}" value="{{value}}"{{attrs}}>'
'radioWrapper' => '{{label}}"'
Attributes for Radio Buttons

e '"label’' - Boolean to indicate whether or not labels for widgets should be displayed, or an array of attributes
to apply to all labels. In case a class attribute is defined, selected will be added to the class attribute of
checked buttons. Defaults to true.

e 'hiddenField"' - If set to true a hidden input with a value of ' "' will be included. This is useful for creating
radio sets that are non-continuous. Defaults to true.

e 'disabled' - Setto true or 'disabled' to disable all the radio buttons. Defaults to false.
You must provide the label captions for the radio buttons via the $options argument.

For example:

$this->Form->radio('gender', ['Masculine', 'Feminine', 'Neuter']);

Will output:

More About Views 351

CakePHP Book, Release 4.x

<input name="gender" value=

<label for="gender-0">
<input name="gender" value="0" id="gender-0" type="radio">
Masculine

</label>

<label for="gender-1">
<input name="gender" value="1" id="gender-1" type="radio">
Feminine

</label>

<label for="gender-2">
<input name="gender" value="2" id="gender-2" type="radio">
Neuter

</label>

type="hidden">

Generally $options contains simple key => value pairs. However, if you need to put custom attributes on your
radio buttons you can use an expanded format.

For example:

echo $this->Form->radio(
'favorite_color',

[
['value' => 'r', 'text' => 'Red', 'style' => 'color:red;'],
['value' => 'u', 'text' => 'Blue', 'style' => 'color:blue;'],
['value' => 'g', 'text' => 'Green', 'style' => 'color:green;'],
]
E
Will output:

<input type="hidden" name="favorite_color" value="">
<label for="favorite-color-r">
<input type="radio" name="favorite_color" value="r" style="color:red;" id="favorite-
—color-r">
Red
</label>
<label for="favorite-color-u">
<input type="radio" name="favorite_color" value="u" style="color:blue;
—color-u">
Blue
</label>
<label for="favorite-color-g">
<input type="radio" name="favorite_color" value="g" style="color:green;" id=
—"favorite-color-g">
Green
</label>

id="favorite-

You can define additional attributes for an individual option’s label as well:

echo $this->Form->radio(
'favorite_color',
[
['value' => 'r', 'text' => 'Red', 'label' => ['class' => 'red']l],
['value' => 'u', 'text' => 'Blue', 'label' => ['class' => 'blue'l],
(continues on next page)

352 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)

);

Will output:

<input type="hidden" name="favorite_color" value="">
<label for="favorite-color-r" class="red">
<input type="radio" name="favorite_color" value="r" style="color:red;" id="favorite-
—color-r">
Red
</label>
<label for="favorite-color-u" class="blue">
<input type="radio" name="favorite_color" value="u" style="color:blue;
—color-u">
Blue
</label>

id="favorite-

If the 1abel key is used on an option, the attributes in $attributes['label'] will be ignored.

Creating Select Pickers

Cake\View\Helper\FormHelper: :select (string $fieldName, array $options, array $attributes)

e $fieldName - A field name in the form 'Modelname.fieldname'. This will provide the name attribute of the
select element.

* $options - An optional array containing the list of items for the select picker. When this array is missing, the
method will generate only the empty select HTML element without any option elements inside it.

e $attributes - An optional array including any of the Common Options For Specific Controls, or of the Options
for Select, Checkbox and Radio Controls, or of the select-specific attributes (see below), as well as any valid
HTML attributes.

Creates a select element, populated with the items from the $options array. If $attributes['value'] is pro-
vided, then the HTML option element(s) which have the specified value(s) will be shown as selected when rendering
the select picker.

By default select uses the following widget templates:

'select' => '<select name="{{name}}"{{attrs}}>{{content}}</select>"
'option' => '<option value="{{value}}"{{attrs}}>{{text}}</option>"

May also use:

'optgroup' => '<optgroup label="{{label}}"{{attrs}}>{{content}}</optgroup>"
'selectMultiple’ => '<select name="{{name}}[]" multiple="multiple"{{attrs}}>{{content}}</
—select>'

Attributes for Select Pickers

* 'multiple’ - If set to true allows multiple selections in the select picker. If set to 'checkbox', multiple
checkboxes will be created instead. Defaults to null.

e 'escape' - Boolean. If true the contents of the option elements inside the select picker will be HTML entity
encoded. Defaults to true.

More About Views 353

CakePHP Book, Release 4.x

e 'val' - Allows preselecting a value in the select picker.

* 'disabled' - Controls the disabled attribute. If set to true disables the whole select picker. If set to an array
it will disable only those specific option elements whose values are provided in the array.

The $options argument allows you to manually specify the contents of the option elements of a select control.

For example:

echo $this->Form->select('field', [1, 2, 3, 4, 5]1);

Output:

<select name="field">
<option value="0">1</option>
<option value="1">2</option>
<option value="2">3</option>
<option value="3">4</option>
<option value="4">5</option>
</select>

The array for $options can also be supplied as key-value pairs.

For example:

echo $this->Form->select('field', [
'Value 1' => 'Label 1',
'Value 2' => 'Label 2',
'Value 3' => 'Label 3'

D

Output:

<select name="field">
<option value="Value 1">Label 1</option>
<option value="Value 2">Label 2</option>
<option value="Value 3">Label 3</option>
</select>

If you would like to generate a select with optgroups, just pass data in hierarchical format (nested array). This works
on multiple checkboxes and radio buttons too, but instead of optgroup it wraps the elements in fieldset elements.

For example:

$options = [
'Group 1' => [
'Value 1' => 'Label 1',
'Value 2' => 'Label 2'
1,
'Group 2' => [
'Value 3' => 'Label 3'
]
1;
echo $this->Form->select('field', $options);

Output:

354 Chapter 11. Views

CakePHP Book, Release 4.x

<select name="field">
<optgroup label="Group 1">
<option value="Value 1">Label 1</option>
<option value="Value 2">Label 2</option>
</optgroup>
<optgroup label="Group 2">
<option value="Value 3">Label 3</option>
</optgroup>
</select>

To generate HTML attributes within an option tag:

$options = [

['text' => 'Description 1', 'value' => 'value
['text' => 'Description 2', 'value' => 'value
['text' => 'Description 3', 'value' => 'value
—value'],
iK;

echo $this->Form->select('field', $options);

Output:

<select name="field">
<option value="value 1" attr_name="attr_value
<option value="value 2" attr_name="attr_value

1', 'attr_name' => 'attr_value 1'],
2', 'attr_name' => 'attr_value 2'],
3', 'other_attr_name' => 'other_attr_

1">Description 1</option>
2">Description 2</option>

<option value="value 3" other_attr_name="other_attr_value">Description 3</option>

</select>

Controlling Select Pickers via Attributes

By using specific options in the $attributes parameter you can control certain behaviors of the select () method.

e "empty' - Set the 'empty' key in the $attributes argument to true (the default value is false) to add a
blank option with an empty value at the top of your dropdown list.

For example:

$options = ['M' => 'Male', 'F' => 'Female'];
echo $this->Form->select('gender', $options,

Will output:

<select name="gender">
<option value=""></option>
<option value="NM">Male</option>
<option value="F">Female</option>
</select>

['empty' => true]);

e 'escape' - The select() method allows for an attribute called 'escape' which accepts a boolean value and
determines whether to HTML entity encode the contents of the select’s option elements.

For example:

// This will prevent HTML-encoding the contents of each option element

$options = ['M' => 'Male', 'F' => 'Female'];
echo $this->Form->select('gender', S$options,

['escape' => false]);

More About Views

355

CakePHP Book, Release 4.x

* 'multiple’ - If set to true, the select picker will allow multiple selections.

For example:

echo $this->Form->select('field', $options, ['multiple' => true]);

Alternatively, set 'multiple’ to 'checkbox' in order to output a list of related checkboxes:

$options = [
'Value 1' => 'Label 1°',
'Value 2' => 'Label 2'

1

echo $this->Form->select('field', $options, [
'multiple' => 'checkbox'

D;

Output:

<input name="field" value=
<div class="checkbox">
<label for="field-1">
<input name="field[]" value="Value 1" id="field-1" type="checkbox">
Label 1
</label>
</div>
<div class="checkbox">
<label for="field-2">
<input name="field[]" value="Value 2" id="field-2" type="checkbox">
Label 2
</label>
</div>

type="hidden">

'disabled' - This option can be set in order to disable all or some of the select’s option items. To disable
all items set 'disabled' to true. To disable only certain items, assign to 'disabled' an array containing the
keys of the items to be disabled.

For example:

$options = [
'M'" => 'Masculine',
'F' => 'Feminine',
'N' => 'Neuter'
1¢
echo $this->Form->select('gender', $options, [
'disabled' => ['M', 'N']
D

Will output:

<select name="gender">
<option value="M" disabled="disabled">Masculine</option>
<option value="F">Feminine</option>
<option value="N" disabled="disabled">Neuter</option>
</select>

This option also works when 'multiple’ is set to 'checkbox':

356

Chapter 11. Views

CakePHP Book, Release 4.x

$options = [
'Value 1' => 'Label 1°',
'Value 2' => 'Label 2'
1
echo $this->Form->select('field', $options, [
'multiple' => 'checkbox',
'disabled' => ['Value 1']
D;

Output:

<input name="field" value=
<div class="checkbox">
<label for="field-1">
<input name="field[]" disabled="disabled" value="Value 1" type="checkbox">
Label 1
</label>
</div>
<div class="checkbox">
<label for="field-2">
<input name="field[]" value="Value 2" id="field-2" type="checkbox">
Label 2
</label>
</div>

type="hidden">

Creating File Inputs

Cake\View\Helper\FormHelper: : file (string $fieldName, array $options)

e $fieldName - A field name in the form 'Modelname.fieldname’.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

Creates a file upload field in the form. The widget template used by default is:

"file' => '<input type="file" name="{{name}}"{{attrs}}>'

To add a file upload field to a form, you must first make sure that the form enctype is set to 'multipart/form-data’.
So start off with a create () method such as the following:

echo $this->Form->create($document, ['enctype' => 'multipart/form-data']);

// OR

echo $this->Form->create($document, ['type' => 'file']);

Next add a line that looks like either of the following two lines to your form’s view template file:

echo $this->Form->control ('submittedfile', [
"type' => 'file'
D;

// OR
echo $this->Form->file('submittedfile');

More About Views 357

CakePHP Book, Release 4.x

Note: Due to the limitations of HTML itself, it is not possible to put default values into input fields of type ‘file’. Each
time the form is displayed, the value inside will be empty.

To prevent the submittedfile from being over-written as blank, remove it from $_accessible. Alternatively, you
can unset the index by using beforeMarshal:

public function beforeMarshal (\Cake\Event\EventInterface $event, \ArrayObject S$data, \
—ArrayObject S$options)
{
if ($data['submittedfile'] === "') {
unset($datal['submittedfile']);
}

Upon submission, file fields can be accessed though UploadedFileInterface objects on the request. To move
uploaded files to a permanent location, you can use:

$fileobject = $this->request->getData('submittedfile');
$destination = UPLOAD_DIRECTORY . $fileobject->getClientFilename();

// Existing files with the same name will be replaced.
$fileobject->moveTo($destination);

Note: When using $this->Form->file (), remember to set the form encoding-type, by setting the 'type' option
to 'file' in $this->Form->create().

Creating Date & Time Related Controls

Cake\View\Helper\FormHelper: :dateTime ($fieldName, $options = [])

* $fieldName - A string that will be used as a prefix for the HTML name attribute of the select elements.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

This method will generate an input tag with type “datetime-local”.

For example

<?= $this->form->dateTime('registered') ?>

Output:

<input type="datetime-local" name="registered" />

The value for the input can be any valid datetime string or DateTime instance.

For example

<?= $this->form->dateTime('registered', ['value' => new DateTime()]) ?>

Output:

358 Chapter 11. Views

CakePHP Book, Release 4.x

<input type="datetime-local" name="registered" value="2019-02-08T18:20:10" />

Creating Date Controls

Cake\View\Helper\FormHelper: :date ($fieldName, $options = [])

e $fieldName - A field name that will be used as a prefix for the HTML name attribute of the select elements.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

This method will generate an input tag with type “date”.

For example

<?= $this->form->date('registered') ?>

Output:

<input type="date" name="registered" />

Creating Time Controls

Cake\View\Helper\FormHelper: : time ($fieldName, $options = [])

* $fieldName - A field name that will be used as a prefix for the HTML name attribute of the select elements.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

This method will generate an input tag with type “time”.

For example

echo $this->Form->time('released');

Output:

<input type="time" name="released" />

Creating Month Controls

Cake\View\Helper\FormHelper: :month(string $fieldName, array $attributes)

e $fieldName - A field name that will be used as a prefix for the HTML name attribute of the select element.

» $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

This method will generate an input tag with type “month”.

For example:

echo $this->Form->month('mob');

More About Views 359

CakePHP Book, Release 4.x

Will output:

<input type="month" name="mob" />

Creating Year Controls

Cake\View\Helper\FormHelper: :year (string $fieldName, array $options = [])

e $fieldName - A field name that will be used as a prefix for the HTML name attribute of the select element.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes. Other valid options are:

— min: The lowest value to use in the year select picker.
— max: The maximum value to use in the year select picker.

— order: The order of year values in the year select picker. Possible values are 'asc' and 'desc'. Defaults
to 'desc"'.

Creates a select element populated with the years from min to max (when these options are provided) or else with
values starting from -5 years to +5 years counted from today. Additionally, HTML attributes may be supplied in
$options. If $options['empty'] is false, the select picker will not include an empty item in the list.

For example, to create a year range from 2000 to the current year you would do the following:

echo $this->Form->year('purchased', [
'min' => 2000,
'max' => date('Y'")

D;

If it was 2009, you would get the following:

<select name="purchased">
<option value=""></option>
<option value="2009">2009</option>
<option value="2008">2008</option>
<option value="2007">2007</option>
<option value="2006">2006</option>
<option value="2005">2005</option>
<option value="2004">2004</option>
<option value="2003">2003</option>
<option value="2002">2002</option>
<option value="2001">2001</option>
<option value="2000">2000</option>

</select>

360 Chapter 11. Views

CakePHP Book, Release 4.x

Creating Labels

Cake\View\Helper\FormHelper: :label (siring $fieldName, string $text, array $options)

* $fieldName - A field name in the form 'Modelname.fieldname’.
* $text - An optional string providing the label caption text.

* $options - Optional. Array containing any of the Common Options For Specific Controls as well as any valid
HTML attributes.

Creates a 1abel element. The argument $fieldName is used for generating the HTML for attribute of the element;
if $text is undefined, $fieldName will also be used to inflect the label’s text attribute.

For example:

echo $this->Form->label('name');
echo $this->Form->label('name', 'Your username');

Output:

<label for="name">Name</label>
<label for="name">Your username</label>

With the third parameter $options you can set the id or class:

echo $this->Form->label('name', null, ['id' => 'user-label']);
echo $this->Form->label('name', 'Your username', ['class' => 'highlight']);

Output:

<label for="name" id="user-label'>Name</label>
<label for="name" class="highlight">Your username</label>

Displaying and Checking Errors

FormHelper exposes a couple of methods that allow us to easily check for field errors and when necessary display
customized error messages.

Displaying Errors

Cake\View\Helper\FormHelper: :error (string $ficldName, mixed $text, array $options)

e $fieldName - A field name in the form 'Modelname.fieldname’.

e $text - Optional. A string or array providing the error message(s). If an array, then it should be a hash of key
names => messages. Defaults to null.

* $options - An optional array that can only contain a boolean with the key 'escape', which will define whether
to HTML escape the contents of the error message. Defaults to true.

Shows a validation error message, specified by $text, for the given field, in the event that a validation error has
occurred. If $text is not provided then the default validation error message for that field will be used.

Uses the following template widgets:

More About Views 361

CakePHP Book, Release 4.x

'error' => '<div class="error-message'">{{content}}</div>"

'errorList' => '{{content}}"

'errorItem' => '{{text}}"'

The 'errorList' and 'errorItem’' templates are used to format mutiple error messages per field.

Example:

// If in TicketsTable you have a motEmptyString' validation rule:
public function validationDefault(Validator $validator): Validator

{
$validator
->requirePresence('ticket', 'create')
->notEmptyString('ticket');
}

// And inside templates/Tickets/add.php you have:
echo $this->Form->text('ticket');

if ($this->Form->isFieldError('ticket')) {
echo $this->Form->error('ticket', 'Completely custom error message!');

¥

If you would click the Submit button of your form without providing a value for the Ticket field, your form would output:

<input name="ticket" class="form-error" required="required" value=
<div class="error-message">Completely custom error message!</div>

type="text">

Note: When using control (), errors are rendered by default, so you don’t need to use isFieldError() or call
error () manually.

Tip: If you use a certain model field to generate multiple form fields via control (), and you want the same valida-
tion error message displayed for each one, you will probably be better off defining a custom error message inside the
respective validator rules.

Checking for Errors

Cake\View\Helper\FormHelper: :isFieldError (string $fieldName)

* $fieldName - A field name in the form 'Modelname.fieldname'.
Returns true if the supplied $fieldName has an active validation error, otherwise returns false.

Example:
if ($this->Form->isFieldError('gender')) {

echo $this->Form->error('gender');

}

362 Chapter 11. Views

CakePHP Book, Release 4.x

Displaying validation messages in HTMLS5 validity messages

If the autoSetCustomValidity FormHelper option is set to true, error messages for the field’s required and notBlank
validation rules will be used in lieu of the default browser HTMLS5 required messages. Enabling the option will add
the onvalid and oninvalid event attributes to your fields, for example:

<input type="text" name="field" required onvalid="this.setCustomValidity('')" oninvalid=
—"this.setCustomValidity('Custom notBlank message')" />

If you want to manually set those events with custom JavaScript, you can set the autoSetCustomValidity option to
false and use the special customValidityMessage template variable instead. This template variable is added when
a field is required:

// example template
[

"input' => '<input type="{{type}}" name="{{name}}" data-error-message="{
—{customValidityMessage}}" {{attrs}}/>',
]

// would create an input like this
<input type="text" name="field" required data-error-message="Custom notBlank message" />

You could then use JavaScript to set the onvalid and oninvalid events as you like.

Creating Buttons and Submit Elements
Creating Submit Elements

Cake\View\Helper\FormHelper: : submit (string $caption, array $options)

* $caption - An optional string providing the button’s text caption or a path to an image. Defaults to ' Submit'.

e $options - An optional array including any of the Common Options For Specific Controls, or of the specific
submit options (see below) as well as any valid HTML attributes.

Creates an input element of submit type, with $caption as value. If the supplied $caption is a URL pointing
to an image (i.e. if the string contains ‘:// or contains any of the extensions ‘.jpg, .jpe, .jpeg, .gif’), an image submit
button will be generated, using the specified image if it exists. If the first character is ‘/’ then the image path is relative
to webroot, else if the first character is not ‘/’ then the image path is relative to webroot/img.

By default it will use the following widget templates:

"inputSubmit' => '<input type="{{typel}}"{{attrs}}/>'

'submitContainer' => '<div class="submit">{{content}}</div>"

Options for Submit
e 'type' - Set this option to 'reset' in order to generate reset buttons. It defaults to 'submit’.
* "templateVars' - Set this array to provide additional template variables for the input element and its container.
* Any other provided attributes will be assigned to the input element.

The following:

echo $this->Form->submit('Click me');

More About Views 363

CakePHP Book, Release 4.x

Will output:

<div class="submit"><input value="Click me" type="submit"></div>

You can pass a relative or absolute URL of an image to the caption parameter instead of the caption text:

echo $this->Form->submit('ok.png');

Will output:

<div class="submit"><input type="image" src="/img/ok.png"></div>

Submit inputs are useful when you only need basic text or images. If you need more complex button content you should
use button().

Creating Button Elements

Cake\View\Helper\FormHelper: :button(string $title, array $options = [])

* $title - Mandatory string providing the button’s text caption.

* $options - An optional array including any of the Common Options For Specific Controls, or of the specific
button options (see below) as well as any valid HTML attributes.

Creates an HTML button with the specified title and a default type of "button'.
Options for Button
* "type' - You can set this to one of the following three possible values:

1. 'submit' - Similarly to the $this->Form->submit () method it will create a submit button. However
this won’t generate a wrapping div as submit () does. This is the default type.

2. 'reset' - Creates a form reset button.
3. 'button' - Creates a standard push button.

* 'escapeTitle' - Boolean. If set to true it will HTML encode the value provided inside $title. Defaults to
true.

e 'escape' - Boolean. If set to true it will HTML encode all the HTML attributes generated for the button.
Defaults to true.

e 'confirm' - The confirmation message to display on click. Defaults to null.

For example:

echo $this->Form->button('A Button');

echo $this->Form->button('Another Button', ['type' => 'button']);
echo $this->Form->button('Reset the Form', ['type' => 'reset']);
echo $this->Form->button('Submit Form', ['type' => 'submit']);

Will output:

<button type="submit">A Button</button>
<button type="button">Another Button</button>
<button type="reset">Reset the Form</button>
<button type="submit">Submit Form</button>

Example use of the 'escapeTitle' option:

364 Chapter 11. Views

CakePHP Book, Release 4.x

// Will render unescaped HTML.

echo $this->Form->button('Submit Form', [
"type' => 'submit',
'escapeTitle' => false,

D

Closing the Form

Cake\View\Helper\FormHelper: : end ($secureAttributes = [])

* $secureAttributes - Optional. Allows you to provide secure attributes which will be passed as HTML at-
tributes into the hidden input elements generated for the SecurityComponent.

The end () method closes and completes a form. Often, end() will only output a closing form tag, but using end ()
is a good practice as it enables FormHelper to insert the hidden form elements that Cake\Controller\Component\
SecurityComponent requires:

<?= $this->Form->create(); ?>

<!l-- Form elements go here -->

<?= $this->Form->end(); ?>

If you need to add additional attributes to the generated hidden inputs you can use the $secureAttributes argument.

For example:

echo $this->Form->end(['data-type' => 'hidden']);

Will output:

<div style="display:none;">
<input type="hidden" name="_Token[fields]" data-type="hidden"
value="2981c38990f3f6ba935e6561dc77277966fabd6d%3AAddresses.id">
<input type="hidden" name="_Token[unlocked]" data-type="hidden"
value="address%7Cfirst_name">
</div>

Note: If you are using Cake\Controller\Component\SecurityComponent in your application you should always
end your forms with end Q).

Creating Standalone Buttons and POST Links
Creating POST Buttons

Cake\View\Helper\FormHelper: :postButton(string $title, mixed $url, array $options = [])

* $title - Mandatory string providing the button’s text caption. By default not HTML encoded.

e $url - The URL of the form provided as a string or as array.

More About Views 365

CakePHP Book, Release 4.x

* $options - An optional array including any of the Common Options For Specific Controls, or of the specific
options (see below) as well as any valid HTML attributes.

Creates a <button> tag with a surrounding <form> element that submits via POST, by default. Also, by default, it
generates hidden input fields for the SecurityComponent.

Options for POST Button
e 'data' - Array with key/value to pass in hidden input.

* 'method’' - Request method to use. E.g. set to 'delete’ to simulate a HTTP/1.1 DELETE request. Defaults
to 'post'.

e "form' - Array with any option that FormHelper: :create() can take.
* Also, the postButton() method will accept the options which are valid for the button() method.

For example:

// In templates/Tickets/index.php
<?= $this->Form->postButton('Delete Record', ['controller' => 'Tickets', 'action' =>
< 'delete', 5]) ?>

Will output HTML similar to:

<form method="post" accept-charset="utf-8" action="/Rtools/tickets/delete/5">
<div style="display:none;">
<input name="_method" value="POST" type="hidden">
</div>
<button type="submit">Delete Record</button>
<div style="display:none;">
<input name="_Token[fields]" value="186cfbfc6£519622e19d1e688633c4028229081f%3A".
—type="hidden">
<input name="_Token[unlocked]" value= type="hidden">
<input name="_Token[debug]" value="%5B%22%5C%2FRtools%5C%2Ftickets%5C%2Fdelete%5C
—%2F 1%22%2C%5B%5D%2C%5B%5D%5D" type="hidden">
</div>
</form>

Since this method generates a form element, do not use this method in an already opened form. Instead use Cake\
View\Helper\FormHelper: :submit () or Cake\View\Helper\FormHelper: :button() to create buttons inside
opened forms.

Creating POST Links

Cake\View\Helper\FormHelper: :postLink (string $title, mixed $url = null, array $options = [])

* $title - Mandatory string providing the text to be wrapped in <a> tags.

e $url - Optional. String or array which contains the URL of the form (Cake-relative or external URL starting
with http://).

* $options - An optional array including any of the Common Options For Specific Controls, or of the specific
options (see below) as well as any valid HTML attributes.

Creates an HTML link, but accesses the URL using the method you specify (defaults to POST). Requires JavaScript to
be enabled in browser:

366 Chapter 11. Views

CakePHP Book, Release 4.x

// In your template, to delete an article, for example
<?= $this->Form->postLink(

'Delete’,

['action' => 'delete', S$article->id],

['confirm' => 'Are you sure?'])
7>

Options for POST Link

e 'data' - Array with key/value to pass in hidden input.

* 'method’' - Request method to use. For example, setting it to 'delete’ will simulate a HTTP/1.1 DELETE
request. Defaults to 'post’.

e 'confirm' - The confirmation message to display on click. Defaults to null.

"block’ - Set this option to true to append the form to view block 'postLink' or provide a custom block
name. Defaults to null.

* Also, the postLink method will accept the options which are valid for the 1ink () method.

This method creates a <form> element. If you want to use this method inside of an existing form, you must use the
block option so that the new form is being set to a view block that can be rendered outside of the main form.

If all you are looking for is a button to submit your form, then you should use Cake\View\Helper)\
FormHelper: :button() or Cake\View\Helper\FormHelper: :submit () instead.

Note: Be careful to not put a postLink inside an open form. Instead use the block option to buffer the form into a
view block

Customizing the Templates FormHelper Uses

Like many helpers in CakePHP, FormHelper uses string templates to format the HTML it creates. While the default
templates are intended to be a reasonable set of defaults, you may need to customize the templates to suit your appli-
cation.

To change the templates when the helper is loaded you can set the 'templates' option when including the helper in
your controller:

// In a View class
$this->loadHelper('Form', [
'templates' => 'app_form',

D;

This would load the tags found in config/app_form.php. This file should contain an array of templates indexed by
name:

// in config/app_form.php
return [
"inputContainer' => '<div class="form-control">{{content}}</div>",

1;

Any templates you define will replace the default ones included in the helper. Templates that are not replaced, will
continue to use the default values.

You can also change the templates at runtime using the setTemplates () method:

More About Views 367

CakePHP Book, Release 4.x

$myTemplates = [

"inputContainer' => '<div class="form-control">{{content}}</div>",
1;
$this->Form->setTemplates($myTemplates);

Warning: Template strings containing a percentage sign (%) need special attention; you should prefix this character
with another percentage so it looks like %%. The reason is that internally templates are compiled to be used with
sprintf(). Example: '<div style="width:{{size}}%%">{{content}}</div>"

List of Templates

The list of default templates, their default format and the variables they expect can be found in the FormHelper API
documentation'?>,

Using Distinct Custom Control Containers

In addition to these templates, the control () method will attempt to use distinct templates for each control container.
For example, when creating a datetime control the datetimeContainer will be used if it is present. If that container
is missing the inputContainer template will be used.

For example:

// Add custom radio wrapping HTML
$this->Form->setTemplates([
'radioContainer' => '<div class="form-radio">{{content}}</div>"

D;

// Create a radio set with our custom wrapping div.
echo $this->Form->control('email _notifications', [
'options' => ['y', 'n'],
"type' => 'radio'

D;

Using Distinct Custom Form Groups

Similar to controlling containers, the control () method will also attempt to use distinct templates for each form group.
A form group is a combo of label and control. For example, when creating a radio control the radioFormGroup will
be used if it is present. If that template is missing by default each set of label & input is rendered using the default
formGroup template.

For example:

// Add custom radio form group
$this->Form->setTemplates([
'radioFormGroup' => '<div class="radio">{{label}}{{input}l}</div>"

D;

135 https://api.cakephp.org/4.x/class-Cake. View.Helper.FormHelper.html#%24_defaultConfig

368 Chapter 11. Views

https://api.cakephp.org/4.x/class-Cake.View.Helper.FormHelper.html#%24_defaultConfig
https://api.cakephp.org/4.x/class-Cake.View.Helper.FormHelper.html#%24_defaultConfig

CakePHP Book, Release 4.x

Adding Additional Template Variables to Templates

You can add additional template placeholders in custom templates, and populate those placeholders when generating
controls.

For example:

// Add a template with the help placeholder.
$this->Form->setTemplates([
"inputContainer' => '<div class="input {{type}}{{required}}">
{{content}} {{help}}</div>"
D

// Generate an input and populate the help variable
echo $this->Form->control('password', [

"templateVars' => ['help' => 'At least 8 characters long.']
D;

Output:

<div class="input password'">
<label for="password">
Password
</label>
<input name="password" id="password" type="password">
At least 8 characters long.
</div>

Moving Checkboxes & Radios Outside of a Label

By default CakePHP nests checkboxes created via control() and radio buttons created by both control() and
radio() within label elements. This helps make it easier to integrate popular CSS frameworks. If you need to place
checkbox/radio inputs outside of the label you can do so by modifying the templates:

$this->Form->setTemplates([
'nestinglabel' => '{{hidden}}{{input}}<label{{attrs}}>{{text}}</label>",
"formGroup' => '{{input}}{{label}}’,

D;

This will make radio buttons and checkboxes render outside of their labels.
Generating Entire Forms
Creating Multiple Controls

Cake\View\Helper\FormHelper: :controls (array $fields = [], $options = [])

» $fields - An array of fields to generate. Allows setting custom types, labels and other options for each specified
field.

* $options - Optional. An array of options. Valid keys are:

More About Views 369

CakePHP Book, Release 4.x

1. "fieldset' - Set this to false to disable the fieldset. If empty, the fieldset will be enabled. Can also be
an array of parameters to be applied as HTML attributes to the fieldset tag.

2. legend - String used to customize the 1egend text. Set this to false to disable the legend for the generated
input set.

Generates a set of controls for the given context wrapped in a fieldset. You can specify the generated fields by
including them:

echo $this->Form->controls([
'name’,
'email'

D;

You can customize the legend text using an option:

echo $this->Form->controls($fields, ['legend' => 'Update news post']);

You can customize the generated controls by defining additional options in the $fields parameter:

echo $this->Form->controls([
'name’' => ['label' => 'custom label']

D
When customizing, $fields, you can use the $options parameter to control the generated legend/fieldset.

For example:

echo $this->Form->controls(

L

'name' => ['label' => 'custom label']

1,
['legend' => 'Update your post']
);

If you disable the fieldset, the legend will not print.

Creating Controls for a Whole Entity

Cake\View\Helper\FormHelper: :allControls (array $fields, $Soptions = [])

* $fields - Optional. An array of customizations for the fields that will be generated. Allows setting custom
types, labels and other options.

* $options - Optional. An array of options. Valid keys are:

1. "fieldset' - Set this to false to disable the fieldset. If empty, the fieldset will be enabled. Can also be
an array of parameters to be applied as HTMI attributes to the fieldset tag.

2. legend - String used to customize the 1egend text. Set this to false to disable the legend for the generated
control set.

This method is closely related to controls (), however the $fields argument is defaulted to all fields in the current
top-level entity. To exclude specific fields from the generated controls, set them to false in the $fields parameter:

echo $this->Form->allControls(['password' => false]);

370 Chapter 11. Views

CakePHP Book, Release 4.x

Creating Inputs for Associated Data

Creating forms for associated data is straightforward and is closely related to the paths in your entity’s data. Assuming
the following table relations:

* Authors HasOne Profiles

* Authors HasMany Articles

* Articles HasMany Comments
* Articles BelongsTo Authors

* Articles BelongsToMany Tags

If we were editing an article with its associations loaded we could create the following controls:

$this->Form->create($article);

// Article controls.
echo $this->Form->control('title');

// Author controls (belongsTo)

echo $this->Form->control('author.id');

echo $this->Form->control('author.first_name');
echo $this->Form->control('author.last_name');

// Author profile (belongsTo + hasOne)
echo $this->Form->control('author.profile.id');
echo $this->Form->control('author.profile.username');

// Tags controls (belongsToMany)

// as separate inputs

echo $this->Form->control('tags.0.id');
echo $this->Form->control('tags.0.name');
echo $this->Form->control('tags.1.id');
echo $this->Form->control('tags.1l.name');

// Inputs for the joint table (articles_tags)
echo $this->Form->control('tags.0._joinData.starred');
echo $this->Form->control('tags.l._joinData.starred');

// Comments controls (hasMany)

echo $this->Form->control ('comments.0.id');

echo $this->Form->control ('comments.®.comment');
echo $this->Form->control('comments.1.id');

echo $this->Form->control ('comments.1.comment');

The above controls could then be marshalled into a completed entity graph using the following code in your controller:

$article = $this->Articles->patchEntity(Sarticle, $this->request->getData(), [
'associated' => [
'Authors',
'Authors.Profiles’,
'Tags',
'Comments'

(continues on next page)

More About Views 371

CakePHP Book, Release 4.x

(continued from previous page)

]
D;

The above example shows an expanded example for belongs to many associations, with separate inputs for each entity
and join data record. You can also create a multiple select input for belongs to many associations:

// Multiple select element for belongsToMany
// Does not support _joinData
echo $this->Form->control('tags._ids', [
"type' => 'select',
'multiple' => true,
'options' => $tagList,

D;

Adding Custom Widgets

You can add custom control widgets in CakePHP, and use them like any other control type. All of the core control types
are implemented as widgets, which means you can override any core widget with your own implementation as well.

Building a Widget Class

Widget classes have a very simple required interface. = They must implement the Cake\View\Widget\
WidgetInterface. This interface requires the render (array $data) and secureFields(array $data) meth-
ods to be implemented. The render () method expects an array of data to build the widget and is expected to return
a string of HTML for the widget. The secureFields() method expects an array of data as well and is expected to
return an array containing the list of fields to secure for this widget. If CakePHP is constructing your widget you can
expect to get a Cake\View\StringTemplate instance as the first argument, followed by any dependencies you define.
If we wanted to build an Autocomplete widget you could do the following:

namespace App\View\Widget;

use Cake\View\Form\ContextInterface;
use Cake\View\StringTemplate;
use Cake\View\Widget\WidgetInterface;

class AutocompleteWidget implements WidgetInterface

{
/7': *

* StringTemplate instance.

* @var \Cake\View\StringTemplate
:':/
protected $_templates;

/:.L *

* Constructor.

* @param \Cake\View\StringTemplate $templates Templates list.
7':/

(continues on next page)

372 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)
public function __construct(StringTemplate $templates)
{
$this->_templates = $templates;

}

/7’::’.—
* Methods that render the widget.
* @param array $data The data to build an input with.
* @param \Cake\View\Form\ContextInterface $context The current form context.

* @return string
:':/
public function render(array $data, ContextInterface $context): string
{
$data += [
'name' => "',
A3
return $this->_templates->format('autocomplete', [
'name' => $data['name'],
'attrs' => $this->_templates->formatAttributes($data, ['name'])

D;
}
public function secureFields(array S$data): array
{
return [$data['name']];
}

Obviously, this is a very simple example, but it demonstrates how a custom widget could be built. This widget would
render the “autocomplete” string template, such as:

$this->Form->setTemplates([
'autocomplete' => '<input type="autocomplete" name="{{name}}" {{attrs}} />'

D;

For more information on string templates, see Customizing the Templates FormHelper Uses.

Using Widgets

You can load custom widgets when loading FormHelper or by using the addWidget() method. When loading
FormHelper, widgets are defined as a setting:

// In View class
$this->loadHelper('Form', [
'widgets' => [
'autocomplete' => ['Autocomplete']
]
D;

If your widget requires other widgets, you can have FormHelper populate those dependencies by declaring them:

More About Views 373

CakePHP Book, Release 4.x

$this->loadHelper('Form', [
'widgets' => [
'autocomplete' => [
'App\View\Widget\AutocompleteWidget',
'text',
'label’

]
D;

In the above example, the autocomplete widget would depend on the text and label widgets. If your widget needs
access to the View, you should use the _view ‘widget’. When the autocomplete widget is created, it will be passed
the widget objects that are related to the text and label names. To add widgets using the addWidget () method
would look like:

// Using a classname.
$this->Form->addWidget (
'autocomplete',
['Autocomplete', 'text', 'label']

);

// Using an instance - requires you to resolve dependencies.

$autocomplete = new AutocompleteWidget
$this->Form->getTemplater(),
$this->Form->getWidgetLocator()->get('text'),
$this->Form->getWidgetLocator()->get('label'),

E

$this->Form->addWidget ('autocomplete', $autocomplete);

Once added/replaced, widgets can be used as the control ‘type’:

echo $this->Form->control('search', ['type' => 'autocomplete']);

This will create the custom widget with a 1abel and wrapping div just like controls () always does. Alternatively,
you can create just the control widget using the magic method:

echo $this->Form->autocomplete('search', $options);

Working with SecurityComponent

Cake\Controller\Component\SecurityComponent offers several features that make your forms safer and more
secure. By simply including the SecurityComponent in your controller, you’ll automatically benefit from form
tampering-prevention features.

As mentioned previously when using SecurityComponent, you should always close your forms using end (). This will
ensure that the special _Token inputs are generated.

Cake\View\Helper\FormHelper: :unlockField($name)

* $name - Optional. The dot-separated name for the field.

Unlocks a field making it exempt from the SecurityComponent field hashing. This also allows the fields to be ma-
nipulated by JavaScript. The $name parameter should be the entity property name for the field:

374 Chapter 11. Views

CakePHP Book, Release 4.x

$this->Form->unlockField('id"');

Cake\View\Helper\FormHelper: :secure(array $fields = [], array $secureAttributes = [])

* $fields - Optional. An array containing the list of fields to use when generating the hash. If not provided, then
$this->fields will be used.

* $secureAttributes - Optional. An array of HTML attributes to be passed into the generated hidden input
elements.

Generates a hidden input field with a security hash based on the fields used in the form or an empty string when
secured forms are not in use. If $secureAttributes is set, these HTML attributes will be merged into the hidden
input tags generated for the SecurityComponent. This is especially useful to set HTMLS attributes like ' form'.

Himl

class Cake\View\Helper\HtmlHelper (View $view, array $config = [])

The role of the HtmlHelper in CakePHP is to make HTML-related options easier, faster, and more resilient to change.
Using this helper will enable your application to be more light on its feet, and more flexible on where it is placed in
relation to the root of a domain.

Many HtmlHelper methods include a $attributes parameter, that allow you to tack on any extra attributes on your
tags. Here are a few examples of how to use the $attributes parameter:

Desired attributes: <tag class="someClass" />
Array parameter: ['class' => 'someClass']

Desired attributes: <tag name="foo" value="bar" />

Array parameter: ['name' => 'foo', 'value' => 'bar']

Inserting Well-Formatted Elements

The most important task the HtmlHelper accomplishes is creating well formed markup. This section will cover some
of the methods of the HtmlHelper and how to use them.

Creating Charset Tags

Cake\View\Helper\HtmlHelper: : charset ($charset=null)
Used to create a meta tag specifying the document’s character. The default value is UTF-8. An example use:

echo $this->Html->charset();

Will output:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

Alternatively,

echo $this->Html->charset('IS0-8859-1");

Will output:

More About Views 375

CakePHP Book, Release 4.x

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

Linking to CSS Files

Cake\View\Helper\HtmlHelper: : css(mixed $path, array $options = [])

Creates a link(s) to a CSS style-sheet. If the block option is set to true, the link tags are added to the css block which
you can print inside the head tag of the document.

You can use the block option to control which block the link element will be appended to. By default it will append
to the css block.

If key ‘rel’ in $options array is set to ‘import’ the stylesheet will be imported.

This method of CSS inclusion assumes that the CSS file specified resides inside the webroot/css directory if path
doesn’t start with a /.

echo $this->Html->css('forms');

Will output:

<link rel="stylesheet" href="/css/forms.css" />

The first parameter can be an array to include multiple files.

echo $this->Html->css(['forms', 'tables', 'menu']);

Will output:

<link rel="stylesheet" href="/css/forms.css" />
<link rel="stylesheet" href="/css/tables.css" />
<link rel="stylesheet" href="/css/menu.css" />

You can include CSS files from any loaded plugin using plugin syntax. To include plug-
ins/DebugKit/webroot/css/toolbar.css you could use the following:

echo $this->Html->css('DebugKit.toolbar.css');

If you want to include a CSS file which shares a name with a loaded plugin you can do the following. For example if
you had a Blog plugin, and also wanted to include webroot/css/Blog.common.css, you would:

echo $this->Html->css('Blog.common.css', ['plugin' => false]);

Creating CSS Programatically

Cake\View\Helper\HtmlHelper: :style(array $data, boolean $oneline = true)

Builds CSS style definitions based on the keys and values of the array passed to the method. Especially handy if your
CSS file is dynamic.

echo $this->Html->style([
'background' => '#633',
'"border-bottom' => 'lpx solid #000',
(continues on next page)

376 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)
'padding' => '10px'
D

Will output:

background: #633; border-bottom:1lpx solid #000; padding:10px;

Creating meta Tags

Cake\View\Helper\HtmlHelper: :meta(stringlarray $type, string $url = null, array $options = [])

This method is handy for linking to external resources like RSS/Atom feeds and favicons. Like css(), you can specify
whether or not you’d like this tag to appear inline or appended to the meta block by setting the ‘block’ key in the
$attributes parameter to true, ie - ['block' => true].

If you set the “type” attribute using the $attributes parameter, CakePHP contains a few shortcuts:

type translated value

html text/html

1SS application/rss+xml
atom application/atom+xml
icon image/x-icon

<?= $this->Html->meta(
'favicon.ico',
'/favicon.ico',
['type' => 'icon']
);
7>
// Output (line breaks added)
// Note: The helper code makes two meta tags to ensure the
// icon is downloaded by both newer and older browsers
// which require different rel attribute values.
<link
href="/subdir/favicon.ico"
type="image/x-icon"

rel="icon"

/>

<link
href="/subdir/favicon.ico"
type="image/x-icon"
rel="shortcut icon"

/>

<?= $this->Html->meta(
'Comments"',
' /comments/index.rss"',
['type' => 'rss']

);

7>

(continues on next page)

More About Views 377

CakePHP Book, Release 4.x

(continued from previous page)

// Output (line breaks added)

<link
href="http://example.com/comments/index.rss"
title="Comments"
type="application/rss+xml"
rel="alternate"

/>

This method can also be used to add the meta keywords and descriptions. Example:

<?= $this->Html->meta(
'keywords"',
'enter any meta keyword here'
);
7>
// Output
<meta name="keywords" content="enter any meta keyword here" />

<?= $this->Html->metal(
'description’,
'enter any meta description here'
DL
7>
// Output
<meta name="description" content="enter any meta description here" />

In addition to making predefined meta tags, you can create link elements:

<?= $this->Html->meta([
'link' => 'http://example.com/manifest’',
'rel' => 'manifest'
D
7>
// Output
<link href="http://example.com/manifest" rel="manifest"/>

Any attributes provided to meta() when called this way will be added to the generated link tag.

Linking to Images

Cake\View\Helper\HtmlHelper: :image (string $path, array $options = [])
Creates a formatted image tag. The path supplied should be relative to webroot/img/.
echo $this->Html->image('cake_logo.png', ['alt' => 'CakePHP']);
Will output:

To create an image link specify the link destination using the url option in $attributes.

378 Chapter 11

. Views

CakePHP Book, Release 4.x

echo $this->Html->image(''recipes/6.jpg", [
"alt" => "Brownies",
'url' => ['controller' => 'Recipes', 'action' => 'view', 6]

D;

Will output:

If you are creating images in emails, or want absolute paths to images you can use the fullBase option:

echo $this->Html->image("logo.png", ['fullBase' => truel);

Will output:

You can include image files from any loaded plugin using plugin syntax. To include plug-
ins/DebugKit/webroot/img/icon.png You could use the following:

echo $this->Html->image('DebugKit.icon.png');

If you want to include an image file which shares a name with a loaded plugin you can do the following. For example
if you had a Blog plugin, and also wanted to include webroot/img/Blog.icon.png, you would:

echo $this->Html->image('Blog.icon.png', ['plugin' => false]);

If you would like the prefix of the URL to not be /img, you can override this setting by specifying the prefix in the
$options array

echo $this->Html->image("logo.png", ['pathPrefix' => "'']);

Will output:

Creating Links

Cake\View\Helper\HtmlHelper: :link($title, $url = null, array $options = [])

General purpose method for creating HTML links. Use $options to specify attributes for the element and whether or
not the $title should be escaped.

echo $this->Html->1link(
'"Enter',
' /pages/home",
['class' => 'button', 'target' => '_blank']

);

Will output:

More About Views 379

CakePHP Book, Release 4.x

Enter

Use '_full'=>true option for absolute URLs:

echo $this->Html->1ink(

'Dashboard’,

['controller' => 'Dashboards', 'action' => 'index', '_full' => true]
DE
Will output:

Dashboard

Specify confirm key in options to display a JavaScript confirm() dialog:

echo $this->Html->1ink(

'Delete’,
['controller' => 'Recipes', 'action' => 'delete', 6],
['confirm' => 'Are you sure you wish to delete this recipe?']
E
Will output:

<a href="/recipes/delete/6"
onclick="return confirm(
'Are you sure you wish to delete this recipe?'
);">
Delete

Query strings can also be created with 1ink ().

echo $this->Html->link('View image', [
'controller' => 'Images',
'action' => 'view',
I
'?' => ['height' => 400, 'width' => 500]
D;

Will output:

View image

HTML special characters in $title will be converted to HTML entities. To disable this conversion, set the escape
option to false in the $options array.

echo $this->Html->1ink(
$this->Html->image("recipes/6.jpg", ["alt" => "Brownies"]),
"recipes/view/6",
['escape' => false]

DE

Will output:

380 Chapter 11. Views

CakePHP Book, Release 4.x

Setting escape to false will also disable escaping of attributes of the link. You can use the option escapeTitle to
disable just escaping of title and not the attributes.

echo $this->Html->1link(
$this->Html->image('recipes/6.jpg', ['alt' => 'Brownies']),
'recipes/view/6"',
['escapeTitle' => false, 'title' => 'hi "howdy"']

E

Will output:

Also check Cake\View\Helper\UrlHelper: :build() method for more examples of different types of URLs.

Cake\View\Helper\HtmlHelper: :linkFromPath (string $title, string $path, array $params = [], array $options
=[N

If you want to use route path strings, you can do that using this method:

echo $this->Html->linkFromPath('Index', 'Articles::index');
// outputs: Index

echo $this->Html->linkFromPath('View', 'MyBackend.Admin/Articles::view', [3]);
// outputs: View

New in version 4.1.0: 1inkFromPath() was added.

Linking to Videos and Audio Files

Cake\View\Helper\HtmlHelper: :media (string|array $path, array $options)
Options:

* type Type of media element to generate, valid values are “audio” or “video”. If type is not provided media type
is guessed based on file’s mime type.

* text Text to include inside the video tag
* pathPrefix Path prefix to use for relative URLs, defaults to ‘files/’
e fullBase If provided the src attribute will get a full address including domain name

Returns a formatted audio/video tag:

<?= $this->Html->media('audio.mp3') ?>

// Output
<audio src="/files/audio.mp3"></audio>

(continues on next page)

More About Views 381

CakePHP Book, Release 4.x

(continued from previous page)
<?= $this->Html->media('video.mp4', [
'fullBase' => true,
"text' => 'Fallback text'
1D >

// Output
<video src="http://www.somehost.com/files/video.mp4">Fallback text</video>

<?= $this->Html->media(

['video.mp4', ['src' => 'video.ogg', 'type' => "video/ogg; codecs='theora, vorbis
<"11,

["autoplay']
) 7>

// Output
<video autoplay="autoplay">
<source src="/files/video.mp4" type="video/mp4"/>
<source src="/files/video.ogg" type="video/ogg;
codecs="theora, vorbis'"/>
</video>

Linking to Javascript Files

Cake\View\Helper\HtmlHelper: :script (mixed $url, mixed $options)

Include a script file(s), contained either locally or as a remote URL.

By default, script tags are added to the document inline. If you override this by setting $options['block'] to true,
the script tags will instead be added to the script block which you can print elsewhere in the document. If you wish
to override which block name is used, you can do so by setting $options['block'].

$options['once'] controls whether or not you want to include this script once per request or more than once. This
defaults to true.

You can use $options to set additional properties to the generated script tag. If an array of script tags is used, the
attributes will be applied to all of the generated script tags.

This method of JavaScript file inclusion assumes that the JavaScript file specified resides inside the webroot/js direc-
tory:

echo $this->Html->script('scripts');

Will output:

<script src="/js/scripts.js"></script>

You can link to files with absolute paths as well to link files that are not in webroot/js:

echo $this->Html->script('/otherdir/script_file');

You can also link to a remote URL:

echo $this->Html->script('https://code.jquery.com/jquery.min.js');

382 Chapter 11. Views

CakePHP Book, Release 4.x

Will output:

<script src="https://code.jquery.com/jquery.min. js"></script>

The first parameter can be an array to include multiple files.

echo $this->Html->script(['jquery', 'wysiwyg', 'scripts'l);

Will output:

<script src="/js/jquery.js"></script>
<script src="/js/wysiwyg.js"></script>
<script src="/js/scripts.js'"></script>

You can append the script tag to a specific block using the block option:

$this->Html->script('wysiwyg', ['block' => 'scriptBottom']);

In your layout you can output all the script tags added to ‘scriptBottom’:

echo $this->fetch('scriptBottom');

You can include script files from any loaded plugin using plugin syntax. To include plug-
ins/DebugKit/webroot/js/toolbar.js You could use the following:

echo $this->Html->script('DebugKit.toolbar.js');

If you want to include a script file which shares a name with a loaded plugin you can do the following. For example if
you had a Blog plugin, and also wanted to include webroot/js/Blog.plugins.js, you would:

echo $this->Html->script('Blog.plugins.js', ['plugin' => false]);

Creating Inline Javascript Blocks

Cake\View\Helper\HtmlHelper: :scriptBlock($code, $options = [])

To generate Javascript blocks from PHP view code, you can use one of the script block methods. Scripts can either be
output in place, or buffered into a block:

// Define a script block all at once, with the defer attribute.
$this->Html->scriptBlock('alert("hi")"', ['defer' => truel);

// Buffer a script block to be output later.
$this->Html->scriptBlock('alert("hi")"', ['block' => true]);

Cake\View\Helper\HtmlHelper: :scriptStart ($options =[])
Cake\View\Helper\HtmlHelper: :scriptEnd ()

You can use the scriptStart() method to create a capturing block that will output into a <script> tag. Captured
script snippets can be output inline, or buffered into a block:

More About Views 383

CakePHP Book, Release 4.x

// Append into the 'script' block.

$this->Html->scriptStart(['block' => truel]);
echo "alert('I am in the JavaScript');";

$this->Html->scriptEnd();

Once you have buffered javascript, you can output it as you would any other View Block:

// In your layout
echo $this->fetch('script');

Creating Nested Lists

Cake\View\Helper\HtmlHelper: :nestedList (array $list, array $options = [], array $itemOptions = [])

Build a nested list (UL/OL) out of an associative array:

$list = [
'Languages’' => [
'English' => [
'American',
'Canadian',
'British',
Ag
'Spanish’,
'German',
]
1;
echo $this->Html->nestedList($list);

Output:

// Output (minus the whitespace)

Languages

<1li>English

American</1i>
Canadian</1i>
<1li>British</1i>

</1i>
Spanish</1i>
German</1i>

</1i>

384

Chapter 11. Views

CakePHP Book, Release 4.x

Creating Table Headings

Cake\View\Helper\HtmlHelper: : tableHeaders (array $names, array $trOptions = null, array $thOptions =
null)

Creates a row of table header cells to be placed inside of <table> tags.

echo $this->Html->tableHeaders(['Date', 'Title', 'Active']);

Output:

<tr>
<th>Date</th>
<th>Title</th>
<th>Active</th>
</tr>

echo $this->Html->tableHeaders(
['Date', 'Title', 'Active'],
['class' => 'status'],
['class' => 'product_table']

)3
Output:

<tr class="status">
<th class="product_table">Date</th>
<th class="product_table">Title</th>
<th class="product_table">Active</th>
</tr>

You can set attributes per column, these are used instead of the defaults provided in the $thOptions:

echo $this->Html->tableHeaders([
lidl’
['Name' => ['class' => 'highlight']],
['Date' => ['class' => 'sortable']]

D;
Output:
<tr>
<th>id</th>
<th class="highlight">Name</th>
<th class="sortable">Date</th>
</tr>

More About Views 385

CakePHP Book, Release 4.x

Creating Table Cells

Cake\View\Helper\HtmlHelper: :tableCells (array $data, array $oddTrOptions = null, array $evenTrOptions
= null, $useCount = false, $continueOddEven = true)

Creates table cells, in rows, assigning <tr> attributes differently for odd- and even-numbered rows. Wrap a single table
cell within an [] for specific <td>-attributes.

echo $this->Html->tableCells([
["Jul 7th, 2007', 'Best Brownies', 'Yes'],
["Jun 21st, 2007', 'Smart Cookies', 'Yes'],
['Aug 1st, 2006', 'Anti-Java Cake', 'No'],
D;

Output:

<tr><td>Jul 7th, 2007</td><td>Best Brownies</td><td>Yes</td></tr>
<tr><td>Jun 21st, 2007</td><td>Smart Cookies</td><td>Yes</td></tr>
<tr><td>Aug 1st, 2006</td><td>Anti-Java Cake</td><td>No</td></tr>

echo $this->Html->tableCells([
['Jul 7th, 2007', ['Best Brownies', ['class' => 'highlight']] , 'Yes'],
["Jun 21st, 2007', 'Smart Cookies', 'Yes'],
['Aug 1st, 2006', 'Anti-Java Cake', ['No', ['id' => 'special']ll,

D

Output:

<tr>
<td>
Jul 7th, 2007
</td>
<td class="highlight">
Best Brownies
</td>
<td>
Yes
</td>
</tr>
<tr>
<td>
Jun 21st, 2007
</td>
<td>
Smart Cookies
</td>
<td>
Yes
</td>
</tr>
<tr>
<td>
Aug 1st, 2006

(continues on next page)

386 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)

</td>
<td>

Anti-Java Cake
</td>
<td id="special">

No
</td>

</tr>

echo $this->Html->tableCells(

[
['Red', 'Apple'],
['Orange', 'Orange'l,
['Yellow', 'Banana'l],
i
['class' => 'darker']
DE
Output:

<tr class="darker"><td>Red</td><td>Apple</td></tr>
<tr><td>Orange</td><td>Orange</td></tr>
<tr class="darker"><td>Yellow</td><td>Banana</td></tr>

Changing the Tags Output by HtmIHelper

Cake\View\Helper\HtmlHelper: :setTemplates (array $templates)
Load an array of templates to add/replace templates:

// Load specific templates.
$this->Html->setTemplates([
'javascriptlink' => '<script src="{{url}}" type="text/javascript"{{attrs}}></script>'

D;

You can load a configuration file containing templates using the templater directly:

// Load a configuration file with templates.
$this->Html->templater()->load('my_tags');

When loading files of templates, your file should look like:

<?php
return [
'javascriptlink' => '<script src="{{url}}" type="text/javascript"{{attrs}}></script>'

i

Warning: Template strings containing a percentage sign (%) need special attention, you should prefix this character
with another percentage so it looks like %%. The reason is that internally templates are compiled to be used with
sprintf(). Example: <div style="width:{{size}}%%">{{content}}</div>

More About Views 387

CakePHP Book, Release 4.x

Number

class Cake\View\Helper\NumberHelper (View $view, array $config = [])

The NumberHelper contains convenient methods that enable display numbers in common formats in your views. These
methods include ways to format currency, percentages, data sizes, format numbers to specific precisions and also to
give you more flexibility with formatting numbers.

All of these functions return the formatted number; they do not automatically echo the output into the view.

Formatting Currency Values

Cake\View\Helper\NumberHelper: : currency (mixed $value, string $currency = null, array $options = [])

This method is used to display a number in common currency formats (EUR, GBP, USD), based on the 3-letter ISO
4217 currency code. Usage in a view looks like:

// Called as NumberHelper
echo $this->Number->currency($value, $currency);

// Called as Number
echo Number::currency($value, $currency);

The first parameter, $value, should be a floating point number that represents the amount of money you are expressing.
The second parameter is a string used to choose a predefined currency formatting scheme:

$currency 1234.56, formatted by currency type
EUR €1.234,56
GBP £1,234.56
USD $1,234.56

The third parameter is an array of options for further defining the output. The following options are available:

Option Description

before Text to display before the rendered number.

after Text to display after the rendered number.

ZETO The text to use for zero values; can be a string or a number. ie. 0, ‘Free!’.
places Number of decimal places to use, ie. 2

precision Maximal number of decimal places to use, ie. 2

locale The locale name to use for formatting number, ie. “fr_FR”.
fractionSymbol String to use for fraction numbers, ie. ‘ cents’.

fractionPosition Either ‘before’ or ‘after’ to place the fraction symbol.

pattern An ICU number pattern to use for formatting the number ie. ####.00
uselntlCode Set to true to replace the currency symbol with the international currency code.

If $currency value isnull, the default currency will be retrieved from Cake\I18n\Number: :defaultCurrency().
To format currencies in an accounting format you should set the currency format:

Number: : setDefaul tCurrencyFormat (Number: : FORMAT_CURRENCY_ACCOUNTING) ;

388 Chapter 11. Views

CakePHP Book, Release 4.x

Setting the Default Currency

Cake\View\Helper\NumberHelper: : setDefaultCurrency ($currency)

Setter for the default currency. This removes the need to always pass the currency to Cake\I18n\
Number: :currency () and change all currency outputs by setting other default. If $currency is set to null, it
will clear the currently stored value.

Getting the Default Currency

Cake\View\Helper\NumberHelper: :getDefaultCurrency()
Getter for the default currency. If default currency was set earlier using setDefaultCurrency (), then that value will

be returned. By default, it will retrieve the intl.default_locale ini value if set and 'en_US" if not.

Formatting Floating Point Numbers

Cake\View\Helper\NumberHelper: :precision(float $value, int $precision = 3, array $options = [])

This method displays a number with the specified amount of precision (decimal places). It will round in order to
maintain the level of precision defined.

// Called as NumberHelper
echo $this->Number->precision(456.91873645, 2);

// Outputs
456.92

// Called as Number
echo Number: :precision(456.91873645, 2);

Formatting Percentages

Cake\View\Helper\NumberHelper: : toPercentage (mixed $value, int $precision = 2, array $options = [])

Option Description

multiply Boolean to indicate whether the value has to be multiplied by 100. Useful for decimal percentages.

Like Cake\I18n\Number: :precision(), this method formats a number according to the supplied precision (where
numbers are rounded to meet the given precision). This method also expresses the number as a percentage and appends
the output with a percent sign.

// Called as NumberHelper. Output: 45.69%
echo $this->Number->toPercentage(45.691873645);

// Called as Number. Output: 45.69%
echo Number::toPercentage(45.691873645);

// Called with multiply. Output: 45.7%

(continues on next page)

More About Views 389

CakePHP Book, Release 4.x

(continued from previous page)
echo Number::toPercentage(0.45691, 1, [
'multiply' => true
D;

Interacting with Human Readable Values

Cake\View\Helper\NumberHelper: : toReadableSize (string $size)

This method formats data sizes in human readable forms. It provides a shortcut way to convert bytes to KB, MB, GB,
and TB. The size is displayed with a two-digit precision level, according to the size of data supplied (i.e. higher sizes
are expressed in larger terms):

// Called as NumberHelper

echo $this->Number->toReadableSize(0); // 0 Byte

echo $this->Number->toReadableSize(1024); // 1 KB

echo $this->Number->toReadableSize(1321205.76); // 1.26 MB
echo $this->Number->toReadableSize(5368709120); // 5 GB

// Called as Number

echo Number::toReadableSize(0); // 0 Byte

echo Number::toReadableSize(1024); // 1 KB

echo Number::toReadableSize(1321205.76); // 1.26 MB
echo Number::toReadableSize(5368709120); // 5 GB

Formatting Numbers

Cake\View\Helper\NumberHelper: : format (mixed $value, array $options = [])

This method gives you much more control over the formatting of numbers for use in your views (and is used as the
main method by most of the other NumberHelper methods). Using this method might looks like:

// Called as NumberHelper
$this->Number->format($value, $options);

// Called as Number
Number: : format ($value, $options);

The $value parameter is the number that you are planning on formatting for output. With no $options supplied, the
number 1236.334 would output as 1,236. Note that the default precision is zero decimal places.
The $options parameter is where the real magic for this method resides.

* If you pass an integer then this becomes the amount of precision or places for the function.

* If you pass an associated array, you can use the following keys:

390 Chapter 11. Views

CakePHP Book, Release 4.x

Option Description

places Number of decimal places to use, ie. 2
precision Maximum number of decimal places to use, ie. 2
pattern An ICU number pattern to use for formatting the number ie. ####.00

locale The locale name to use for formatting number, ie. “fr_FR”.
before Text to display before the rendered number.
after Text to display after the rendered number.

Example:

// Called as NumberHelper

echo $this->Number->format('123456.7890"', [
'places' => 2,
'before' => '¥ ',
'after' => ' I

D;

// Output ¥ 123,456.79 !'

echo $this->Number->format('123456.7890', [
'locale' => 'fr_FR'

D;
// Output '123 456,79 !'

// Called as Number

echo Number::format('123456.7890"', [
'places' => 2,
'before' => '¥ ',
'after' = ' I

D;

// Output ¥ 123,456.79 !’

echo Number::format('123456.7890', [
'locale' => 'fr_FR'

D;
// Output '123 456,79 !'

Cake\View\Helper\NumberHelper: :ordinal (mixed $value, array $options = [])
This method will output an ordinal number.
Examples:

echo Number::ordinal(l);
// Output 'Ist'

echo Number: :ordinal(2);
// Output '2nd'

echo Number::ordinal(2, [
'locale' => 'fr_FR'

D;
// Output '2e'

(continues on next page)

More About Views 391

CakePHP Book, Release 4.x

(continued from previous page)

echo Number::ordinal(410);
// Output '410th’

Format Differences

Cake\View\Helper\NumberHelper: : formatDelta(mixed $value, array $options = [])
This method displays differences in value as a signed number:

// Called as NumberHelper
$this->Number->formatDelta($value, $options);

// Called as Number
Number: : formatDelta($value, $options);

The $value parameter is the number that you are planning on formatting for output. With no $options supplied, the
number 1236.334 would output as 1,236. Note that the default precision is zero decimal places.

The $options parameter takes the same keys as Number: : format () itself:

Option Description

places Number of decimal places to use, ie. 2

precision Maximum number of decimal places to use, ie. 2

locale The locale name to use for formatting number, ie. “fr_FR”.
before Text to display before the rendered number.

after Text to display after the rendered number.

Example:

// Called as NumberHelper

echo $this->Number->formatDelta('123456.7890', [
'places' => 2,
'before' => '[',
'after' = ']’

D

// Output '[+123,456.79]'

// Called as Number

echo Number::formatDelta('123456.7890', [
'places' => 2,
'before' => '[',
'after' => ']'

D;

// Output '[+123,456.79]'

Warning: All symbols are UTF-8.

392 Chapter 11. Views

CakePHP Book, Release 4.x

Paginator

class Cake\View\Helper\PaginatorHelper (View $view, array $config = [])

The PaginatorHelper is used to output pagination controls such as page numbers and next/previous links. It works in
tandem with PaginatorComponent.

See also Pagination for information on how to create paginated datasets and do paginated queries.

PaginatorHelper Templates

Internally PaginatorHelper uses a series of simple HTML templates to generate markup. You can modify these tem-
plates to customize the HTML generated by the PaginatorHelper.

Templates use {{var}} style placeholders. It is important to not add any spaces around the {{}} or the replacements
will not work.

Loading Templates from a File

When adding the PaginatorHelper in your controller, you can define the ‘templates’ setting to define a template file to
load. This allows you to customize multiple templates and keep your code DRY:

// In your AppView.php
public function initialize(): void

{

$this->loadHelper('Paginator', ['templates' => 'paginator-templates']);

}

This will load the file located at config/paginator-templates.php. See the example below for how the file should look
like. You can also load templates from a plugin using plugin syntax:

// In your AppView.php
public function initialize(): void

{

$this->loadHelper('Paginator', ['templates' => 'MyPlugin.paginator-templates']);

}

Whether your templates are in the primary application or a plugin, your templates file should look something like:

return [
'number' => '{{text}}"',

1;

More About Views 393

CakePHP Book, Release 4.x

Changing Templates at Run-time

Cake\View\Helper\PaginatorHelper: :setTemplates ($remplates)

This method allows you to change the templates used by PaginatorHelper at runtime. This can be useful when you want
to customize templates for a particular method call:

// Read the current template value.
$result = $this->Paginator->getTemplates('number');

// Change a template
$this->Paginator->setTemplates([
'number' => '{{text}l}"'

D;

Warning: Template strings containing a percentage sign (%) need special attention, you should prefix this character
with another percentage so it looks like %%. The reason is that internally templates are compiled to be used with
sprintf(). Example: ‘<div style="width:{{size}}%%”>{{content} } </div>’

Template Names

PaginatorHelper uses the following templates:
* nextActive The active state for a link generated by next().
¢ nextDisabled The disabled state for next().
» prevActive The active state for a link generated by prev().
* prevDisabled The disabled state for prev()
* counterRange The template counter() uses when format == range.
¢ counterPages The template counter() uses when format == pages.
e first The template used for a link generated by first().
* last The template used for a link generated by last()
* number The template used for a link generated by numbers().
e current The template used for the current page.
* ellipsis The template used for ellipses generated by numbers().
* sort The template for a sort link with no direction.
* sortAsc The template for a sort link with an ascending direction.

» sortDesc The template for a sort link with a descending direction.

394 Chapter 11. Views

CakePHP Book, Release 4.x

Creating Sort Links

Cake\View\Helper\PaginatorHelper: : sort($key, $title = null, $options = [])

Parameters
* $key (string) — The name of the column that the recordset should be sorted.

» $title (string) — Title for the link. If $title is null, $key will be used converted to “Title
Case” format and used as the title.

* $options (array) — Options for sorting link.

Generates a sorting link. Sets querystring parameters for the sort and direction. Links will default to sorting by asc.
After the first click, links generated with sort () will handle direction switching automatically. If the resultset is sorted
‘asc’ by the specified key the returned link will sort by ‘desc’. Uses the sort, sortAsc, sortDesc, sortAscLocked
and sortDescLocked templates.

Accepted keys for $options:
* escape Whether you want the contents HTML entity encoded, defaults to true.
¢ model The model to use, defaults to PaginatorHelper: :defaultModel ().
* direction The default direction to use when this link isn’t active.
* lock Lock direction. Will only use the default direction then, defaults to false.

Assuming you are paginating some posts, and are on page one:

echo $this->Paginator->sort('user_id');

Output:

User Id

You can use the title parameter to create custom text for your link:

echo $this->Paginator->sort('user_id', 'User account');

Output:

User account

If you are using HTML like images in your links remember to set escaping off:

echo $this->Paginator->sort(
'user_id',
'User account',
['escape' => false]

DE;

Output:

User account</
—a>

The direction option can be used to set the default direction for a link. Once a link is active, it will automatically switch
directions like normal:

More About Views 395

CakePHP Book, Release 4.x

echo $this->Paginator->sort('user_id', null, ['direction' => 'desc']);

Output:

User Id

The lock option can be used to lock sorting into the specified direction:

echo $this->Paginator->sort('user_id', null, ['direction' => 'asc', 'lock' => true]);

Cake\View\Helper\PaginatorHelper: : sortDir (string $model = null, mixed $options = [])

Gets the current direction the recordset is sorted.

Cake\View\Helper\PaginatorHelper: : sortKey (string $model = null, mixed $options = [])

Gets the current key by which the recordset is sorted.

Creating Page Number Links

Cake\View\Helper\PaginatorHelper: :numbers ($options = [])

Returns a set of numbers for the paged result set. Uses a modulus to decide how many numbers to show on each side
of the current page By default 8 links on either side of the current page will be created if those pages exist. Links will
not be generated for pages that do not exist. The current page is also not a link. The number, current and ellipsis
templates will be used.

Supported options are:
* before Content to be inserted before the numbers.
e after Content to be inserted after the numbers.
¢ model Model to create numbers for, defaults to PaginatorHelper: :defaultModel ().
* modulus how many numbers to include on either side of the current page, defaults to 8.

e first Whether you want first links generated, set to an integer to define the number of ‘first’ links to generate.
Defaults to false. If a string is set a link to the first page will be generated with the value as the title:

echo $this->Paginator->numbers(['first' => 'First page'l);

e last Whether you want last links generated, set to an integer to define the number of ‘last’ links to generate.
Defaults to false. Follows the same logic as the first option. There is a I1ast () method to be used separately
as well if you wish.

While this method allows a lot of customization for its output. It is also ok to just call the method without any parameters.

echo $this->Paginator->numbers();

Using the first and last options you can create links to the beginning and end of the page set. The following would
create a set of page links that include links to the first 2 and last 2 pages in the paged results:

echo $this->Paginator->numbers(['first' => 2, 'last' => 2]);

396 Chapter 11. Views

CakePHP Book, Release 4.x

Creating Jump Links

In addition to generating links that go directly to specific page numbers, you’ll often want links that go to the previous
and next links, first and last pages in the paged data set.

Cake\View\Helper\PaginatorHelper: :prev($title = '<< Previous', $options = [])

Parameters
e $title (string) — Title for the link.
* $options (mixed) — Options for pagination link.

Generates a link to the previous page in a set of paged records. Uses the prevActive and prevDisabled
templates.

$options supports the following keys:
* escape Whether you want the contents HTML entity encoded, defaults to true.
¢ model The model to use, defaults to PaginatorHelper: :defaultModel ().
e disabledTitle The text to use when the link is disabled. Defaults to the $title parameter.

A simple example would be:

echo $this->Paginator->prev(' << . __('previous'));

If you were currently on the second page of posts, you would get the following:

<li class="prev">

<< previous

</1i>

If there were no previous pages you would get:

<1li class="prev disabled"><< previous</

~1li>

To change the templates used by this method see PaginatorHelper Templates.

Cake\View\Helper\PaginatorHelper: :next (8title = 'Next >>', $options = [])

This method is identical to prev() with a few exceptions. It creates links pointing to the next page instead
of the previous one. It also uses next as the rel attribute value instead of prev. Uses the nextActive and
nextDisabled templates.

Cake\View\Helper\PaginatorHelper: : first ($first = '<< first', $options = [])

Returns a first or set of numbers for the first pages. If a string is given, then only a link to the first page with the
provided text will be created:

echo $this->Paginator->first('< first');

The above creates a single link for the first page. Will output nothing if you are on the first page. You can also
use an integer to indicate how many first paging links you want generated:

echo $this->Paginator->first(3);

More About Views 397

CakePHP Book, Release 4.x

The above will create links for the first 3 pages, once you get to the third or greater page. Prior to that nothing
will be output. Uses the first template.

The options parameter accepts the following:
¢ model The model to use defaults to PaginatorHelper: :defaultModel ()
* escape Whether or not the text should be escaped. Set to false if your content contains HTML.

Cake\View\Helper\PaginatorHelper: :last($last = 'last >>', $options = [])

This method works very much like the first () method. It has a few differences though. It will not generate
any links if you are on the last page for a string values of $last. For an integer value of $last no links will be
generated once the user is inside the range of last pages. Uses the last template.

Creating Header Link Tags

PaginatorHelper can be used to create pagination link tags in your page <head> elements:

// Create next/prev links for the current model.
echo $this->Paginator->meta();

// Create next/prev & first/last links for the current model.
echo $this->Paginator->meta(['first' => true, 'last' => true]);

Checking the Pagination State

Cake\View\Helper\PaginatorHelper: : current (string $model = null)
Gets the current page of the recordset for the given model:

// Our URL is: http://example.com/comments/view/page:3
echo $this->Paginator->current('Comment');
// Output is 3

Uses the current template.

Cake\View\Helper\PaginatorHelper: :hasNext (string $model = null)

Returns true if the given result set is not at the last page.

Cake\View\Helper\PaginatorHelper: :hasPrev(string $model = null)
Returns true if the given result set is not at the first page.
Cake\View\Helper\PaginatorHelper: :hasPage (int $page = 1, string $model = null)
Returns true if the given result set has the page number given by $page.

Cake\View\Helper\PaginatorHelper: :total (string $model = null)

Returns the total number of pages for the provided model.

398 Chapter 11. Views

CakePHP Book, Release 4.x

Creating a Page Counter

Cake\View\Helper\PaginatorHelper: : counter (string $format = 'pages’, array $options = [])

Returns a counter string for the paged result set. Using a provided format string and a number of options you can create
localized and application specific indicators of where a user is in the paged data set. Uses the counterRange, and
counterPages templates.

Supported formats are ‘range’, ‘pages’ and custom. Defaults to pages which would output like ‘1 of 10’. In the custom
mode the supplied string is parsed and tokens are replaced with actual values. The available tokens are:

* {{page}} - the current page displayed.
* {{pages}} - total number of pages.
e {{current}} - current number of records being shown.

e {{count}}?} - the total number of records in the result set.

{{start}} - number of the first record being displayed.

{{end}} - number of the last record being displayed.

{{model}} - The pluralized human form of the model name. If your model was ‘RecipePage’, { {model}} would
be ‘recipe pages’.

You could also supply only a string to the counter method using the tokens available. For example:
echo $this->Paginator->counter(
'Page {{page}} of {{pages}}, showing {{current}} records out of

{{count}} total, starting on record {{start}}, ending on {{end}}'
);

Setting ‘format’ to range would output like ‘1 - 3 of 13’:

echo $this->Paginator->counter('range');

Generating Pagination URLs

Cake\View\Helper\PaginatorHelper: :generateUrl (array $options = [], ?string $model = null, array $url =
[1, array $urlOptions = [])

By default returns a full pagination URL string for use in non-standard contexts (i.e. JavaScript).

// Generates a URL similar to: /articles?sort=title&page=2
echo $this->Paginator->generateUrl(['sort' => 'title']);

// Generates a URL for a different model
echo $this->Paginator->generateUrl(['sort' => 'title'], 'Comments');

// Generates a URL to a different controller.
echo $this->Paginator->generateUrl(

['sort' => 'title'],

null,

['controller' => 'Comments']

);

More About Views 399

CakePHP Book, Release 4.x

Creating a Limit Selectbox Control

Cake\View\Helper\PaginatorHelper::limitControl (array $limits = [], $default = null, array $options = [])
Create a dropdown control that changes the 1imit query parameter:

// Use the defaults.
echo $this->Paginator->limitControl();

// Define which limit options you want.
echo $this->Paginator->limitControl([25 => 25, 50 => 50]);

// Custom limits and set the selected option
echo $this->Paginator->limitControl([25 => 25, 50 => 50], S$user->perPage);

The generated form and control will automatically submit on change.

Configuring Pagination Options

Cake\View\Helper\PaginatorHelper: :options ($options = [])

Sets all the options for the PaginatorHelper. Supported options are:
e url The URL of the paginating action.

The option allows your to set/override any element for URLs generated by the helper:

$this->Paginator->options([
'url' => [
'lang' => 'en',
' = [
'sort' => 'email',
'direction' => 'desc',
'page' => 6,
1,
]
D;

The example above adds the en route parameter to all links the helper will generate. It will also create links with
specific sort, direction and page values. By default PaginatorHelper will merge in all of the current passed
arguments and query string parameters.

» escape Defines if the title field for links should be HTML escaped. Defaults to true.

¢ model The name of the model being paginated, defaults to PaginatorHelper: :defaultModel ().

400 Chapter 11. Views

CakePHP Book, Release 4.x

Example Usage

It’s up to you to decide how to show records to the user, but most often this will be done inside HTML tables. The
examples below assume a tabular layout, but the PaginatorHelper available in views doesn’t always need to be restricted
as such.

See the details on PaginatorHelper'*® in the API. As mentioned, the PaginatorHelper also offers sorting features which

can be integrated into your table column headers:

<!-- templates/Posts/index.php -->
<table>
<tr>
<th><?= $this->Paginator->sort('id', 'ID') 7?></th>
<th><?= $this->Paginator->sort('title', 'Title') ?></th>
</tr>
<?php foreach ($recipes as S$recipe): ?>
<tr>
<td><?= $recipe->id ?> </td>
<td><?= h(Srecipe->title) ?> </td>
</tr>
<?php endforeach; ?>
</table>

The links output from the sort () method of the PaginatorHelper allow users to click on table headers to toggle the
sorting of the data by a given field.

It is also possible to sort a column based on associations:

<table>
<tr>
<th><?= $this->Paginator->sort('title', 'Title') ?></th>
<th><?= $this->Paginator->sort('Authors.name', 'Author') ?></th>
</tr>
<?php foreach ($recipes as S$recipe): ?>
<tr>

<td><?= h($recipe->title) ?> </td>
<td><?= h($recipe->name) ?> </td>
</tr>
<?php endforeach; 7>
</table>

Note: Sorting by columns in associated models requires setting these in the PaginationComponent: :paginate
property. Using the example above, the controller handling the pagination would need to set its sortableFields key
as follows:

$this->paginate = [
'sortableFields' => [
'Posts.title’,
'Authors.name’,
1,
1;

136 hitps://api.cakephp.org/4.x/class-Cake.View.Helper.PaginatorHelper.html

More About Views 401

https://api.cakephp.org/4.x/class-Cake.View.Helper.PaginatorHelper.html

CakePHP Book, Release 4.x

For more information on using the sortableFields option, please see control-which-fields-used-for-ordering.

The final ingredient to pagination display in views is the addition of page navigation, also supplied by the Pagination-
Helper:

// Shows the page numbers
<?= $this->Paginator->numbers() ?>

// Shows the next and previous links
<?= $this->Paginator->prev('« Previous') 7>
<?= $this->Paginator->next('Next »') 7>

// Prints X of Y, where X is current page and Y is number of pages
<?= $this->Paginator->counter() ?>

The wording output by the counter() method can also be customized using special markers:

<?= $this->Paginator->counter ([
'format' => 'Page {{page}} of {{pages}}, showing {{current}} records out of
{{count}} total, starting on record {{start}}, ending on {{end}}'
D 7>

Paginating Multiple Results

If you are paginating multiple queries you’ll need to set the model option when generating pagination related elements.
You can either use the model option on every method call you make to PaginatorHelper, or use options() to set
the default model:

// Pass the model option
echo $this->Paginator->sort('title', ['model' => 'Articles']);

// Set the default model.
$this->Paginator->options(['model' => 'Articles']);
echo $this->Paginator->sort('title');

By using the model option, PaginatorHelper will automatically use the scope defined in when the query was
paginated. To set additional URL parameters for multiple pagination you can include the scope names in options():

$this->Paginator->options([
'url' = [
// Additional URL parameters for the 'articles' scope
'articles' => [
'?' => ['articles' => 'yes']
ie
// Additional URL parameters for the 'comments' scope
'comments' => [
'articleId' => 1234,
]

D;

402 Chapter 11. Views

CakePHP Book, Release 4.x

Text

class Cake\View\Helper\TextHelper (View $view, array $config =[])

The TextHelper contains methods to make text more usable and friendly in your views. It aids in enabling links,
formatting URLs, creating excerpts of text around chosen words or phrases, highlighting key words in blocks of text,
and gracefully truncating long stretches of text.

Linking Email addresses

Cake\View\Helper\TextHelper: :autoLinkEmails (siring $text, array $options = [])

Adds links to the well-formed email addresses in $text, according to any options defined in $options (see
HtmlHelper: :1ink()).

]

$myText = 'For more information regarding our world-famous
'pastries and desserts, contact info@example.com';
$linkedText = $this->Text->autoLinkEmails($myText);

Output:

For more information regarding our world-famous pastries and desserts,
contact info@example.com

This method automatically escapes its input. Use the escape option to disable this if necessary.

Linking URLs

Cake\View\Helper\TextHelper: :autoLinkUrls (string $text, array $options = [])

Same as autoLinkEmails (), only this method searches for strings that start with https, http, ftp, or nntp and links
them appropriately.

This method automatically escapes its input. Use the escape option to disable this if necessary.

Linking Both URLs and Email Addresses

Cake\View\Helper\TextHelper: :autoLink (string $text, array $options = [])

Performs the functionality in both autoLinkUrls() and autoLinkEmails() on the supplied $text. All URLs and
emails are linked appropriately given the supplied $options.

This method automatically escapes its input. Use the escape option to disable this if necessary.

More About Views 403

CakePHP Book, Release 4.x

Converting Text into Paragraphs

Cake\View\Helper\TextHelper: :autoParagraph (string $rext)
Adds proper <p> around text where double-line returns are found, and
 where single-line returns are found.

$myText = 'For more information
regarding our world-famous pastries and desserts.

contact info@example.com';
$formattedText = $this->Text->autoParagraph($myText) ;

Output:

<p>For more information

regarding our world-famous pastries and desserts.</p>
<p>contact info@example.com</p>

Highlighting Substrings

Cake\View\Helper\TextHelper: :highlight (string $haystack, string $needle, array $options = [])

Highlights $needle in $haystack using the $options['format'] string specified or a default string.
Options:

* format string - The piece of HTML with the phrase that will be highlighted

e html bool - If true, will ignore any HTML tags, ensuring that only the correct text is highlighted

Example:

// Called as TextHelper
echo $this->Text->highlight(

$lastSentence,

'using',

['format' => '\1"]
DE

// Called as Text
use Cake\Utility\Text;

echo Text::highlight(

$lastSentence,

'using',

['format' => '\1"']
J;
Output:

404 Chapter 11. Views

CakePHP Book, Release 4.x

Removing Links

Cake\View\Helper\TextHelper: :stripLinks ($rext)

Strips the supplied $text of any HTML links.

Truncating Text

Cake\View\Helper\TextHelper: : truncate (string $text, int $length = 100, array $options)

If $text is longer than $1ength, this method truncates it at $1ength and adds a suffix consisting of 'ellipsis’,
if defined. If "exact' is passed as false, the truncation will occur at the first whitespace after the point at which
$length is exceeded. If "html' is passed as true, HTML tags will be respected and will not be cut off.

$options is used to pass all extra parameters, and has the following possible keys by default, all of which are optional:

[
'ellipsis' = '..."',
'exact' => true,
'html' => false

]

Example:

// Called as TextHelper
echo $this->Text->truncate(
'The killer crept forward and tripped on the rug.',

22,

[
'ellipsis' => '..."',
'exact' => false

]

);

// Called as Text
use Cake\Utility\Text;

echo Text::truncate(
'"The killer crept forward and tripped on the rug.',

22,
[
'ellipsis' => '...",
'exact' => false
]
DE;
Output:

The killer crept...

More About Views 405

CakePHP Book, Release 4.x

Truncating the Tail of a String

Cake\View\Helper\TextHelper::tail (string $rext, int $length = 100, array $options)

If $text is longer than $1ength, this method removes an initial substring with length consisting of the difference and
prepends a prefix consisting of 'ellipsis’, if defined. If 'exact' is passed as false, the truncation will occur at
the first whitespace prior to the point at which truncation would otherwise take place.

$options is used to pass all extra parameters, and has the following possible keys by default, all of which are optional:

[
'ellipsis' => '..."',
'exact' => true

]

Example:

$sampleText = 'I packed my bag and in it I put a PSP, a PS3, a TV,
'a C# program that can divide by zero, death metal t-shirts'

// Called as TextHelper
echo $this->Text->tail(
$sampleText,
70,
[

'ellipsis' => "..."',
'exact' => false

);

// Called as Text
use Cake\Utility\Text;

echo Text::tail(
$sampleText,
70,
[

'ellipsis' => '..."',
'exact' => false

);

Output:

...a TV, a C# program that can divide by zero, death metal t-shirts

406 Chapter 11. Views

CakePHP Book, Release 4.x

Extracting an Excerpt

Cake\View\Helper\TextHelper: :excerpt (siring $haystack, string $needle, integer $radius=100, string
Sellipsis="...")

Extracts an excerpt from $haystack surrounding the $needle with a number of characters on each side determined
by $radius, and prefix/suffix with $ellipsis. This method is especially handy for search results. The query string
or keywords can be shown within the resulting document.

// Called as TextHelper
echo $this->Text->excerpt($lastParagraph, 'method', 50, '...');

// Called as Text
use Cake\Utility\Text;

echo Text::excerpt($lastParagraph, 'method', 50, '...');

Output:

. by $radius, and prefix/suffix with $ellipsis. This method is especially
handy for search results. The query...

Converting an Array to Sentence Form

Cake\View\Helper\TextHelper: :toList (array $list, $and='and', $separator=", ")
Creates a comma-separated list where the last two items are joined with ‘and’:
$colors = ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet'];

// Called as TextHelper
echo $this->Text->toList($colors);

// Called as Text
use Cake\Utility\Text;

echo Text::toList($colors);

Output:

red, orange, yellow, green, blue, indigo and violet

Time
class Cake\View\Helper\TimeHelper (View $view, array $config =[])

The TimeHelper allows for the quick processing of time related information. The TimeHelper has two main tasks that
it can perform:

1. It can format time strings.

2. It can test time.

More About Views 407

CakePHP Book, Release 4.x

Using the Helper

A common use of the TimeHelper is to offset the date and time to match a user’s time zone. Lets use a forum as an ex-
ample. Your forum has many users who may post messages at any time from any part of the world. A way to manage the
time is to save all dates and times as GMT+0 or UTC. Uncomment the line date_default_timezone_set('UTC');
in config/bootstrap.php to ensure your application’s time zone is set to GMT+0.

Next add a time zone field to your users table and make the necessary modifications to allow your users to set their time
zone. Now that we know the time zone of the logged in user we can correct the date and time on our posts using the
TimeHelper:

echo $this->Time->format(
$post->created,
\IntlDateFormatter: :FULL,
null,
$user->time_zone
);
// Will display 'Saturday, August 22, 2011 at 11:53:00 PM GMT
// for a user in GMT+0. While displaying,
// 'Saturday, August 22, 2011 at 03:53 PM GMT-8:00
// for a user in GMT-8

Most of TimeHelper’s features are intended as backwards compatible interfaces for applications that are upgrading
from older versions of CakePHP. Because the ORM returns Cake\I18n\Time instances for every timestamp and
datetime column, you can use the methods there to do most tasks. For example, to read about the accepted formatting
strings take a look at the Cake\I18n\Time::i18nFormat()'*’ method.

Url

class Cake\View\Helper\UrlHelper (View $view, array $config = [])

The UrlHelper helps you to generate URLSs from your other helpers. It also gives you a single place to customize how
URLSs are generated by overriding the core helper with an application one. See the Aliasing Helpers section for how to
do this.

Generating URLs

Cake\View\Helper\UrlHelper: :build($url = null, array $options = [])

Returns a URL pointing to a combination of controller and action. If $url is empty, it returns the REQUEST_URI,
otherwise it generates the URL for the controller and action combo. If fullBase is true, the full base URL will be
prepended to the result:

echo $this->Url->build([
'controller' => 'Posts',
'action' => 'view',
'bar',

D;

// Output
/posts/view/bar

137 https://api.cakephp.org/4.x/class-Cake.I18n. Time.html#i 1 8nFormat()

408 Chapter 11. Views

https://api.cakephp.org/4.x/class-Cake.I18n.Time.html#i18nFormat()

CakePHP Book, Release 4.x

Here are a few more usage examples:

URL with extension:

echo $this->Url->build([
'controller' => 'Posts',
'action' => 'list',
'_ext' => 'rss',

D;

// Output
/posts/list.rss

URL with prefix:

echo $this->Url->build([
'controller' => 'Posts’,
'action' => 'list',
'prefix' => 'Admin',

D;

// Output
/admin/posts/list

URL (starting with ‘/*) with the full base URL prepended:

echo $this->Url->build('/posts', ['fullBase' => true]);

// Output
http://somedomain.com/posts

URL with GET parameters and fragment anchor:

echo $this->Url->build([
'controller' => 'Posts',
'action' => 'search',
'?'" = ['"foo' => 'bar'],
"#' => 'first',

D;

// Output
/posts/search?foo=bar#first

The above example uses the ? special key for specifying query string parameters and # key for URL fragment.

URL for named route:

// Assuming a route is setup as a named route:
// $router->connect(
// '/products/{slug}’,

// [

// '‘controller' => 'Products’,
// 'action' => 'view',

// e

// [

(continues on next page)

More About Views

409

CakePHP Book, Release 4.x

(continued from previous page)

// '"_name' => 'product-page’,

//]

/75

echo $this->Url->build(['_name' => 'product-page', 'slug' => 'i-m-slug']);

// Will result in:
/products/i-m-slug

The 2nd parameter allows you to define options controlling HTML escaping, and whether or not the base path should
be added:

$this->Url->build(' /posts', [
'escape' => false,
'fullBase' => true,

D;

Cake\View\Helper\UrlHelper: :buildFromPath(string $path, array $params = [], array $options = [])
If you want to use route path strings, you can do that using this method:

echo $this->Url->buildFromPath('Articles::index"');
// outputs: /articles

echo $this->Url->buildFromPath('MyBackend.Admin/Articles::view', [3]);
// outputs: /admin/my-backend/articles/view/3

New in version 4.1.0: buildFromPath() was added.

URL with asset timestamp wrapped by a <1link rel="preload"/>, here pre-loading a font. Note: The file must exist
and Configure: :read('Asset.timestamp') must return true or 'force' for the timestamp to be appended:

echo $this->Html->meta([
'rel' => 'preload',
'href' => $this->Url->assetUrl(
' /assets/fonts/your-font-pack/your-font-name.woff2'

),

as' => 'font',

D;

If you are generating URLSs for CSS, Javascript or image files there are helper methods for each of these asset types:

// Outputs /img/icon.png
$this->Url->image('icon.png');

// Outputs /js/app.js
$this->Url->script('app.js');

// Outputs /css/app.css
$this->Url->css('app.css');

// Force timestamps for one method call.
$this->Url->css('app.css', ['timestamp' => 'force']);

(continues on next page)

410 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)

// Or disable timestamps for one method call.
$this->Url->css('app.css', ['timestamp' => false]);

Customizing Asset URL generation
If you need to customize how asset URLs are generated, or want to use custom asset cache busting parameters you can
use the assetUrlClassName option:

// In view initialize
$this->loadHelper('Url', ['assetUrlClassName' => AppAsset::class]);

When using the assetUrlClassName you must implement the same methods as Cake\Routing\Asset does.
New in version 4.2.0: The assetUrlClassName option was added.

For further information check Router::url'*® in the APL

Configuring Helpers

You load helpers in CakePHP by declaring them in a view class. An AppView class comes with every CakePHP
application and is the ideal place to load helpers:

class AppView extends View

{
public function initialize(): void
{
parent::initialize();
$this->loadHelper('Html');
$this->loadHelper('Form');
$this->loadHelper('Flash');
3
}

To load helpers from plugins use the plugin syntax used elsewhere in CakePHP:

$this->loadHelper('Blog.Comment');

You don’t have to explicitly load Helpers that come from CakePHP or your application. These helpers can be lazily
loaded upon first use. For example:

// Loads the FormHelper if it has not already been loaded.
$this->Form->create($article);

From within a plugin’s views, plugin helpers can also be lazily loaded. For example, view templates in the ‘Blog’
plugin, can lazily load helpers from the same plugin.

138 https://api.cakephp.org/4.x/class-Cake.Routing.Router.html#_url

More About Views 411

https://api.cakephp.org/4.x/class-Cake.Routing.Router.html#_url

CakePHP Book, Release 4.x

Conditionally Loading Helpers

You can use the current action name to conditionally load helpers:

class AppView extends View

{
public function initialize(): void
{
parent::initialize();
if ($this->request->getParam('action') === 'index') {
$this->loadHelper('ListPage');
3
1
}

You can also use your controller’s beforeRender method to load helpers:

class ArticlesController extends AppController

{
public function beforeRender (EventInterface $event)
{
parent: :beforeRender($event);
$this->viewBuilder()->addHelper('MyHelper');
3
}

Configuration options

You can pass configuration options to helpers. These options can be used to set attribute values or modify the behavior
of a helper:

namespace App\View\Helper;

use Cake\View\Helper;
use Cake\View\View;

class AwesomeHelper extends Helper

{
public function initialize(array $config): void
{
debug($config);
}
3

By default all configuration options will be merged with the $_defaultConfig property. This property should define
the default values of any configuration your helper requires. For example:

namespace App\View\Helper;

use Cake\View\Helper;
use Cake\View\StringTemplateTrait;

(continues on next page)

412 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)

class AwesomeHelper extends Helper

{
use StringTemplateTrait;
protected $_defaultConfig = [
'errorClass' => 'error',
'templates' => [
'label' => '<label for="{{for}}">{{content}}</label>",
s
1;
}

Any configuration provided to your helper’s constructor will be merged with the default values during construction and
the merged data will be set to _config. You can use the getConfig() method to read runtime configuration:

// Read the errorClass config option.
$class = $this->Awesome->getConfig('errorClass');

Using helper configuration allows you to declaratively configure your helpers and keep configuration logic out of your
controller actions. If you have configuration options that cannot be included as part of a class declaration, you can set
those in your controller’s beforeRender callback:

class PostsController extends AppController

{
public function beforeRender (EventInterface $event)
{
parent: :beforeRender($event);
$builder = $this->viewBuilder();
$builder->helpers([
'CustomStuff' => $this->_getCustomStuffConfig(),
D;
}
}

Aliasing Helpers

One common setting to use is the className option, which allows you to create aliased helpers in your views. This
feature is useful when you want to replace $this->Html or another common Helper reference with a custom imple-
mentation:

// src/View/AppView.php
class AppView extends View

{
public function initialize(): void
{
$this->loadHelper('Html', [
'className' => 'MyHtml'
D;
}
}

(continues on next page)

More About Views 413

CakePHP Book, Release 4.x

(continued from previous page)
// src/View/Helper/MyHtmlHelper.php
namespace App\View\Helper;

use Cake\View\Helper\HtmlHelper;
class MyHtmlHelper extends HtmlHelper

{
// Add your code to override the core HtmlHelper

}

The above would alias MyHtmlHelper to $this->Html in your views.

Note: Aliasing a helper replaces that instance anywhere that helper is used, including inside other Helpers.

Using Helpers

Once you’ve configured which helpers you want to use in your controller, each helper is exposed as a public property
in the view. For example, if you were using the Htm1Helper you would be able to access it by doing the following:

echo $this->Html->css('styles');

The above would call the css() method on the HtmlHelper. You can access any loaded helper using
$this->{$helperName}.

Loading Helpers On The Fly

There may be situations where you need to dynamically load a helper from inside a view. You can use the view’s
Cake\View\HelperRegistry to do this:

// Either one works.
$mediaHelper = $this->loadHelper('Media', $mediaConfig);
$mediaHelper = $this->helpers()->load('Media’', $mediaConfig);

The HelperRegistry is a registry and supports the registry API used elsewhere in CakePHP.

Callback Methods

Helpers feature several callbacks that allow you to augment the view rendering process. See the Helper Class and the
Events System documentation for more information.

414 Chapter 11. Views

CakePHP Book, Release 4.x

Creating Helpers
You can create custom helper classes for use in your application or plugins. Like most components of CakePHP, helper
classes have a few conventions:

* Helper class files should be put in sre/View/Helper. For example: src/View/Helper/LinkHelper.php

* Helper classes should be suffixed with Helper. For example: LinkHelper.

e When referencing helper class names you should omit the Helper suffix. For example:
$this->loadHelper('Link');.

You’ll also want to extend Helper to ensure things work correctly:

/* src/View/Helper/LinkHelper.php */
namespace App\View\Helper;

use Cake\View\Helper;

class LinkHelper extends Helper

{
public function makeEdit($title, $url)
{
// Logic to create specially formatted link goes here...
}
3

Including Other Helpers

You may wish to use some functionality already existing in another helper. To do so, you can specify helpers you wish
to use with a $helpers array, formatted just as you would in a controller:

/* src/View/Helper/LinkHelper.php (using other helpers) */
namespace App\View\Helper;
use Cake\View\Helper;

class LinkHelper extends Helper

{
public $helpers = ['Html'];
public function makeEdit($title, S$url)
{
// Use the HTML helper to output
// Formatted data:
$link = $this->Html->link($title, $url, ['class' => 'edit']);
return '<div class="editOuter">' . $link . '</div>"';
3
}

More About Views 415

CakePHP Book, Release 4.x

Using Your Helper

Once you’ve created your helper and placed it in src¢/View/Helper/, you can load it in your views:

class AppView extends View

{
public function initialize(): void
{
parent::initialize();
$this->loadHelper('Link');
}
}

Once your helper has been loaded, you can use it in your views by accessing the matching view property:

<!-- make a link using the new helper -->
<?= $this->Link->makeEdit('Change this Recipe', '/recipes/edit/5') ?>

Note: The HelperRegistry will attempt to lazy load any helpers not specifically identified in your Controller.

Accessing View Variables Inside Your Helper

If you would like to access a View variable inside a helper, you can use $this->getView()->get () like:

class AwesomeHelper extends Helper

{
public $helpers = ['Html'];
public function someMethod()
{
// set meta description
return $this->Html->meta(
'description', $this->getView()->get('metaDescription'), ['block' => 'meta']
)N
1
}

Rendering A View Element Inside Your Helper

If you would like to render an Element inside your Helper you can use $this->getView()->element () like:

class AwesomeHelper extends Helper
{
public function someFunction()
{
return $this->getView()->element (
'/path/to/element"’,
['foo'=>"bar', 'bar'=>"'foo']
)H

(continues on next page)

416 Chapter 11. Views

CakePHP Book, Release 4.x

(continued from previous page)

Helper Class

class Helper

Callbacks

By implementing a callback method in a helper, CakePHP will automatically subscribe your helper to the relevant
event. Unlike previous versions of CakePHP you should nor call parent in your callbacks, as the base Helper class
does not implement any of the callback methods.

Helper: :beforeRenderFile (Eventlnterface $event, $viewFile)

Is called before each view file is rendered. This includes elements, views, parent views and layouts.

Helper: :afterRenderFile (Eventinterface $event, $viewFile, $content)
Is called after each view file is rendered. This includes elements, views, parent views and layouts. A callback
can modify and return $content to change how the rendered content will be displayed in the browser.
Helper: :beforeRender (Eventinterface $event, $viewFile)
The beforeRender method is called after the controller’s beforeRender method but before the controller renders
view and layout. Receives the file being rendered as an argument.
Helper: :afterRender (Eventinterface $event, $viewFile)
Is called after the view has been rendered but before layout rendering has started.

Helper: :beforeLayout (Eventlnterface $event, $layoutFile)
Is called before layout rendering starts. Receives the layout filename as an argument.

Helper: :afterLayout (Eventinterface $event, $layoutFile)
Is called after layout rendering is complete. Receives the layout filename as an argument.

More About Views 417

CakePHP Book, Release 4.x

418 Chapter 11. Views

CHAPTER 12

Database Access & ORM

In CakePHP, working with data through the database is done with two primary object types:

» Repositories or table objects provide access to collections of data. They allow you to save new records, mod-
ify/delete existing ones, define relations, and perform bulk operations.

« Entities represent individual records and allow you to define row/record level behavior & functionality.

These two classes are usually responsible for managing almost everything that happens regarding your data, its validity,
interactions and evolution of the information workflow in your domain of work.

CakePHP’s built-in ORM specializes in relational databases, but can be extended to support alternative datasources.

The CakePHP ORM borrows ideas and concepts from both ActiveRecord and Datamapper patterns. It aims to create
a hybrid implementation that combines aspects of both patterns to create a fast, simple to use ORM.

Before we get started exploring the ORM, make sure you configure your database connections.

Quick Example

To get started you don’t have to write any code. If you’ve followed the CakePHP conventions for your database tables
you can just start using the ORM. For example if we wanted to load some data from our articles table we would
start off creating our Articles table class. Create src/Model/Table/ArticlesTable.php with the following code:

<?php
namespace App\Model\Table;

use Cake\ORM\Table;
class ArticlesTable extends Table

{
¥

419

CakePHP Book, Release 4.x

Then in a controller or command we can have CakePHP create an instance for us:

public function someMethod()

{
$resultset = $this->fetchTable('Articles')->find()->all();
foreach ($resultset as $row) {
echo $row->title;
}
}

In other contexts, you can use the LocatorAwareTrait which add accessor methods for ORM tables:

use Cake\ORM\Locator\LocatorAwareTrait;

public function someMethod()

{
$articles = $this->getTableLocator()->get('Articles');
// more code.

Within a static method you can use the FactoryLocator to get the table locator:

$articles = TableRegistry::getTableLocator()->get('Articles');

Table classes represent collections of entities. Next, lets create an entity class for our Articles. Entity classes let you
define accessor and mutator methods, define custom logic for individual records and much more. We’ll start off by
adding the following to src¢/Model/Entity/Article.php after the <?php opening tag:

namespace App\Model\Entity;
use Cake\ORM\Entity;

class Article extends Entity
{
3

Entities use the singular CamelCase version of the table name as their class name by default. Now that we have created
our entity class, when we load entities from the database we’ll get instances of our new Article class:

use Cake\ORM\Locator\LocatorAwareTrait;

$articles = $this->getTableLocator()->get('Articles');
$resultset = $articles->find()->allQ;

foreach ($resultset as $row) {
// Each row is now an instance of our Article class.
echo $row->title;

CakePHP uses naming conventions to link the Table and Entity class together. If you need to customize which entity a
table uses you can use the entityClass () method to set a specific classname.

See the chapters on Table Objects and Entities for more information on how to use table objects and entities in your
application.

420 Chapter 12. Database Access & ORM

CakePHP Book, Release 4.x

More Information

Database Basics

The CakePHP database access layer abstracts and provides help with most aspects of dealing with relational databases
such as, keeping connections to the server, building queries, preventing SQL injections, inspecting and altering
schemas, and with debugging and profiling queries sent to the database.

Quick Tour

The functions described in this chapter illustrate what is possible to do with the lower-level database access API. If
instead you want to learn more about the complete ORM, you can read the Query Builder and Table Objects sections.

The easiest way to create a database connection is using a DSN string:

use Cake\Datasource\ConnectionManager;

$dsn = 'mysql://root:password@localhost/my_database';
ConnectionManager: :setConfig('default', ['url' => $dsn]);

Once created, you can access the connection object to start using it:

$connection = ConnectionManager: :get('default');

Note: For supported databases, see installation notes.

Running Select Statements

Running raw SQL queries is a breeze:

use Cake\Datasource\ConnectionManager;

$connection = ConnectionManager::get('default');
$results = $connection->execute('SELECT * FROM articles')->fetchAll('assoc');

You can use prepared statements to insert parameters:

$results = $connection
->execute('SELECT * FROM articles WHERE id = :id', ['id' => 1]1)
->fetchAll('assoc');

It is also possible to use complex data types as arguments:

use Cake\Datasource\ConnectionManager;
use DateTime;

$connection = ConnectionManager::get('default');
$results = $connection
->execute(
'SELECT * FROM articles WHERE created >= :created',
(continues on next page)

More Information 421

CakePHP Book, Release 4.x

(continued from previous page)
['created' => new DateTime('l day ago')],
['created' => 'datetime']
)
->fetchAll('assoc');

Instead of writing the SQL manually, you can use the query builder:

// Prior to 4.5 use $connection->query() instead.
$results = $connection
->selectQuery('*', 'articles')
->where(['created >' => new DateTime('l day ago')], ['created' => 'datetime'])
->order(['title' => 'DESC'])
->execute()
->fetchAll('assoc');

Running Insert Statements

Inserting rows in the database is usually a matter of a couple lines:

use Cake\Datasource\ConnectionManager;
use DateTime;

$connection = ConnectionManager: :get('default');
$connection->insert('articles', [

'title' => 'A New Article',

'created' => new DateTime('now')
], ['created' => 'datetime']);

Running Update Statements

Updating rows in the database is equally intuitive, the following example will update the article with id 10:

use Cake\Datasource\ConnectionManager;
$connection = ConnectionManager: :get('default');
$connection->update('articles', ['title' => 'New title'], ['id' => 10]);

Running Delete Statements

Similarly, the delete () method is used to delete rows from the database, the following example deletes the article
with id 10:

use Cake\Datasource\ConnectionManager;
$connection = ConnectionManager::get('default');
$connection->delete('articles', ['id' => 10]);

422 Chapter 12. Database Access & ORM

CakePHP Book, Release 4.x

Configuration

By convention database connections are configured in config/app.php. The connection information defined in this file
is fed into Cake\Datasource\ConnectionManager creating the connection configuration your application will be
using. Sample connection information can be found in config/app.default.php. A sample connection configuration
would look like:

'Datasources’' => [
'default' => [

'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'my_app',
'password' => 'secret',
'database’ => 'my_app',
'encoding' => 'utf8mb4',
'timezone' => 'UTC',
'cacheMetadata' => true,

1,

The above will create a ‘default’ connection, with the provided parameters. You can define as many connections as
you want in your configuration file. You can also define additional connections at runtime using Cake\Datasource\
ConnectionManager: :setConfig(). An example of that would be:

use Cake\Datasource\ConnectionManager;

ConnectionManager: :setConfig('default"', [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,

'host' => 'localhost',
'username' => 'my_app',
'password' => 'secret',
'database' => 'my_app',
'encoding' => 'utf8mb4',
'timezone' => 'UTC',
'cacheMetadata' => true,

D;

Configuration options can also be provided as a DSN string. This is useful when working with environment variables
or PaaS providers:

ConnectionManager: :setConfig('default"', [
'url' => 'mysql://my_app:sekret@localhost/my_app?encoding=utf8&timezone=UTC&
—cacheMetadata=true',

D;

When using a DSN string you can define any additional parameters/options as query string arguments.

By default, all Table objects will use the default connection. To use a non-default connection, see Configuring
Connections.

There are a number of keys supported in database configuration. A full list is as follows:

More Information 423

CakePHP Book, Release 4.x

className
The fully namespaced class name of the class that represents the connection to a database server. This class is re-
sponsible for loading the database driver, providing SQL transaction mechanisms and preparing SQL statements
among other things.

driver
The class name of the driver used to implement all specificities for a database engine. This can either be a short
classname using plugin syntax, a fully namespaced name, or a constructed driver instance. Examples of short
classnames are Mysql, Sqlite, Postgres, and Sqlserver.

persistent
Whether or not to use a persistent connection to the database. This option is not supported by SqlServer. An
exception is thrown if you attempt to set persistent to true with SqlServer.

host
The database server’s hostname (or IP address).

username
The username for the account.

password
The password for the account.

database
The name of the database for this connection to use. Avoid using . in your database name. Because of how
it complicates identifier quoting CakePHP does not support . in database names. The path to your SQLite
database should be an absolute path (for example, ROOT . DS . 'my_app.db') to avoid incorrect paths caused
by relative paths.

port (optional)
The TCP port or Unix socket used to connect to the server.

encoding
Indicates the character set to use when sending SQL statements to the server. This defaults to the database’s
default encoding for all databases other than DB2.

timezone
Server timezone to set.

schema
Used in PostgreSQL database setups to specify which schema to use.

unix_socket
Used by drivers that support it to connect via Unix socket files. If you are using PostgreSQL and want to use
Unix sockets, leave the host key blank.

ssl_key
The file path to the SSL key file. (Only supported by MySQL).

ssl_cert
The file path to the SSL certificate file. (Only supported by MySQL).

ssl_ca

The file path to the SSL certificate authority. (Only supported by MySQL).
init

A list of queries that should be sent to the database server as when the connection is created.
log

Set to true to enable query logging. When enabled queries will be logged at a debug level with the queriesLog
scope.

424 Chapter 12. Database Access & ORM

CakePHP Book, Release 4.x

quoteldentifiers
Set to true if you are using reserved words or special characters in your table or column names. Enabling this
setting will result in queries built using the Query Builder having identifiers quoted when creating SQL. It should
be noted that this decreases performance because each query needs to be traversed and manipulated before being
executed.

flags
An associative array of PDO constants that should be passed to the underlying PDO instance. See the PDO
documentation for the flags supported by the driver you are using.

cacheMetadata
Either boolean true, or a string containing the cache configuration to store meta data in. Having metadata
caching disabled by setting it to false is not advised and can result in very poor performance. See the Metadata
Caching section for more information.

mask
Set the permissions on the generated database file. (Only supported by SQLite)

cache
The cache flag to send to SQLite.

mode
The mode flag value to send to SQLite.

At this point, you might want to take a look at the CakePHP Conventions. The correct naming for your tables (and the
addition of some columns) can score you some free functionality and help you avoid configuration. For example, if you
name your database table big_boxes, your table BigBoxesTable, and your controller BigBoxesController, everything
will work together automatically. By convention, use underscores, lower case, and plural forms for your database table
names - for example: bakers, pastry_stores, and savory_cakes.

Note: If your MySQL server is configured with skip-character-set-client-handshake then you MUST use
the flags config to set your charset encoding. For example:

"flags' => [\PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES utf8']

Read and Write Connections

Connections can have separate read and write roles. Read roles are expected to represent read-only replicas and write
roles are expected to be the default connection and support write operations.

Read roles are configured by providing a read key in the connection config. Write roles are configured by providing a
write key.

Role configurations override the values in the shared connection config. If the read and write role configurations are
the same, a single connection to the database is used for both:

'default' => [
'driver' => 'mysql',
'username' => '..."',
'password' => "'...',
'database' => '..."',
'read' => [
'host' => 'read-db.example.com',

1,

'write' => [

(continues on next page)

More Information 425

CakePHP Book, Release 4.x

(continued from previous page)

'host' => 'write-db.example.com',
1;

You can specify the same value for both read and write key without creating multiple connections to the database.

New in version 4.5.0: Read and write connection roles were added.

Managing Connections

class Cake\Datasource\ConnectionManager

The ConnectionManager class acts as a registry to access database connections your application has. It provides a
place that other objects can get references to existing connections.

Accessing Connections

static Cake\Datasource\ConnectionManager: :get($name)

Once configured connections can be fetched using Cake\Datasource\ConnectionManager: :get (). This method
will construct and load a connection if it has not been built before, or return the existing known connection:

use Cake\Datasource\ConnectionManager;
$connection = ConnectionManager: :get('default');

Attempting to load connections that do not exist will throw an exception.

Creating Connections at Runtime

Using setConfig() and get() you can create new connections that are not defined in your configuration files at
runtime:

ConnectionManager: :setConfig('my_connection', $config);
$connection = ConnectionManager::get('my_connection');

See the Configuration for more information on the configuration data used when creating connections.

Data Types

class Cake\Database\TypeFactory

Since not every database vendor includes the same set of data types, or the same names for similar data types, CakePHP
provides a set of abstracted data types for use with the database layer. The types CakePHP supports are:

string
Maps to VARCHAR type. In SQL Server the NVARCHAR types are used.

char
Maps to CHAR type. In SQL Server the NCHAR type is used.

text
Maps to TEXT types.

426 Chapter 12. Database Access & ORM

CakePHP Book, Release 4.x

uuid
Maps to the UUID type if a database provides one, otherwise this will generate a CHAR(36) field.

binaryuuid
Maps to the UUID type if the database provides one, otherwise this will generate a BINARY (16) column

integer
Maps to the INTEGER type provided by the database. BIT is not yet supported at this moment.

smallinteger
Maps to the SMALLINT type provided by the database.

tinyinteger
Maps to the TINYINT or SMALLINT type provided by the database. In MySQL TINYINT(1) is treated as a
boolean.

biginteger
Maps to the BIGINT type provided by the database.

float
Maps to either DOUBLE or FLOAT depending on the database. The precision option can be used to define the
precision used.

decimal
Maps to the DECIMAL type. Supports the length and precision options. Values for decimal type ares be
represented as strings (not as float as some might expect). This is because decimal types are used to represent
exact numeric values in databases and using float type for them in PHP can potentially lead to precision loss.

If you want the values to be float in your PHP code then consider using FLOAT or DOUBLE type columns in
your database. Also, depending on your use case you can explicitly map your decimal columns to float type in
your table schema.

boolean
Maps to BOOLEAN except in MySQL, where TINYINT (1) is used to represent booleans. BIT(1) is not yet
supported at this moment.

binary
Maps to the BLOB or BYTEA type provided by the database.

date
Maps to a native DATE column type. The return value of this column type is Cake\I18n\Date which extends
the native DateTime class.

datetime
See DateTime Type.

datetimefractional
See DateTime Type.

timestamp
Maps to the TIMESTAMP type.

timestampfractional
Maps to the TIMESTAMP (N) type.
time
Maps to a TIME type in all databases.
json
Maps to a JSON type if it’s available, otherwise it maps to TEXT.

These types are used in both the schema reflection features that CakePHP provides, and schema generation features
CakePHP uses when using test fixtures.

More Information 427

CakePHP Book, Release 4.x

Each type can also provide translation functions between PHP and SQL representations. These methods are invoked
based on the type hints provided when doing queries. For example a column that is marked as ‘datetime’ will automati-
cally convert input parameters from DateTime instances into a timestamp or formatted datestrings. Likewise, ‘binary’
columns will accept file handles, and generate file handles when reading data.

DateTime Type

class Cake\Database\DateTimeType

Maps to a native DATETIME column type. In PostgreSQL and SQL Server this turns into a TIMESTAMP type. The

default return value of this column type is Cake\I18n\FrozenTime which extends the built-in DateTimeImmutable

class and Chronos'?”.

Cake\Database\DateTimeType: : setTimezone (string\DateTimeZone|null $timezone)

If your database server’s timezone does not match your application’s PHP timezone then you can use this method to
specify your database’s timezone. This timezone will then used when converting PHP objects to database’s datetime
string and vice versa.

class Cake\Database\DateTimeFractionalType

Can be used to map datetime columns that contain microseconds such as DATETIME(6) in MySQL. To use this type
you need to add it as a mapped type:

// in config/bootstrap.php
use Cake\Database\TypeFactory;
use Cake\Database\Type\DateTimeFractionalType;

// Overwrite the default datetime type with a more precise one.
TypeFactory: :map('datetime', DateTimeFractionalType::class);

class Cake\Database\DateTimeTimezoneType

Can be used to map datetime columns that contain time zones such as TIMESTAMPTZ in PostgreSQL. To use this type
you need to add it as a mapped type:

// in config/bootstrap.php
use Cake\Database\TypeFactory;
use Cake\Database\Type\DateTimeTimezoneType;

// Overwrite the default datetime type with a more precise one.
TypeFactory: :map('datetime', DateTimeTimezoneType::class);

Adding Custom Types

class Cake\Database\TypeFactory
static Cake\Database\TypeFactory: :map($name, $class)

If you need to use vendor specific types that are not built into CakePHP you can add additional new types to CakePHP’s
type system. Type classes are expected to implement the following methods:

* toPHP: Casts given value from a database type to a PHP equivalent.

139 https://github.com/cakephp/chronos

428 Chapter 12. Database Access & ORM

https://github.com/cakephp/chronos

CakePHP Book, Release 4.x

* toDatabase: Casts given value from a PHP type to one acceptable by a database.
* toStatement: Casts given value to its Statement equivalent.
* marshal: Marshals flat data into PHP objects.

To fulfill the basic interface, extend Cake\Database\Type. For example if we wanted to add a JSON type, we could
make the following type class:

// in src/Database/Type/JsonType.php
namespace App\Database\Type;

use Cake\Database\DriverInterface;
use Cake\Database\Type\BaseType;

use PDO;

class JsonType extends BaseType

{
public function toPHP($value, DriverInterface $driver)
{
if ($value === null) {
return null;
}
return json_decode($value, true);
3
public function marshal($value)
{
if (is_array($value) || $value === null) {
return $value;
}
return json_decode($value, true);
3
public function toDatabase($value, DriverInterface S$driver)
{
return json_encode($value);
3
public function toStatement($value, DriverInterface S$driver)
{
if ($value === null) {
return PDO: :PARAM_NULL;
}
return PDO: :PARAM_STR;
3
}

By default the toStatement () method will treat values as strings which will work for our new type.

More Information 429

CakePHP Book, Release 4.x

Connecting Custom Datatypes to Schema Reflection and Generation

Once we’ve created our new type, we need to add it into the type mapping. During our application bootstrap we should
do the following:

use Cake\Database\TypeFactory;
TypeFactory: :map('json', 'App\Database\Type\JsonType');

We then have two ways to use our datatype in our models.
1. The first path is to overwrite the reflected schema data to use our new type.

2. The second is to implement Cake\Database\Type\ColumnSchemaAwareInterface and define the SQL col-
umn type and reflection logic.

Overwriting the reflected schema with our custom type will enable CakePHP’s database layer to automatically convert
JSON data when creating queries. In your Table’s getSchema() method add the following:

class WidgetsTable extends Table

{
public function getSchema(): TableSchemalnterface
{
$this->getSchema() ->setColumnType('widget_prefs', 'json');
1
}

Implementing ColumnSchemaAwareInterface gives you more control over custom datatypes. This avoids overwrit-
ing schema definitions if your datatype has an unambiguous SQL column definition. For example, we could have our
JSON type be used anytime a TEXT column with a specific comment is used:

// in src/Database/Type/JsonType.php
namespace App\Database\Type;

use Cake\Database\DriverInterface;

use Cake\Database\Type\BaseType;

use Cake\Database\Type\ColumnSchemaAwareInter