g CakePHP

CakePHP Book

Release 5.x

Cake Software Foundation

Jun 29, 2025

Contents

CakePHP at a Glance

Conventions Over Configurationot v ittt e e e e e e e
The Model Layer ot e e e e e e e e e e e e e e e e e e
The View Layer o e e e e e e e e e e e e
The Controller Layer e e e e
CakePHP Request Cycle o o 0 e e e e e e e e
Justthe Start L e e e e e e e e
Additional Reading e e

Quick Start Guide

Content Management Tutorial oL e e
CMS Tutorial - Creating the Database it e e e e e e e
CMS Tutorial - Creating our First Model e
CMS Tutorial - Creating the Articles Controller,

Migration Guides

5.0Upgrade Guide o . e e e e e e e e e e
S.0Migration Guide L e e e e e e e e e e e e e
S.I Migration Guide L. e e e e e e e e e e e e e
S2Migration Guide L L e e e e e e e
PHPUnit 10 Upgrade o e e e e e e e e e e e e e e e e e

Tutorials & Examples

Content Management Tutorialo L e
CMS Tutorial - Creating the Database i e e e e e e e e
CMS Tutorial - Creating our First Model e
CMS Tutorial - Creating the Articles Controller
CMS Tutorial - Tags and Users o o o i v i i e e e e e e e e e e e e e e
CMS Tutorial - Authentication e e
CMS Tutorial - Authorization e

Contributing
Documentation e e e e e e e e e e e e e e

Tickets

AR WD = = -

13

15
18
20

31
31
32
40
43
45

47
47
49
53
54
63
71
77

83
83
91

10

Coding Standards L e e e e e e e e e e e e e e
Backwards Compatibility Guide

Installation

Installing CakePHP e e e e e
Permissions L e e e e
Development Server L L e e e e e e e e e e e e e
Production L e e e e e e
Fire It Up . . . o e e e e e e
URL Rewriting e e e e e e e e e e e e e e e e

Configuration

Configuring your Application i e e e e e e e e e e e e
Environment Variables L
Additional Class Paths o e
Inflection Configuration L
Configure Class o e e e e e
Reading and writing configuration files L

Routing

Quick Tour e e
Connecting Routes L e e e e e e e e e e e
Route Scoped Middleware e e e e e e e e e e e
RESTful Routing e e e e e e e e
Passed Argumentsl e e e e
Generating URLS o e e e
Generating Asset URLs o L o 0 L e e
Redirect Routing o o e e e e e e e e e e
Entity Routing e e e e e e e e e e
Custom Route Classes i e e e
Creating Persistent URL Parameters L 0 0 e e

Request & Response Objects

Request o e e
Response o L e e e e
Common Mistakes with Immutable Responses oo
Cookie Collections e e

Controllers

The App Controller o o e e e e e e e e e e e e e e e e e
Request FIow 0 o e e e e e e e e e e
Controller ACHONS« o o e e e e e e e e e e
Interacting with Views L
Content Type Negotiation o o i i e e e e e e e e e e e e e
Content Type Negotiation Fallbacks s
Using AjaxVIew o o e e e e e e e e e e e e e e e e e e
Redirecting to Other Pages e e e e e e e
Loading Additional Tables/Models
Paginating a Model L e e e e e e e
Configuring Components to Load e
Request Life-cycle Callbacks 0 . o e e e e e e e e e e e
Using Redirects in Controller Events 0 e e e
Controller Middleware e e e
More on Controllers o i e e e e e e e e e e e e e

109
110
111
112
113
113
113

121
121
122
124
125
125
127

131
131
133
146
147
151
151
154
155
156
156
158

161
161
172
179
179

184

190

192

11

12

13

14

15

16

17

Views

The App View o o e e
View Templates L
Extending Layouts
Using View Blocks L o
Layouts e
Elements.
ViewEvents o e
Creating Your Own View Classes
More About Views e e

Database Access & ORM

Quick Example
More Information

Caching

Configuring Cache Engines
WritingtoaCache L.
Reading FromaCache
Deleting FromaCache
Clearing CachedData
Using Cache to Store Counters
Using Cache to Store Common Query Results
Using Groups« o o v i e e

Globally Enable or Disable Cache

Creating a Cache Engine

Bake Console

Console Commands

The CakePHP Console
Console Applications e
Renaming Commandso
Commands i i e e e e e

Debugging

Basic Debugging
Using the DebuggerClass,
Outputting Values
Logging With Stack Traces
Generating Stack Traces
Getting an Excerpt FromaFile
Editor Integration Lo o
Using LoggingtoDebug
Debug Kit e

Deployment

Movingfiles
Adjusting Configuration
Check Your Security
Set DocumentRoot Lo oL
Improve Your Application’s Performance
Deploying anupdate

205
205
206
209
209
211
213
216
216
217

315
315
317

495
496
499
501
502
502
503
503
503
504
505

507

509
509
510
510
511
534
541

543
543
544
544
545
545
545
546
546
547

549
549
549
550
550
550
551

18 Mailer 553

Basic Usage o e e e e e e e e e e e e 553
Configuration L. e e e e e e e e e e e e e e e e e 554
Setting Headers e 555
Sending Templated Emails 0oL 555
Sending Attachments o L e e e e e e 557
Sending Emails from CLI e e e e e e e e e e 558
Creating Reusable Emails 0 o e e e e 558
Configuring Transports e e e e e e e 560
Sending emails without using Mailer oo 562
Testing Mailers L e e e e 562
19 Error & Exception Handling 565
Configuration e 565
Deprecation Warnings o o vt e e e e e e e e e e e e e e e 566
Changing Exception Handling e e e e e e 566
Listento Events e 567
Custom Templates o o o e e e e e e e e e e e e e e e 567
Custom Controller L e e e e e e e e e e e e e 568
Custom ExceptionRenderer L e 569
Creating your own Application Exceptions e e e e 570
Built in Exceptions for CakePHP e 571
Customizing PHP Error Handling 575
20 Events System 577
Example Event Usage 0 o i e e e e e e e e e e e 577
Accessing Event Managers 578
Core Events o e e e e e e e e 579
Registering Listeners L e e e e 580
Dispatching Events e e e e e e e e e e e e e e e e 584
Additional Reading e e e e e e e 587
21 Internationalization & Localization 589
Setting Up Translations o i e e e e e e e e e e e e e 589
Using Translation Functions o . . 0 0 e e e e e e e e e e e 591
Creating Your Own Translators o o 595
Localizing Dates and Numbers L 598
Automatically Choosing the Locale Based on Request Data 600
Translate Content/Entities o e e e e e 600
22 Logging 601
Logging Configuration e e e e e 601
Error and Exception Logging o e e e e e e e e e e e 602
Writing to LOgs o o e e e e e e e e e e e e 602
Logging to Files e e e e e e e 605
Logging to Syslog e e 605
Creating Log Engines L e e e 606
Logging Formatters L e e e e e e e 607
Testing Logs . . . o o v o e e e e e e e e e e e e e e e e 607
Log APL . . . e e e e e e e e 608
Logging Trait e e e e e e e e e 609
Using Monolog e 609
23 Modelless Forms 611
CreatingaForm L 611

24

25

26

27

28

Setting Form Values e e e e e e e e e 613
Getting Form Errors o o e e 614
Invalidating Individual Form Fields from Controller 614
Creating HTML with FormHelper o o o 615
Pagination 617
BasicUsage e 617
Advanced Usage L e e e e 618
Simple Pagination e e e e 619
Paginating Multiple Queries i e e e e e e e e e e e 619
Control which Fields Used for Ordering 621
Limit the Maximum Number of Rows perPage 621
Out of Range Page Requests 621
Using a paginator class directly L 622
Paginationinthe View L e e e e e e e e e e e 622
Plugins 623
Installing a Plugin With Composer e 623
Manually Installing a Plugin 0 o e e e e e 624
Loading a Plugin e e e e e e 624
Plugin Hook Configuration 624
Plugin Loading Options e 625
Loading plugins through Application: :bootstrap() 625
Using Plugin Classes o o v i i i e e e e e e e e e e e e e e e e e e e 626
Creating Your Own Plugins o . o e e e e e e e e e e 627
Plugin CIasses o o v i e e e e e e e e e e e e e e e 628
Plugin Routes e 629
Plugin Controllers o o o e e e 630
Plugin Models o e e e e e e e e e e e 631
Plugin Templates o 0 o e e e e e e e e e e e e e e e e e 632
Plugin ASSES o i e e e e e e e e e e e e e e e e 633
Components, Helpers and Behaviors o 634
Commandsl e e e 635
Testing your Plugin oL e e e 635
Publishing your Plugin e e e e e e e e e e e e 635
Plugin Map File o e e e e e e 635
Manage Your Plugins using Mlixer 636
REST 637
Getting Started L L e e e e e e e e e e e e e e 637
Encoding Response Data L 639
Parsing Request Bodies 639
Security 641
Security Utility L. 641
CSRFE Protection 0 i i e e e e e 643
Content Security Policy Middleware e e e e 646
Security Header Middleware 0 e e e e e e e e e e 647
HTTPS Enforcer Middleware 647
Sessions 649
Session Configuration L e e e e e e e e e e e e e 649
Built-in Session Handlers & Configuration L 650
Setting ini directiveso e 653

29

30

31

32

Creating a Custom Session Handler e
Accessing the Session Object o . e e e e e e e e e e e
Reading & Writing Session Data e
Destroying the Session
Rotating Session Identifiers L e
Flash MeSsages o o i i it e e e e e e e e e e

Testing

Installing PHPUnit e e e e e e
Test Database Setup L e e e e e e e e e e e
Checking the Test SEtup o o i i i e
Test Case CONVENtiONS o o v vt v e ettt e e e e e e e e e e e e e e e
Creating Your First Test Case i i s e
Running Tests o o o e e e e e e e e e e
Test Case Lifecycle Callbacks o e e
FIXtures e
Loading Routes in Tests o i i e e e e e e e e e e e e e e
Testing Table Classes o o i i e e e e
Controller Integration Testing o o o e e e e e e e e e
Console Integration Testing L . o L 0 e e e e e e e
Mocking Injected Dependencies o o . e e e e e e e e e e e e
Mocking HTTP Client Responses v o v v i i e e e e e e e e e e e e e e e e e
Testing VIews L L e e e e e e e e e
Testing COMPONENLS v v v o it e
Testing Helpers o o o o o e e e e e e e e
Testing EVENtS o o e e e e e e e e e
Testing Email o L e e e e e e e e e
Testing Logging L e e e e e e e e
Creating Test Suites L . e e e
Creating Tests for Plugins o L e e e e
Generating Tests with Bake 0 e

Validation

Creating Validators 0 L e e e e e e e e e e e e
Make Rules ‘last’ by default.o e
Validating Data e e e e e e e e e e e e e e e
Validating Entity Data 0 0 e e e e e e e e e
Core Validation Rules

App Class

Finding Classes o v i i i e e e e e e e e e e e e e e e
Finding Paths to Resources L e
Finding Paths to Namespaces o o i i e e e e e e e e e e e e
Locating Themes o o o e e e e e
Loading Vendor Files e e e e e e e e e

Collections

Quick Example o e e e e e e e e e e e e
Listof Methods e e e e e
Tterating e e e e e e e e
Filtering o L e e
AGEregation oL e
SOTHNG . . . o o e e e e e e e e e e e
Working with Tree Data o o o o e e e e e e e e e e e
Other Methods L . e e e

657
657
658
658
659
659
661
662
663
670
671
673
684
685
685
685
685
687
688
690
690
690
690
691

693
693
698
701
702
703

705
705
706
706
706
706

vi

33

34

35

36

37

38

Hash
Hash Path Syntax

Http Client
Doing Requests
Creating Multipart Requests with Files

Request Method Options
Authentication
Creating Scoped Clients
Setting and Managing Cookies
ClientEvents
Response Objects
Changing Transport Adapters
Events
Testing

Inflector

Summary of Inflector Methods and Their Output

Creating Plural & Singular Forms . .

Creating CamelCase and under_scored Forms i

Creating Human Readable Forms . . .
Creating Table and Class Name Forms
Creating Variable Names
Inflection Configuration

Number

Formatting Currency Values
Setting the Default Currency
Getting the Default Currency
Formatting Floating Point Numbers .
Formatting Percentages

Interacting with Human Readable Values

Formatting Numbers
Format Differences
Configure formatters

Registry Objects

Loading Objects
Triggering Callbacks
Disabling Callbacks

Text

Convert Strings into ASCII
Creating URL Safe Strings
Generating UUIDs
Simple String Parsing
Formatting Strings
Wrapping Text
Highlighting Substrings
Truncating Text
Truncating the Tail of a String
Extracting an Excerpt
Converting an Array to Sentence Form

731
731

747
747
748
749
749
750
752
753
753
753
755
755
756

759
759
760
760
761
761
761
762

763
764
764
765
765
765
765
766
767
768

769
769
769
770

771
772
772
772
773
773
773
774
775
776
77
777

vii

39 Date & Time
Creating DateTime Instances o o i e e e e e e e e e e e
Manipulation oL e e e e e e e e e e e e e
Formatting e e e e
CONVETSION o o it e
Comparing With the Present L L e
Comparing With Intervals 0 o e e e e e e e e e e e
Date e e e

Accepting Localized Request Data L e
Supported Timezones o L e e e e e e e e e e e e e e

40 Xml
Loading XML documents 0 o i i e e e e e e e e e e e e e
Loading HTML documents o o i i i e et e et e e e e e e e e e
Transforming a XML String in Array« o ot v i e e e e e e e e
Transforming an Array into a Stringof XML o

41 Constants & Functions
Global Functions e e e e e
Core Definition Constants 0 e e e e e e e e e e e e e e e e e
Timing Definition Constants

42 Chronos

43 Debug Kit
44 Migrations
45 ElasticSearch

46 Appendices
Migration Guides e e e e e
Backwards Compatibility Shimming
Forwards Compatibility Shimming
General Information L L e e e e e e e

PHP Namespace Index

Index

779
780
780
781
785
785
786
786
786
787
787

789
789
790
790
790

793
793
795
796

797

799

801

803

805
805
805
805
805

809

811

viii

CHAPTER 1

CakePHP at a Glance

CakePHP is designed to make common web-development tasks simple, and easy. By providing an all-in-one toolbox
to get you started the various parts of CakePHP work well together or separately.

The goal of this overview is to introduce the general concepts in CakePHP, and give you a quick overview of how those
concepts are implemented in CakePHP. If you are itching to get started on a project, you can start with the tutorial, or
dive into the docs.

Conventions Over Configuration

CakePHP provides a basic organizational structure that covers class names, filenames, database table names, and other
conventions. While the conventions take some time to learn, by following the conventions CakePHP provides you
can avoid needless configuration and make a uniform application structure that makes working with various projects
simple. The conventions chapter covers the various conventions that CakePHP uses.

The Model Layer

The Model layer represents the part of your application that implements the business logic. It is responsible for re-
trieving data and converting it into the primary meaningful concepts in your application. This includes processing,
validating, associating or other tasks related to handling data.

In the case of a social network, the Model layer would take care of tasks such as saving the user data, saving friends’
associations, storing and retrieving user photos, finding suggestions for new friends, etc. The model objects can be
thought of as “Friend”, “User”, “Comment”, or “Photo”. If we wanted to load some data from our users table we
could do:

use Cake\ORM\Locator\LocatorAwareTrait;

$users = $this->fetchTable('Users');
$resultset = $users->find()->all();

(continues on next page)

CakePHP Book, Release 5.x

(continued from previous page)

foreach ($resultset as $row) {
echo $row->username;

}

You may notice that we didn’t have to write any code before we could start working with our data. By using conventions,
CakePHP will use standard classes for table and entity classes that have not yet been defined.

If we wanted to make a new user and save it (with validation) we would do something like:

use Cake\ORM\Locator\LocatorAwareTrait;

$users = $this->fetchTable('Users');
$user = $users->newEntity(['email' => 'mark@example.com']);
$users->save($user) ;

The View Layer

The View layer renders a presentation of modeled data. Being separate from the Model objects, it is responsible for
using the information it has available to produce any presentational interface your application might need.

For example, the view could use model data to render an HTML view template containing it, or a XML formatted result
for others to consume:

// In a view template file, we'll render an 'element' for each user.
<?php foreach ($resultset as S$user): ?>
<li class="user">
<?= $this->element('user_info', ['user' => S$user]) ?>
</1li>
<?php endforeach; ?>

The View layer provides a number of extension points like View Templates, Elements and View Cells to let you re-use
your presentation logic.

The View layer is not only limited to HTML or text representation of the data. It can be used to deliver common data
formats like JSON, XML, and through a pluggable architecture any other format you may need, such as CSV.

The Controller Layer

The Controller layer handles requests from users. It is responsible for rendering a response with the aid of both the
Model and the View layers.

A controller can be seen as a manager that ensures that all resources needed for completing a task are delegated to the
correct workers. It waits for petitions from clients, checks their validity according to authentication or authorization
rules, delegates data fetching or processing to the model, selects the type of presentational data that the clients are
accepting, and finally delegates the rendering process to the View layer. An example of a user registration controller
would be:

public function add(Q)
{
$user = $this->Users->newEmptyEntity();
if ($this->request->is('post')) {
$user = $this->Users->patchEntity($user, $this->request->getData());
if ($this->Users->save($user, ['validate' => 'registration'])) {
(continues on next page)

2 Chapter 1. CakePHP at a Glance

CakePHP Book, Release 5.x

(continued from previous page)

$this->Flash->success(__('You are now registered.'));
} else {
$this->Flash->error(__('There were some problems.'));

}
}

$this->set('user', $user);

¥

You may notice that we never explicitly rendered a view. CakePHP’s conventions will take care of selecting the right
view and rendering it with the view data we prepared with set ().

CakePHP Request Cycle

Now that you are familiar with the different layers in CakePHP, lets review how a request cycle works in CakePHP:

index.php autoloader
Load Application &
bind to HitpServer Hesponse
L) T
[Middleware] [Middleware]
l » Helper

‘ Component 4—{ Controlier View
- "-{—HN
) Cell

The typical CakePHP request cycle starts with a user requesting a page or resource in your application. At a high level
each request goes through the following steps:

"

1. The webserver rewrite rules direct the request to webroot/index.php.

2. Your Application is loaded and bound to an HttpServer.

CakePHP Request Cycle 3

CakePHP Book, Release 5.x

3. Your application’s middleware is initialized.

4. A request and response is dispatched through the PSR-7 Middleware that your application uses. Typically this
includes error trapping and routing.

5. If noresponse is returned from the middleware and the request contains routing information, a controller & action
are selected.

The controller’s action is called and the controller interacts with the required Models and Components.
The controller delegates response creation to the View to generate the output resulting from the model data.

The view uses Helpers and Cells to generate the response body and headers.

© ® =2

The response is sent back out through the /controllers/middleware.

10. The HttpServer emits the response to the webserver.

Just the Start

Hopefully this quick overview has piqued your interest. Some other great features in CakePHP are:
* A caching framework that integrates with Memcached, Redis and other backends.
» Powerful code generation tools so you can start immediately.
* Integrated testing framework so you can ensure your code works perfectly.

The next obvious steps are to download CakePHP, read the tutorial and build something awesome.

Additional Reading

Where to Get Help

The Official CakePHP website

https://cakephp.org

The Official CakePHP website is always a great place to visit. It features links to oft-used developer tools, screencasts,
donation opportunities, and downloads.

The Cookbook

https://book.cakephp.org

This manual should probably be the first place you go to get answers. As with many other open source projects, we
get new folks regularly. Try your best to answer your questions on your own first. Answers may come slower, but will
remain longer — and you’ll also be lightening our support load. Both the manual and the API have an online component.

The Bakery
https://bakery.cakephp.org

The CakePHP Bakery is a clearing house for all things regarding CakePHP. Check it out for tutorials, case studies, and
code examples. Once you’re acquainted with CakePHP, log on and share your knowledge with the community and gain
instant fame and fortune.

4 Chapter 1. CakePHP at a Glance

https://cakephp.org
https://book.cakephp.org
https://bakery.cakephp.org

CakePHP Book, Release 5.x

The API

https://api.cakephp.org/

Straight to the point and straight from the core developers, the CakePHP API (Application Programming Interface) is
the most comprehensive documentation around for all the nitty gritty details of the internal workings of the framework.
It’s a straight forward code reference, so bring your propeller hat.

The Test Cases

If you ever feel the information provided in the API is not sufficient, check out the code of the test cases provided with
CakePHP. They can serve as practical examples for function and data member usage for a class.

tests/TestCase/

Slack

CakePHP Slack Support Channel*

If you're stumped, give us a holler in the CakePHP Slack support channel. We’d love to hear from you, whether you
need some help, want to find users in your area, or would like to donate your brand new sports car.

Discord

CakePHP Discord’

You can also join us on Discord.

Official CakePHP Forum
CakePHP Official Forum®

Our official forum where you can ask for help, suggest ideas and have a talk about CakePHP. It’s a perfect place for
quickly finding answers and help others. Join the CakePHP family by signing up.

Stackoverflow
https://stackoverflow.com/’

Tag your questions with cakephp and the specific version you are using to enable existing users of stackoverflow to
find your questions.

Where to get Help in your Language

Danish

 Danish CakePHP Slack Channel®

French

 French CakePHP Slack Channel’

4 https://cakesf.slack.com/messages/german/

5 https://discord.com/invite/k4trEMPebj

6 https://discourse.cakephp.org

7 https://stackoverflow.com/questions/tagged/cakephp/
8 https://cakesf.slack.com/messages/denmark/

9 https://cakesf.slack.com/messages/french/

Additional Reading 5

https://api.cakephp.org/
https://cakesf.slack.com/messages/german/
https://discord.com/invite/k4trEMPebj
https://discourse.cakephp.org
https://stackoverflow.com/questions/tagged/cakephp/
https://cakesf.slack.com/messages/denmark/
https://cakesf.slack.com/messages/french/

CakePHP Book, Release 5.x

German

o German CakePHP Slack Channel'’
+ German CakePHP Facebook Group''

Dutch

 Dutch CakePHP Slack Channel '

Japanese

« Japanese CakePHP Slack Channel'?
+ Japanese CakePHP Facebook Group'*

Portuguese

* Portuguese CakePHP Slack Channel'

Spanish

* Spanish CakePHP Slack Channel'®

CakePHP Conventions

We are big fans of convention over configuration. While it takes a bit of time to learn CakePHP’s conventions, you
save time in the long run. By following conventions, you get free functionality, and you liberate yourself from the
maintenance nightmare of tracking config files. Conventions also make for a very uniform development experience,
allowing other developers to jump in and help.

Controller Conventions

Controller class names are plural, CamelCased, and end in Controller. UsersController and
MenuLinksController are both examples of conventional controller names.

Public methods on Controllers are often exposed as ‘actions’ accessible through a web browser. They are camelBacked.
For example the /users/view-me maps to the viewMe () method of the UsersController out of the box (if one
uses default dashed inflection in routing). Protected or private methods cannot be accessed with routing.

URL Considerations for Controller Names

As you’ve just seen, single word controllers map to a simple lower case URL path. For example, UsersController
(which would be defined in the file name UsersController.php) is accessed from http://example.com/users.

While you can route multiple word controllers in any way you like, the convention is that your URLs are lower-
case and dashed using the DashedRoute class, therefore /menu-1links/view-all is the correct form to access the
MenuLinksController: :viewAll() action.

When you create links using this->Html->1ink (), you can use the following conventions for the url array:

10 https://cakesf.slack.com/messages/german/

I https://www.facebook.com/groups/146324018754907/
12 https://cakesf.slack.com/messages/netherlands/

13 https://cakesf.slack.com/messages/japanese/

14 https://www.facebook.com/groups/304490963004377/
15 https://cakesf.slack.com/messages/portuguese/

16 https://cakesf.slack.com/messages/spanish/

6 Chapter 1. CakePHP at a Glance

https://cakesf.slack.com/messages/german/
https://www.facebook.com/groups/146324018754907/
https://cakesf.slack.com/messages/netherlands/
https://cakesf.slack.com/messages/japanese/
https://www.facebook.com/groups/304490963004377/
https://cakesf.slack.com/messages/portuguese/
https://cakesf.slack.com/messages/spanish/

CakePHP Book, Release 5.x

$this->Html->link('link-title', [
'prefix' => 'MyPrefix' // CamelCased
'plugin' => 'MyPlugin', // CamelCased
'controller' => 'ControllerName', // CamelCased
'action' => 'actionName' // camelBacked

]

For more information on CakePHP URLs and parameter handling, see Connecting Routes.

File and Class Name Conventions

In general, filenames match the class names, and follow the PSR-4 standard for autoloading. The following are some
examples of class names and their filenames:

e The Controller class LatestArticlesController would be found in a file named LatestArticlesCon-
troller.php

* The Component class MyHandyComponent would be found in a file named MyHandyComponent.php
¢ The Table class OptionValuesTable would be found in a file named OptionValuesTable.php.
* The Entity class OptionValue would be found in a file named OptionValue.php.

* The Behavior class EspeciallyFunkableBehavior would be found in a file named EspeciallyFunkableBe-
havior.php

e The View class SuperSimpleView would be found in a file named SuperSimpleView.php
* The Helper class BestEverHelper would be found in a file named BestEverHelper.php

Each file would be located in the appropriate folder/namespace in your app folder.

Database Conventions

Table names corresponding to CakePHP models are plural and underscored. For example users, menu_links, and
user_favorite_pages respectively. Table name whose name contains multiple words should only pluralize the last
word, for example, menu_links.

Column names with two or more words are underscored, for example, first_name.

Foreign keys in hasMany, belongsTo/hasOne relationships are recognized by default as the (singular) name of the
related table followed by _id. So if Users hasMany Articles, the articles table will refer to the users table via a
user_id foreign key. For a table like menu_links whose name contains multiple words, the foreign key would be
menu_link_id.

Join (or “junction”) tables are used in BelongsToMany relationships between models. These should be named for the
tables they connect. The names should be pluralized and sorted alphabetically: articles_tags, not tags_articles
or article_tags. The bake command will not work if this convention is not followed. If the junction table holds any
data other than the linking foreign keys, you should create a concrete entity/table class for the table.

In addition to using an auto-incrementing integer as primary keys, you can also use UUID columns. CakePHP will
create UUID values automatically using (Cake\Utility\Text: :uuid()) whenever you save new records using the
Table: :save() method.

Model Conventions

Table class names are plural, CamelCased and end in Table. UsersTable, MenuLinksTable, and
UserFavoritePagesTable are all examples of table class names matching the users, menu_links and
user_favorite_pages tables respectively.

Additional Reading 7

CakePHP Book, Release 5.x

Entity class names are singular CamelCased and have no suffix. User, MenuLink, and UserFavoritePage are all
examples of entity names matching the users, menu_links and user_favorite_pages tables respectively.

Enum class names should use a {Entity}{Column} convention, and enum cases should use CamelCased names.

View Conventions

View template files are named after the controller functions they display, in an underscored form. The viewAll()
function of the ArticlesController class will look for a view template in templates/Articles/view_all.php.

The basic pattern is templates/Controller/underscored_function_name.php.

© Note

By default CakePHP uses English inflections. If you have database tables/columns that use another language, you
will need to add inflection rules (from singular to plural and vice-versa). You can use Cake\Utility\Inflector
to define your custom inflection rules. See the documentation about /nflector for more information.

Plugins Conventions

It is useful to prefix a CakePHP plugin with “cakephp-" in the package name. This makes the name semantically related
on the framework it depends on.

Do not use the CakePHP namespace (cakephp) as vendor name as this is reserved to CakePHP owned plugins. The
convention is to use lowercase letters and dashes as separator:

// Bad
cakephp/foo-bar

// Good
your-name/cakephp-foo-bar

See awesome list recommendations!’ for details.

Summarized

By naming the pieces of your application using CakePHP conventions, you gain functionality without the hassle and
maintenance tethers of configuration. Here’s a final example that ties the conventions together:

¢ Database table: “articles”, “menu_links”

* Table class: ArticlesTable, found at src/Model/Table/ArticlesTable.php

* Entity class: Article, found at src/Model/Entity/Article.php

¢ Controller class: ArticlesController, found at src/Controller/ArticlesController.php
* View template, found at templates/Articles/index.php

Using these conventions, CakePHP knows that a request to http://example.com/articles maps to a call on the
index () method of the ArticlesController, where the Articles model is automatically available. None of these
relationships have been configured by any means other than by creating classes and files that you’d need to create
anyway.

17 https://github.com/FriendsOfCake/awesome-cakephp/blob/master/ CONTRIBUTING.md#tips- for-creating-cakephp-plugins

8 Chapter 1. CakePHP at a Glance

https://github.com/FriendsOfCake/awesome-cakephp/blob/master/CONTRIBUTING.md#tips-for-creating-cakephp-plugins

CakePHP Book, Release 5.x

Ex- articles menu_links

am-

ple

Databa articles menu_links

Ta-

ble

File ArticlesCon- MenuLinksCon-
troller.php troller.php

Ta- Arti- MenuLinksTable.pt

ble clesTable.php
En- Article.php MenuLink.php

tity

Class ArticlesCon- MenuLinksCon-
troller troller

Con- ArticlesCon- MenuLinksCon-

troller troller troller

Tem- Arti- MenuLinks/index.p

plates cles/index.php MenuLinks/add.phj
Arti- MenuLinks/get_list
cles/add.php
Arti-

cles/get_list.php
Be- ArticlesBehav- MenuLinksBe-

hav- ior.php havior.php

ior

View Arti- MenuLinksView.ph
clesView.php

Helper Arti- MenuLinksHelper.
clesHelper.php

Com- ArticlesCom- MenuLinksCom-

po- ponent.php ponent.php

nent

Plu- Bad: cakephp/menu-

gin cakephp/articles links
Good: you/cakephp-
you/cakephp- menu-links
articles

Table names corresponding to CakePHP models are plural and un-
derscored.

Table class names are plural, CamelCased and end in Table

Entity class names are singular, CamelCased: Article and
MenuLink

Plural, CamelCased, end in Controller

View template files are named after the controller functions they
display, in an underscored form

Useful to prefix a CakePHP plugin with “cakephp-" in the package
name. Do not use the CakePHP namespace (cakephp) as vendor
name as this is reserved to CakePHP owned plugins. The convention
is to use lowercase letters and dashes as separator.

Each file would be located in the appropriate folder/namespace in your app folder.

Additional Reading

CakePHP Book, Release 5.x

Database Convention Summary

Foreign keys Relationships are recognized by default as the (singular) name of the related table followed
hasMany be- by_id. Users hasMany Articles, articles table will refer to the users table viaauser_id
longsTo/ hasOne foreign key.

BelongsToMany

Multiple Words menu_links whose name contains multiple words, the foreign key would be

menu_link_id.

Auto Increment In addition to using an auto-incrementing integer as primary keys, you can also use

UUID columns. CakePHP will create UUID values automatically using (Cake\Utility\
Text: :uuid()) whenever you save new records using the Table: : save () method.

Join tables Should be named after the model tables they will join or the bake command won’t work,

arranged in alphabetical order (articles_tags rather than tags_articles). Additional
columns on the junction table you should create a separate entity/table class for that table.

Now that you’ve been introduced to CakePHP’s fundamentals, you might try a run through the Content Management
Tutorial to see how things fit together.

CakePHP Folder Structure

After you’ve downloaded the CakePHP application skeleton, there are a few top level folders you should see:

The bin folder holds the Cake console executables.

The config folder holds the Configuration files CakePHP uses. Database connection details, bootstrapping, core
configuration files and more should be stored here.

The plugins folder is where the Plugins your application uses are stored.

The logs folder normally contains your log files, depending on your log configuration.

The src folder will be where your application’s source files will be placed.

The templates folder has presentational files placed here: elements, error pages, layouts, and view template files.

The resources folder has sub folder for various types of resource files. The locales sub folder stores language
files for internationalization.

The tests folder will be where you put the test cases for your application.

The tmp folder is where CakePHP stores temporary data. The actual data it stores depends on how you have
CakePHP configured, but this folder is usually used to store translation messages, model descriptions and some-
times session information.

The vendor folder is where CakePHP and other application dependencies will be installed by Composer'®. Edit-
ing these files is not advised, as Composer will overwrite your changes next time you update.

The webroot directory is the public document root of your application. It contains all the files you want to be
publicly reachable.

Make sure that the tmp and logs folders exist and are writable, otherwise the performance of your application
will be severely impacted. In debug mode, CakePHP will warn you, if these directories are not writable.

18 https://getcomposer.org

10

Chapter 1. CakePHP at a Glance

https://getcomposer.org

CakePHP Book, Release 5.x

The src Folder

CakePHP’s src folder is where you will do most of your application development. Let’s look a little closer at the folders
inside src.

Command
Contains your application’s console commands. See Command Objects to learn more.

Console
Contains the installation script executed by Composer.

Controller
Contains your application’s Controllers and their components.

Middleware
Stores any /controllers/middleware for your application.

Model
Contains your application’s tables, entities and behaviors.

View
Presentational classes are placed here: views, cells, helpers.

© Note

The folder Command is not present by default. You can add it when you need it.

Additional Reading 11

CakePHP Book, Release 5.x

12 Chapter 1. CakePHP at a Glance

CHAPTER 2

Quick Start Guide

The best way to experience and learn CakePHP is to sit down and build something. To start off we’ll build a simple
Content Management application.

Content Management Tutorial

This tutorial will walk you through the creation of a simple CMS (Content Management System) application. To start
with, we’ll be installing CakePHP, creating our database, and building simple article management.

Here’s what you’ll need:

1. A database server. We're going to be using MySQL server in this tutorial. You’ll need to know enough about
SQL in order to create a database, and run SQL snippets from the tutorial. CakePHP will handle building all the
queries your application needs. Since we’re using MySQL, also make sure that you have pdo_mysql enabled in
PHP.

2. Basic PHP knowledge.

Before starting you should make sure that you’re using a supported PHP version:
php -v

You should at least have got installed PHP 8.1 (CLI) or higher. Your webserver’s PHP version must also be of 8.1 or
higher, and should be the same version your command line interface (CLI) PHP is.

Getting CakePHP

The easiest way to install CakePHP is to use Composer. Composer is a simple way of installing CakePHP from your
terminal or command line prompt. First, you’ll need to download and install Composer if you haven’t done so already.
If you have cURL installed, run the following:

curl -s https://getcomposer.org/installer | php

13

CakePHP Book, Release 5.x

Or, you can download composer.phar from the Composer website'”.

Then simply type the following line in your terminal from your installation directory to install the CakePHP application
skeleton in the cms directory of the current working directory:

php composer.phar create-project --prefer-dist cakephp/app:5 cms

If you downloaded and ran the Composer Windows Installer’’, then type the following line in your terminal from your
installation directory (ie. C:\wamp\www\dev):

composer self-update && composer create-project --prefer-dist cakephp/app:5.* cms

The advantage to using Composer is that it will automatically complete some important set up tasks, such as setting
the correct file permissions and creating your config/app.php file for you.

There are other ways to install CakePHP. If you cannot or don’t want to use Composer, check out the /nstallation section.

Regardless of how you downloaded and installed CakePHP, once your set up is completed, your directory setup should
look like the following, though other files may also be present:

cms/
bin/
config/
plugins/
resources/
src/
templates/
tests/
tmp/
vendor/
webroot/
composer. json
index.php
README . md

Now might be a good time to learn a bit about how CakePHP’s directory structure works: check out the CakePHP
Folder Structure section.

If you get lost during this tutorial, you can see the finished result on GitHub?'.

© Tip

The bin/cake console utility can build most of the classes and data tables in this tutorial automatically. However,
we recommend following along with the manual code examples to understand how the pieces fit together and how
to add your application logic.

Checking our Installation

We can quickly check that our installation is correct, by checking the default home page. Before you can do that, you’ll
need to start the development server:

19 https://getcomposer.org/download/
20 https://getcomposer.org/Composer-Setup.exe
21 https://github.com/cakephp/cms-tutorial

14 Chapter 2. Quick Start Guide

https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
https://github.com/cakephp/cms-tutorial

CakePHP Book, Release 5.x

cd /path/to/our/app

bin/cake server

© Note

For Windows, the command needs to be bin\cake server (note the backslash).

This will start PHP’s built-in webserver on port 8765. Open up http://localhost:8765 in your web browser to see
the welcome page. All the bullet points should be green chef hats other than CakePHP being able to connect to your
database. If not, you may need to install additional PHP extensions, or set directory permissions.

Next, we will build our Database.

CMS Tutorial - Creating the Database

Now that we have CakePHP installed, let’s set up the database for our CMS application. If you haven’t already done
S0, create an empty database for use in this tutorial, with the name of your choice such as cake_cms. If you are using
MySQL/MariaDB, you can execute the following SQL to create the necessary tables:

CREATE DATABASE cake_cms;
USE cake_cms;

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created DATETIME,
modified DATETIME

DL

CREATE TABLE articles (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created DATETIME,
modified DATETIME,
UNIQUE KEY (slug),
FOREIGN KEY user_key (user_id) REFERENCES users(id)
) CHARSET=utf8mb4;

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(191),
created DATETIME,
modified DATETIME,
UNIQUE KEY (title)

(continues on next page)

CMS Tutorial - Creating the Database 15

CakePHP Book, Release 5.x

(continued from previous page)

) CHARSET=utf8mb4;

CREATE TABLE articles_tags (
article_id INT NOT NULL,
tag_id INT NOT NULL,
PRIMARY KEY (article_id, tag_id),
FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),
FOREIGN KEY article_key(article_id) REFERENCES articles(id)

);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOW(Q));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, 'First Post', 'first-post', 'This is the first post.', 1, NOW(), NOWQ));

If you are using PostgreSQL, connect to the cake_cms database and execute the following SQL instead:

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created TIMESTAMP,
modified TIMESTAMP

DE

CREATE TABLE articles (
id SERIAL PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (slug),
FOREIGN KEY (user_id) REFERENCES users(id)

);

CREATE TABLE tags (
id SERIAL PRIMARY KEY,
title VARCHAR(191),
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (title)

DE

CREATE TABLE articles_tags (
article_id INT NOT NULL,
tag_id INT NOT NULL,

(continues on next page)

16 Chapter 2. Quick Start Guide

CakePHP Book, Release 5.x

(continued from previous page)

PRIMARY KEY (article_id, tag_id),

FOREIGN KEY (tag_id) REFERENCES tags(id),

FOREIGN KEY (article_id) REFERENCES articles(id)
);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOW(Q));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, 'First Post', 'first-post', 'This is the first post.', TRUE, NOW(), NOW(Q));

You may have noticed that the articles_tags table uses a composite primary key. CakePHP supports composite
primary keys almost everywhere, allowing you to have simpler schemas that don’t require additional id columns.

The table and column names we used were not arbitrary. By using CakePHP’s naming conventions, we can lever-
age CakePHP more effectively and avoid needing to configure the framework. While CakePHP is flexible enough to
accommodate almost any database schema, adhering to the conventions will save you time as you can leverage the
convention-based defaults CakePHP provides.

Database Configuration

Next, let’s tell CakePHP where our database is and how to connect to it. Replace the values in the Datasources.
default array in your config/app_local.php file with those that apply to your setup. A sample completed configuration
array might look something like the following:

<?php
// config/app_local.php
return [
// More configuration above.
'Datasources' => [
'default' => [
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~',
'database' => 'cake_cms',
'url' => env('DATABASE_URL', null),
Js
1,
// More configuration below.

1l

Once you’ve saved your config/app_local.php file, you should see that the ‘CakePHP is able to connect to the database’
section has a green chef hat.

© Note

The file config/app_local.php is a local override of the file config/app.php used to configure your development
environment quickly.

CMS Tutorial - Creating the Database 17

CakePHP Book, Release 5.x

Migrations

The SQL statements to create the tables for this tutorial can also be generated using the Migrations Plugin. Migrations
provide a platform-independent way to run queries so the subtle differences between MySQL, PostgreSQL, SQLite,
etc. don’t become obstacles.

bin/cake bake migration CreateUsers email:string password:string created modified
bin/cake bake migration CreateArticles user_id:integer title:string.
—»slug:string[191] :unique body:text published:boolean created modified

bin/cake bake migration CreateTags title:string[191]:unique created modified
bin/cake bake migration CreateArticlesTags article_id:integer:primary tag_
—id:integer:primary created modified

© Note

Some adjustments to the generated code might be necessary. For example, the composite primary key on
articles_tags will be set to auto-increment both columns:

$table->addColumn('article_id', 'integer', [
'autoIncrement' => true,
'"default' => null,
"limit' => 11,
'null' => false,
D;
$table->addColumn('tag_id', 'integer', [
'autoIncrement' => true,
'"default' => null,
'limit' => 11,
'null' => false,
D;

Remove those lines to prevent foreign key problems. Once adjustments are done:

bin/cake migrations migrate

Likewise, the starter data records can be done with seeds.

bin/cake bake seed Users
bin/cake bake seed Articles

Fill the seed data above into the new UsersSeed and ArticlesSeed classes, then:
bin/cake migrations seed

Read more about building migrations and data seeding: Migrations*”

With the database built, we can now build Models.

CMS Tutorial - Creating our First Model

Models are the heart of CakePHP applications. They enable us to read and modify our data. They allow us to build
relations between our data, validate data, and apply application rules. Models provide the foundation necessary to
create our controller actions and templates.

22 https://book.cakephp.org/migrations/4/

18 Chapter 2. Quick Start Guide

https://book.cakephp.org/migrations/4/

CakePHP Book, Release 5.x

CakePHP’s models are composed of Table and Entity objects. Table objects provide access to the collection of
entities stored in a specific table. They are stored in src/Model/Table. The file we’ll be creating will be saved to
src/Model/Table/ArticlesTable.php. The completed file should look like this:

<?php

// src/Model/Table/ArticlesTable.php
declare(strict_types=1);

namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table

{
public function initialize(array $config): void
{
parent::initialize($config);
$this->addBehavior('Timestamp');
}
3

We’ve attached the Timestamp behavior, which will automatically populate the created and modified columns of
our table. By naming our Table object ArticlesTable, CakePHP can use naming conventions to know that our model
uses the articles table. CakePHP also uses conventions to know that the id column is our table’s primary key.

© Note

CakePHP will dynamically create a model object for you if it cannot find a corresponding file in src/Model/Table.
This also means that if you accidentally name your file wrong (i.e. articlestable.php or ArticleTable.php), CakePHP
will not recognize any of your settings and will use the generated model instead.

We’ll also create an Entity class for our Articles. Entities represent a single record in the database and provide row-level
behavior for our data. Our entity will be saved to sre/Model/Entity/Article.php. The completed file should look like
this:

<?php
// src/Model/Entity/Article.php
declare(strict_types=1);

namespace App\Model\Entity;
use Cake\ORM\Entity;

class Article extends Entity
{
protected array $_accessible = [

'user_id' => true,
'title' => true,
'slug' => true,
'body' => true,
'published' => true,
'created' => true,

'modified' => true,
(continues on next page)

CMS Tutorial - Creating our First Model 19

CakePHP Book, Release 5.x

(continued from previous page)

'user' => true,
'tags' => true,

13

Right now, our entity is quite slim; we’ve only set up the _accessible property, which controls how properties can
be modified by Mass Assignment.

© Tip
The ArticlesTable and Article Entity classes can be generated from a terminal:

bin/cake bake model articles

We can’t do much with this model yet. Next, we’ll create our first Controller and Template to allow us to interact with
our model.

CMS Tutorial - Creating the Articles Controller

With our model created, we need a controller for our articles. Controllers in CakePHP handle HTTP requests and
execute business logic contained in model methods, to prepare the response. We’ll place this new controller in a file
called ArticlesController.php inside the src/Controller directory. Here’s what the basic controller should look like:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController
{
}

Now, let’s add an action to our controller. Actions are controller methods that have routes connected to them. For exam-
ple, when a user requests www.example.com/articles/index (which is also the same as www.example.com/articles),
CakePHP will call the index method of your ArticlesController. This method should query the model layer, and
prepare a response by rendering a Template in the View. The code for that action would look like this:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController

{
public function index()
{
$articles = $this->paginate($this->Articles);
$this->set(compact('articles'));
1
3

20 Chapter 2. Quick Start Guide

CakePHP Book, Release 5.x

By defining function index() in our ArticlesController, users can now access the logic there by requesting
www.example.com/articles/index. Similarly, if we were to define a function called foobar (), users would be able to
access that at www.example.com/articles/foobar. You may be tempted to name your controllers and actions in a way
that allows you to obtain specific URLs. Resist that temptation. Instead, follow the CakePHP Conventions creating
readable, meaningful action names. You can then use Routing to connect the URLs you want to the actions you’ve
created.

Our controller action is very simple. It fetches a paginated set of articles from the database, using the Articles Model
that is automatically loaded via naming conventions. It then uses set () to pass the articles into the Template (which
we’ll create soon). CakePHP will automatically render the template after our controller action completes.

Create the Article List Template

Now that we have our controller pulling data from the model, and preparing our view context, let’s create a view
template for our index action.

CakePHP view templates are presentation-flavored PHP code that is inserted inside the application’s layout. While
we’ll be creating HTML here, Views can also generate JSON, CSV or even binary files like PDFs.

A layout is presentation code that is wrapped around a view. Layout files contain common site elements like headers,
footers and navigation elements. Your application can have multiple layouts, and you can switch between them, but for
now, let’s just use the default layout.

CakePHP’s template files are stored in templates inside a folder named after the controller they correspond to. So we’ll
have to create a folder named ‘Articles’ in this case. Add the following code to your application:

<l-- File: templates/Articles/index.php -->

<hl>Articles</hl>
<table>
<tr>
<th>Title</th>
<th>Created</th>
</tr>

<!-- Here is where we iterate through our $articles query object, printing out.
—.article info -->

<?php foreach ($articles as $article): ?>

<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
</tr>
<?php endforeach; ?>
</table>

In the last section we assigned the ‘articles’ variable to the view using set(). Variables passed into the view are
available in the view templates as local variables which we used in the above code.

You might have noticed the use of an object called $this->Html. This is an instance of the CakePHP HrmlHelper.
CakePHP comes with a set of view helpers that make tasks like creating links, forms, and pagination buttons. You can

CMS Tutorial - Creating the Articles Controller 21

CakePHP Book, Release 5.x

learn more about Helpers in their chapter, but what’s important to note here is that the 1ink () method will generate
an HTML link with the given link text (the first parameter) and URL (the second parameter).

When specifying URLs in CakePHP, it is recommended that you use arrays or named routes. These syntaxes allow you
to leverage the reverse routing features CakePHP offers.

At this point, you should be able to point your browser to http://localhost:8765/articles/index. You should see your
list view, correctly formatted with the title and table listing of the articles.

Create the View Action

If you were to click one of the ‘view’ links in our Articles list page, you’d see an error page saying that action hasn’t
been implemented. Lets fix that now:

// Add to existing src/Controller/ArticlesController.php file

public function view($slug = null)

{
$article = $this->Articles->findBySlug($slug)->firstOrFail(Q);
$this->set(compact('article'));

While this is a simple action, we’ve used some powerful CakePHP features. We start our action off by using
findBySlug() which is a Dynamic Finder. This method allows us to create a basic query that finds articles by a
given slug. We then use firstOrFail () to either fetch the first record, or throw a \Cake\Datasource\Exception\
RecordNotFoundException.

Our action takes a $slug parameter, but where does that parameter come from? If a user requests /articles/view/
first-post, then the value ‘first-post’ is passed as $s1ug by CakePHP’s routing and dispatching layers. If we reload
our browser with our new action saved, we’d see another CakePHP error page telling us we’re missing a view template;
let’s fix that.

Create the View Template

Let’s create the view for our new ‘view’ action and place it in templates/Articles/view.php

<l-- File: templates/Articles/view.php -->

<h1l><?= h($article->title) ?></hl>

<p><?= h($article->body) ?></p>

<p><small>Created: <?= $article->created->format(DATE_RFC850) 7></small></p>
<p><?= $this->Html->1link('Edit', ['action' => 'edit', S$article->slug]) ?></p>

You can verify that this is working by trying the links at /articles/index or manually requesting an article by
accessing URLs like /articles/view/first-post.

Adding Articles

With the basic read views created, we need to make it possible for new articles to be created. Start by creating an add ()
action in the ArticlesController. Our controller should now look like:

<?php
// src/Controller/ArticlesController.php
namespace App\Controller;

use App\Controller\AppController;

(continues on next page)

22 Chapter 2. Quick Start Guide

CakePHP Book, Release 5.x

(continued from previous page)

class ArticlesController extends AppController

{
public function index()
{
$articles = $this->paginate($this->Articles);
$this->set(compact('articles'));
3
public function view($slug)
{
$article = $this->Articles->findBySlug($slug)->firstOrFail(Q);
$this->set(compact('article'));
3
public function add()
{
$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity($article, $this->request->getData());
// Hardcoding the user_id is temporary, and will be removed later
// when we build authentication out.
$article->user_id = 1;
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));
}
$this->set('article’', $article);
3
3
© Note

You need to include the Flash component in any controller where you will use it. Often it makes sense to include
it in your AppController, which is there already for this tutorial.

Here’s what the add () action does:
* If the HTTP method of the request was POST, try to save the data using the Articles model.

* If for some reason it doesn’t save, just render the view. This gives us a chance to show the user validation errors
or other warnings.

Every CakePHP request includes a request object which is accessible using $this->request. The request object
contains information regarding the request that was just received. We use the Cake\Http\ServerRequest::is()
method to check that the request is a HTTP POST request.

Our POST data is available in $this->request->getData(). You can use the pr() or debug() functions to print

CMS Tutorial - Creating the Articles Controller 23

CakePHP Book, Release 5.x

it out if you want to see what it looks like. To save our data, we first ‘marshal’ the POST data into an Article Entity.
The Entity is then persisted using the ArticlesTable we created earlier.

After saving our new article we use FlashComponent’s success () method to set a message into the session. The
success method is provided using PHP’s magic method features”’. Flash messages will be displayed on the
next page after redirecting. In our layout we have <?= $this->Flash->render() 7> which displays flash mes-
sages and clears the corresponding session variable. Finally, after saving is complete, we use Cake\Controller\
Controller: :redirect to send the user back to the articles list. The param ['action' => 'index'] translates to
URL /articlesi.ethe index action of the ArticlesController. Youcan refer to Cake\Routing\Router: :url()

function on the API** to see the formats in which you can specify a URL for various CakePHP functions.

Create Add Template

Here’s our add view template:

<l-- File: templates/Articles/add.php -->

<h1>Add Article</hl>
<?php
echo $this->Form->create($article);
// Hard code the user for now.
echo $this->Form->control('user_id', ['type' => 'hidden', 'value' => 1]);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

We use the FormHelper to generate the opening tag for an HTML form. Here’s the HTML that
$this->Form->create() generates:

<form method="post" action="/articles/add">

Because we called create() without a URL option, FormHelper assumes we want the form to submit back to the
current action.

The $this->Form->control () method is used to create form elements of the same name. The first parameter tells
CakePHP which field they correspond to, and the second parameter allows you to specify a wide array of options - in
this case, the number of rows for the textarea. There’s a bit of introspection and conventions used here. The control ()
will output different form elements based on the model field specified, and use inflection to generate the label text. You
can customize the label, the input or any other aspect of the form controls using options. The $this->Form->end()
call closes the form.

Now let’s go back and update our templates/Articles/index.php view to include a new “Add Article” link. Before the
<table>, add the following line:

<?= $this->Html->1ink('Add Article', ['action' => 'add']) ?>

Adding Simple Slug Generation

If we were to save an Article right now, saving would fail as we are not creating a slug attribute, and the column is NOT
NULL. Slug values are typically a URL-safe version of an article’s title. We can use the beforeSave() callback of the
ORM to populate our slug:

23 https://php.net/manual/en/language.oop5.overloading php#object.call
24 https://api.cakephp.org

24 Chapter 2. Quick Start Guide

https://php.net/manual/en/language.oop5.overloading.php#object.call
https://api.cakephp.org

CakePHP Book, Release 5.x

<?php
// in src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;

// the Text class

use Cake\Utility\Text;

// the EventInterface class
use Cake\Event\EventInterface;

// Add the following method.

public function beforeSave(EventInterface $event, $entity, $options): void

{
if (fentity->isNew() && !S$entity->slug) {
$sluggedTitle = Text::slug($entity->title);
// trim slug to maximum length defined in schema
$entity->slug = substr($sluggedTitle, 0, 191);

This code is simple, and doesn’t take into account duplicate slugs. But we’ll fix that later on.

Add Edit Action

Our application can now save articles, but we can’t edit them. Lets rectify that now. Add the following action to your
ArticlesController:

// in src/Controller/ArticlesController.php
// Add the following method.

public function edit($slug)

{
$article = $this->Articles
->findBySlug($slug)
->firstOrFail();
if ($this->request->is(['post', 'put'])) {
$this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to update your article.'));
3
$this->set('article', $article);
}

This action first ensures that the user has tried to access an existing record. If they haven’t passed in an $s1ug parameter,
or the article does not exist, a RecordNotFoundException will be thrown, and the CakePHP ErrorHandler will render
the appropriate error page.

CMS Tutorial - Creating the Articles Controller 25

CakePHP Book, Release 5.x

Next the action checks whether the request is either a POST or a PUT request. If it is, then we use the POST/PUT data
to update our article entity by using the patchEntity() method. Finally, we call save(), set the appropriate flash
message, and either redirect or display validation errors.

Create Edit Template
The edit template should look like this:

<l-- File: templates/Articles/edit.php -->

<h1>Edit Article</hl>
<?php
echo $this->Form->create($article);
echo $this->Form->control('user_id', ['type' => 'hidden']);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

This template outputs the edit form (with the values populated), along with any necessary validation error messages.

You can now update your index view with links to edit specific articles:

<!-- File: templates/Articles/index.php (edit links added) -->

<hl>Articles</hl>
<p><?= $this->Html->1ink("Add Article", ['action' => 'add']) ?></p>
<table>
<tr>
<th>Title</th>
<th>Created</th>
<th>Action</th>
</tr>

<!-- Here's where we iterate through our $articles query object, printing out article.
—~info -->

<?php foreach ($articles as $article): ?>
<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
<td>
<?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) 7>
</td>
</tr>
<?php endforeach; ?>

</table>

26 Chapter 2. Quick Start Guide

CakePHP Book, Release 5.x

Update Validation Rules for Articles

Up until this point our Articles had no input validation done. Lets fix that by using a validator:

// src/Model/Table/ArticlesTable.php

// add this use statement right below the namespace declaration to import
// the Validator class
use Cake\Validation\Validator;

// Add the following method.
public function validationDefault(Validator $validator): Validator

{
$validator
->notEmptyString('title")
->minLength('title', 10)
->maxLength('title', 255)
->notEmptyString('body"')
->minLength('body', 10);
return $validator;
}

The validationDefault () method tells CakePHP how to validate your data when the save() method is called.
Here, we’ve specified that both the title, and body fields must not be empty, and have certain length constraints.

CakePHP’s validation engine is powerful and flexible. It provides a suite of frequently used rules for tasks like email
addresses, IP addresses etc. and the flexibility for adding your own validation rules. For more information on that
setup, check the Validation documentation.

Now that your validation rules are in place, use the app to try to add an article with an empty title or body to see how
it works. Since we’ve used the Cake\View\Helper\FormHelper: :control () method of the FormHelper to create
our form elements, our validation error messages will be shown automatically.

Add Delete Action

Next, let’s make a way for users to delete articles. Start with a delete() action in the ArticlesController:

// src/Controller/ArticlesController.php
// Add the following method.

public function delete($slug)

{
$this->request->allowMethod(['post', 'delete']);
$article = $this->Articles->findBySlug($slug)->firstOrFail();
if ($this->Articles->delete($article)) {
$this->Flash->success(__('The {0} article has been deleted.', $article->title));
return $this->redirect(['action' => 'index']);
}
3

This logic deletes the article specified by $slug, and uses $this->Flash->success() to show the user a confir-

CMS Tutorial - Creating the Articles Controller 27

CakePHP Book, Release 5.x

mation message after redirecting them to /articles. If the user attempts to delete an article using a GET request,
allowMethod () will throw an exception. Uncaught exceptions are captured by CakePHP’s exception handler, and a
nice error page is displayed. There are many built-in Exceptions that can be used to indicate the various HTTP errors
your application might need to generate.

A Warning

Allowing content to be deleted using GET requests is very dangerous, as web crawlers could accidentally delete all
your content. That is why we used allowMethod () in our controller.

Because we’re only executing logic and redirecting to another action, this action has no template. You might want to
update your index template with links that allow users to delete articles:

<!-- File: templates/Articles/index.php (delete links added) -->

<hl>Articles</hl>
<p><?= $this->Html->1ink("Add Article", ['action' => 'add']) ?></p>
<table>
<tr>
<th>Title</th>
<th>Created</th>
<th>Action</th>
</tr>
<!-- Here's where we iterate through our $articles query object, printing out article.

—info -->

<?php foreach ($articles as $article): ?>

<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) ?>
</td>
<td>
<?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) 7>
<?= $this->Form->deleteLink(
'Delete’,
['"action' => 'delete', $article->slug],
['confirm' => 'Are you sure?'])
7>
</td>
</tr>

<?php endforeach; 7>
</table>

Using deleteLink () will create a link that uses JavaScript to do a DELETE request deleting our article. Prior to
CakePHP 5.2 you need to use postLink () instead.

28 Chapter 2. Quick Start Guide

CakePHP Book, Release 5.x

© Note

This view code also uses the FormHelper to prompt the user with a JavaScript confirmation dialog before they
attempt to delete an article.

© Tip
The ArticlesController can also be built with bake:

/bin/cake bake controller articles

However, this does not build the templates/Articles/*.php files.

With a basic articles management setup, we’ll create the basic actions for our Tags and Users tables.

CMS Tutorial - Creating the Articles Controller 29

CakePHP Book, Release 5.x

30 Chapter 2. Quick Start Guide

CHAPTER 3

Migration Guides

Migration guides contain information regarding the new features introduced in each version and the migration path
between 5.x minor releases.

5.0 Upgrade Guide

First, check that your application is running on latest CakePHP 4.x version.

Fix Deprecation Warnings

Once your application is running on latest CakePHP 4.x, enable deprecation warnings in config/app.php:

'"Error' => [
'errorLevel' => E_ALL,

]

Now that you can see all the warnings, make sure these are fixed before proceeding with the upgrade.
Some potentially impactful deprecations you should make sure you have addressed are:

e Table::query() was deprecated in 4.5.0. Use selectQuery(), updateQuery(), insertQuery() and
deleteQuery() instead.

Upgrade to PHP 8.1
If you are not running on PHP 8.1 or higher, you will need to upgrade PHP before updating CakePHP.

© Note

CakePHP 5.0 requires a minimum of PHP 8.1.

31

CakePHP Book, Release 5.x

Use the Upgrade Tool

© Note

The upgrade tool only works on applications running on latest CakePHP 4.x. You cannot run the upgrade tool after
updating to CakePHP 5.0.

Because CakePHP 5 leverages union types and mixed, there are many backwards incompatible changes concerning
method signatures and file renames. To help expedite fixing these tedious changes there is an upgrade CLI tool:

Install the upgrade tool

git clone https://github.com/cakephp/upgrade
cd upgrade

git checkout 5.x

composer install --no-dev

With the upgrade tool installed you can now run it on your application or plugin:

bin/cake upgrade rector --rules cakephp50 <path/to/app/src>
bin/cake upgrade rector --rules chronos3 <path/to/app/src>

Update CakePHP Dependency

After applying rector refactorings you need to upgrade CakePHP, its plugins, PHPUnit and maybe other dependencies
in your composer. json. This process heavily depends on your application so we recommend you compare your
composer. json with what is present in cakephp/app™.

After the version strings are adjusted in your composer. json execute composer update -Wand check its output.

Update app files based upon latest app template

Next, ensure the rest of your application has been updated to be based upon the latest version of cakephp/app”°.

5.0 Migration Guide

CakePHP 5.0 contains breaking changes, and is not backwards compatible with 4.x releases. Before attempting to
upgrade to 5.0, first upgrade to 4.5 and resolve all deprecation warnings.

Refer to the 5.0 Upgrade Guide for step by step instructions on how to upgrade to 5.0.

Deprecated Features Removed

All methods, properties and functionality that were emitting deprecation warnings as of 4.5 have been removed.

Breaking Changes

In addition to the removal of deprecated features there have been breaking changes made:

25 https://github.com/cakephp/app/blob/5.x/composer.json
26 https://github.com/cakephp/app/blob/5 x/

32 Chapter 3. Migration Guides

https://github.com/cakephp/app/blob/5.x/composer.json
https://github.com/cakephp/app/blob/5.x/

CakePHP Book, Release 5.x

Global

* Type declarations were added to all function parameter and returns where possible. These are intended to match

the docblock annotations, but include fixes for incorrect annotations.

 Type declarations were added to all class properties where possible. These also include some fixes for incorrect
annotations.

e The SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, YEAR constants were removed.

¢ Use of #[\AllowDynamicProperties] removed everywhere. It was used for the following classes:

* The supported database engine versions were updated:

Auth

Command/Command
Console/Shell
Controller/Component
Controller/Controller
Mailer/Mailer
View/Cell

View/Helper

View/View

MySQL (5.7 or higher)

MariaDB (10.1 or higher)

PostgreSQL (9.6 or higher)

Microsoft SQL Server (2012 or higher)
SQLite 3 (3.16 or higher)

* Auth has been removed. Use the cakephp/authentication’’ and cakephp/authorization’® plugins instead.

Cache

* The Wincache engine was removed. The wincache extension is not supported on PHP 8.

Collection

e combine () now throws an exception if the key path or group path doesn’t exist or contains a null value. This
matches the behavior of indexBy () and groupBy().

Console

e BaseCommand: :__construct() was removed.

* ConsoleIntegrationTestTrait: :useCommandRunner () was removed since it’s no longer needed.

* Shell has been removed and should be replaced with Command®’

27 https://book.cakephp.org/authentication/3/en/index.html
28 https://book.cakephp.org/authorization/3/en/index.html
29 https://book.cakephp.org/5/en/console-commands/commands.html

5.0 Migration Guide

33

https://book.cakephp.org/authentication/3/en/index.html
https://book.cakephp.org/authorization/3/en/index.html
https://book.cakephp.org/5/en/console-commands/commands.html

CakePHP Book, Release 5.x

ConsoleOptionParser: :addSubcommand() was removed alongside the removal of Shell. Subcommands
should be replaced with Command classes that implement Command: : defaultName () to define the necessary
command name.

BaseCommand now emits Command.beforeExecute and Command.afterExecute events around the com-
mand’s execute () method being invoked by the framework.

Connection

Connection: :prepare() has been removed. You can use Connection: :execute() instead to execute a
SQL query by specifing the SQL string, params and types in a single call.

Connection: :enableQueryLogging() has been removed. If you haven’t enabled logging through the
connection config then you can later set the logger instance for the driver to enable query logging
$connection->getDriver()->setLogger().

Controller

Core

The method signature for Controller: :__construct() has changed. So you need to adjust your code ac-
cordingly if you are overriding the constructor.

After loading components are no longer set as dynamic properties. Instead Controller uses __get () to pro-
vide property access to components. This change can impact applications that use property_exists() on
components.

The components’ Controller.shutdown event callback has been renamed from shutdown to afterFilter
to match the controller one. This makes the callbacks more consistent.

PaginatorComponent has been removed and should be replaced by calling $this->paginate() in your con-
troller or using Cake\Datasource\Paging\NumericPaginator directly

RequestHandlerComponent has been removed. See the 4.4 migration®’ guide for how to upgrade

SecurityComponent has been removed. Use FormProtectionComponent for form tampering protection or
HttpsEnforcerMiddleware to enforce use of HTTPS for requests instead.

Controller::paginate() no longer accepts query options like contain for its $settings argu-
ment. You should instead use the finder option $this->paginate($this->Articles, ['finder' =>
"published’']). Or you can create required select query before hand and then pass it to paginate() $query
= $this->Articles->find()->where(['is_published' => true]); $this->paginate($query);.

The function getTypeName () has been dropped. Use PHP’s get_debug_type () instead.

The dependency on league/container was updated to 4.x. This will require the addition of typehints to your
ServiceProvider implementations.

deprecationWWarning () now has a $version parameter.

The App.uploadedFilesAsObjects configuration option has been removed alongside of support for PHP file
upload shaped arrays throughout the framework.

ClassLoader has been removed. Use composer to generate autoload files instead.

30 https://book.cakephp.org/4/en/appendices/4-4-migration- guide.html#requesthandlercomponent

34

Chapter 3. Migration Guides

https://book.cakephp.org/4/en/appendices/4-4-migration-guide.html#requesthandlercomponent

CakePHP Book, Release 5.x

Database

The DateTimeType and DateType now always return immutable objects. Additionally the interface for Date
objects reflects the ChronosDate interface which lacks all of the time related methods that were present in
CakePHP 4.x.

DateType: :setLocaleFormat () no longer accepts an array.

Query now accepts only \Closure parameters instead of callable. Callables can be converted to closures
using the new first-class array syntax in PHP 8.1.

Query: :execute() no longer runs results decorator callbacks. You must use Query: :all() instead.
TableSchemaAwareInterface was removed.

Driver: :quote() was removed. Use prepared statements instead.

Query: :orderBy() was added to replace Query: :order().

Query: :groupBy () was added to replace Query: :group ().

SqlDialectTrait has been removed and all its functionality has been moved into the Driver class itself.

CaseExpression has been removed and should be replaced with QueryExpression::case() or
CaseStatementExpression

Connection: :connect () has been removed. Use $connection->getDriver()->connect () instead.

Connection: :disconnect () has been removed. Use $connection->getDriver()->disconnect() in-
stead.

cake.database.queries has been added as an alternative to the queriesLog scope

The ability to enable/disable ResultSet buffering has been removed. Results are always buffered.

Datasource

The getAccessible () method was added to EntityInterface. Non-ORM implementations need to imple-
ment this method now.

The aliasField() method was added to RepositoryInterface. Non-ORM implementations need to imple-
ment this method now.

Event

Error

Event payloads must be an array. Other object such as ArrayAccess are no longer cast to array and will raise a
TypeError now.

It is recommended to adjust event handlers to be void methods and use $event->setResult() instead of
returning the result

ErrorHandler and ConsoleErrorHandler have been removed. See the 4.4 migration®' guide for how to
upgrade

ExceptionRenderer has been removed and should be replaced with WebExceptionRenderer

ErrorLoggerInterface::log() has been removed and should be replaced with
ErrorLoggerInterface: :logException()

ErrorLoggerInterface::logMessage() has been removed and should be replaced with
ErrorLoggerInterface: :logError()

31 https://book.cakephp.org/4/en/appendices/4-4-migration- guide.html#errorhandler- consoleerrorhandler

5.0 Migration Guide

35

https://book.cakephp.org/4/en/appendices/4-4-migration-guide.html#errorhandler-consoleerrorhandler

CakePHP Book, Release 5.x

Filesystem

Http

118n

Log

The Filesystem package was removed, and Filesystem class was moved to the Utility package.

ServerRequest is no longer compatible with files as arrays. This behavior has been disabled by default since
4.1.0. The files data will now always contain UploadedFileInterfaces objects.

FrozenDate was renamed to Date and FrozenTime was renamed to DateTime.
Time now extends Cake\Chronos\ChronosTime and is therefore immutable.

Date objects do not extend DateTimeInterface anymore - therefore you can’t compare them with DateTime
objects. See the cakephp/chronos release documentation®” for more information.

Date: :parseDateTime () was removed.

Date: :parseTime() was removed.

Date::setToStringFormat () and Date: :setJsonEncodeFormat () no longer accept an array.
Date::il8nFormat () and Date::nice() no longer accept a timezone parameter.

Translation files for plugins with vendor prefixed names (FooBar/Awesome) will now have that prefix in the
file name, e.g. foo_bar_awesome.po to avoid collision with a awesome. po file from a corresponding plugin
(Awesome).

Log engine config now uses null instead of false to disable scopes. So instead of 'scopes' => false you
need to use 'scopes' => null in your log config.

Mailer

ORM

Email has been removed. Use Mailer’” instead.

cake.mailer has been added as an alternative to the email scope

EntityTrait::has() now returns true when an attribute exists and is set to null. In previous versions of
CakePHP this would return false. See the release notes for 4.5.0 for how to adopt this behavior in 4.x.

EntityTrait::extractOriginal () now returns only existing fields, similar to
extractOriginalChanged().

Finder arguments are now required to be associative arrays as they were always expected to be.

TranslateBehavior now defaults to the ShadowTable strategy. If you are using the Eav strategy you will
need to update your behavior configuration to retain the previous behavior.

allowMultipleNulls option for isUnique rule now default to true matching the original 3.x behavior.
Table: :query() has been removed in favor of query-type specific functions.

Table: :updateQuery(), Table: :selectQuery(), Table::insertQuery(), and
Table: :deleteQuery()) were added and return the new type-specific query objects below.

32 https://github.com/cakephp/chronos/releases/tag/3.0.2
33 https://book.cakephp.org/5/en/core-libraries/email html

36

Chapter 3. Migration Guides

https://github.com/cakephp/chronos/releases/tag/3.0.2
https://book.cakephp.org/5/en/core-libraries/email.html

CakePHP Book, Release 5.x

e SelectQuery, InsertQuery, UpdateQuery and DeleteQuery were added which represent only a single type
of query and do not allow switching between query types nor calling functions unrelated to the specific query

type.

e Table::_initializeSchema() has been removed and should be replaced by calling $this->getSchema()
inside the initialize () method.

e SaveOptionsBuilder has been removed. Use a normal array for options instead.

Routing

¢ Static methods connect (), prefix(), scope() and plugin() of the Router have been removed and should
be replaced by calling their non-static method variants via the RouteBuilder instance.

e RedirectException has been removed. Use \Cake\Http\Exception\RedirectException instead.

TestSuite
* TestSuite was removed. Users should use environment variables to customize unit test settings instead.
e TestListenerTrait was removed. PHPUnit dropped support for these listeners. See PHPUnit 10 Upgrade

e IntegrationTestTrait: :configRequest() now merges config when called multiple times instead of re-
placing the currently present config.

Validation

e Validation::isEmpty() is no longer compatible with file upload shaped arrays. Support for PHP file upload
arrays has been removed from ServerRequest as well so you should not see this as a problem outside of tests.

* Previously, most data validation error messages were simply The provided value is invalid. Now, the
data validation error messages are worded more precisely. For example, The provided value must be
greater than or equal to \'5\".

View
» ViewBuilder options are now truly associative (string keys).
* NumberHelper and TextHelper no longer accept an engine config.

e ViewBuilder: :setHelpers() parameter $merge was removed. Use ViewBuilder::addHelpers() in-
stead.

¢ Inside View: :initialize(), prefer using addHelper () instead of loadHelper (). All configured helpers
will be loaded afterwards, anyway.

e View\Widget\FileWidget is no longer compatible with PHP file upload shaped arrays. This is aligned with
ServerRequest and Validation changes.

* FormHelper no longer sets autocomplete=o0ff on CSRF token fields. This was a workaround for a Safari bug
that is no longer relevant.
Deprecations

The following is a list of deprecated methods, properties and behaviors. These features will continue to function in 5.x
and will be removed in 6.0.

5.0 Migration Guide 37

CakePHP Book, Release 5.x

Database

* Query::order() was deprecated. Use Query: :orderBy() instead now that Connection methods are no
longer proxied. This aligns the function name with the SQL statement.

* Query: :group() was deprecated. Use Query: :groupBy() instead now that Connection methods are no
longer proxied. This aligns the function name with the SQL statement.

ORM

* Calling Table::find() with options array is deprecated. =~ Use named arguments® instead. For
e.g. instead of find('all', ['conditions' => $array]) use find('all', conditions: $array).
Similarly for custom finder options, instead of find('list', ['valueField' => 'name']) use
find('list', valueField: 'name') or multiple named arguments like find(type: 'list',
valueField: 'name', conditions: $array).

New Features

Improved type checking

CakePHP 5 leverages the expanded type system feature available in PHP 8.1+. CakePHP also uses assert () to provide
improved error messages and additional type soundness. In production mode, you can configure PHP to not generate
code for assert () yielding improved application performance. See the Improve Your Application’s Performance for
how to do this.

Collection
* Added unique () which filters out duplicate value specified by provided callback.
* reject() now supports a default callback which filters out truthy values which is the inverse of the default
behavior of filter()
Core

¢ The services() method was added to PluginInterface.

e PluginCollection: :addFromConfig() has been added to simplify plugin loading.

Database

* ConnectionManager now supports read and write connection roles. Roles can be configured with read and
write keys in the connection config that override the shared config.

* Query::all() was added which runs result decorator callbacks and returns a result set for select queries.

* Query: :comment () was added to add a SQL comment to the executed query. This makes it easier to debug
queries.

* EnumType was added to allow mapping between PHP backed enums and a string or integer column.
e getMaxAliasLength() and getConnectionRetries() were added to DriverInterface.

 Supported drivers now automatically add auto-increment only to integer primary keys named “id” instead of all
integer primary keys. Setting ‘autolncrement’ to false always disables on all supported drivers.

34 https://www.php.net/manual/en/functions.arguments.php#functions.named-arguments

38 Chapter 3. Migration Guides

https://www.php.net/manual/en/functions.arguments.php#functions.named-arguments

CakePHP Book, Release 5.x

Http

* Added support for PSR-17° factories interface. This allows cakephp/http to provide a client implementation
to libraries that allow automatic interface resolution like php-http.

e Added CookieCollection::__get() and CookieCollection::__isset() to add ergonomic ways to ac-
cess cookies without exceptions.

ORM
Required Entity Fields

Entities have a new opt-in functionality that allows making entities handle properties more strictly. The new behavior
is called ‘required fields’. When enabled, accessing properties that are not defined in the entity will raise exceptions.
This impacts the following usage:

fentity->get(Q);
$entity->has();
$entity->getOriginal () ;
isset($entity->attribute);
$entity->attribute;

Fields are considered defined if they pass array_key_exists. This includes null values. Because this can be a tedious
to enable feature, it was deferred to 5.0. We’d like any feedback you have on this feature as we’re considering making
this the default behavior in the future.

Typed Finder Parameters

Table finders can now have typed arguments as required instead of an options array. For e.g. a finder for fetching posts
by category or user:

public function findByCategoryOrUser(SelectQuery $query, array S$options)
{
if (isset($options['categoryId'])) {
$query->where(['category_id' => $options['categoryId']]);
1
if (isset($options['userId'])) {
$query->where(['user_id' => S$options['userId']]);

}

return $query;

can now be written as:

public function findByCategoryOrUser(SelectQuery $query, ?int $categoryld = null, ?int
—$userId = null)
{
if ($categoryIld) {
$query->where(['category_id' => $categoryld]);
}
if (Suserid) {
$query->where(['user_id' => $userId]);

}

(continues on next page)

35 https://www.php-fig.org/pst/pst-17/

5.0 Migration Guide 39

https://www.php-fig.org/psr/psr-17/

CakePHP Book, Release 5.x

(continued from previous page)

return $query;

The finder can then be called as find('byCategoryOrUser', userId: $somevar). You can even include
the special named arguments for setting query clauses. find('byCategoryOrUser', userId: $somevar,
conditions: ['enabled' => true]).

A similar change has been applied to the RepositoryInterface: :get() method:

public function view(int $id)

{
$author = $this->Authors->get($id, [
'contain' => ['Books'],
'finder' => 'latest',
D;
}

can now be written as:

public function view(int $id)

{

$author = $this->Authors->get($id, contain: ['Books'], finder: 'latest');
}
TestSuite

e IntegrationTestTrait: :requestAsJson() has been added to set JSON headers for the next request.

Plugin Installer

* The plugin installer has been updated to automatically handle class autoloading for your app plugins. So you can
remove the namespace to path mappings for your plugins from your composer. json and just run composer
dumpautoload.

5.1 Migration Guide

The 5.1.0 release is a backwards compatible with 5.0. It adds new functionality and introduces new deprecations. Any
functionality deprecated in 5.x will be removed in 6.0.0.

Behavior Changes

» Connection now creates unique read and write drivers if the keys read or write are present in the config re-
gardless of values.

» FormHelper no longer generates aria-required attributes on input elements that also have the required
attribute set. The aria-required attribute is redundant on these elements and generates HTML validation
warnings. If you are using aria-required attribute in styling or scripting you’ll need to update your application.

* Adding associations with duplicate names will now raise exceptions. You can use
$table->associations()->has() to conditionally define associations if required.

 Text Utility and TextHelper methods around truncation and maximum length are using a UTF-8 character for
ellipsis instead of . .. legacy characters.

40 Chapter 3. Migration Guides

CakePHP Book, Release 5.x

* TableSchema: :setColumnType () now throws an exception if the specified column does not exist.
e PluginCollection: :addPlugin() now throws an exception if a plugin of the same name is already added.

* TestCase: :1loadPlugins() will now clear out any previously loaded plugins. So you must specify all plugins
required for any subsequent tests.

* The hashing algorithm for Cache configurations that use groups. Any keys will have new group prefix hashes
generated which will cause cache misses. Consider an incremental deploy to avoid operating on an entirely cold
cache.

e FormHelper: :getFormProtector () now returns null in addition to its previous types. This allows dynamic
view code to run with fewer errors and shouldn’t impact most applications.

e The default value for valueSeparator in Table: :findList () is now a single space instead of ;.
e ErrorLogger uses Psr\Log\LogTrait now.

¢ Database\QueryCompiler::$_orderedUnion was removed.

Deprecations
118n

e The _cake_core_ cache config key has been renamed to _cake_translations_.

Mailer

e Mailer::setMessage() is deprecated. It has unintuitive behavior and very low usage.

New Features

Cache

* RedisEngine now supports a t1s option that enables connecting to redis over a TLS connection. You can use
the ssl_ca, ssl_cert and ssl_key options to define the TLS context for redis.

Command
* bin/cake plugin list has been added to list all available plugins, their load configuration and version.
* Optional Command arguments can now have a default value.

* BannerHelper was added. This command helper can format text as a banner with a coloured background and
padding.

e Additional default styles for info.bg, warning.bg, error.bg and success.bg were added to
ConsoleOutput.
Console
e Arguments: :getBooleanOption() and Arguments: :getMultipleOption() were added.
e Arguments: :getArgument () will now raise an exception if an unknown argument name is provided. This
helps prevent mixing up option/argument names.
Controller

» Components can now use the DI container to have dependencies resolved and provided as constructor parameters
just like Controllers and Commands do.

5.1 Migration Guide 41

CakePHP Book, Release 5.x

Core
* PluginConfig was added. Use this class to get all available plugins, their load config and versions.

e The toString, toInt, toBool functions were added. They give you a typesafe way to cast request data or other
input and return null when conversion fails.

* pathCombine () was added to help build paths without worrying about duplicate and trailing slashes.

* A new events hook was added to the BaseApplication as well as the BasePlugin class. This hook is the
recommended way to register global event listeners for you application. See Registering Listeners

Database

* Support for point, linestring, polygon and geometry types were added. These types are useful when
working with geospatial or cartesian co-ordinates. Sqlite support uses text columns under the hood and lacks
functions to manipulate data as geospatial values.

e SelectQuery: :__debugInfo() now includes which connection role the query is for.

e SelectQuery::intersect() and SelectQuery::intersectAl1() were added. These methods enable
queries using INTERSECT and INTERSECT ALL conjunctions to be expressed.

» New supports features were added for intersect, intersect-all and set-operations-order-by features.

e The ability to fetch records without buffering which existed in 4.x has been restored. @ Methods
SelectQuery: :enableBufferedResults(), SelectQuery: :disableBufferedResults() and
SelectQuery: :isBufferedResultsEnabled() have been re-added.

Datasource

¢ RulesChecker: :remove(), removeCreate(), removeUpdate(), and removeDelete() methods were
added. These methods allow you to remove rules by name.

Http

e SecurityHeadersMiddleware: : setPermissionsPolicy() was added. This method adds the ability to de-
fine permissions-policy header values.

e Client now emits HttpClient.beforeSend and HttpClient.afterSend events when requests are sent.
You can use these events to perform logging, caching or collect telemetry.

e Http\Server: :terminate() was added. This method triggers the Server.terminate event which can be
used to run logic after the response has been sent in fastcgi environments. In other environments the Server.
terminate event runs before the response has been sent.

118n

e Number::formatter() and currency() now accept a roundingMode option to override how rounding is
done.

* The toDate, and toDateTime functions were added. They give you a typesafe way to cast request data or other
input and return null when conversion fails.

ORM

* Setting the preserveKeys option on association finder queries. This can be used with formatResults() to
replace association finder results with an associative array.

* SQLite columns with names containing json can now be mapped to JsonType. This is currently an opt-in
feature which is enabled by setting the ORM.mapJsonTypeForSqlite configure value to true in your app.

42 Chapter 3. Migration Guides

CakePHP Book, Release 5.x

TestSuite
* CakePHP as well as the app template have been updated to use PHPUnit A10.5.5 || A11.1.3".
* ConnectionHelper methods are now all static. This class has no state and its methods were updated to be static.

e LogTestTrait was added. This new trait makes it easy to capture logs in your tests and make assertions on the
presence or absence of log messages.

e IntegrationTestTrait::replaceRequest() was added.

Utility

e Hash::insert() and Hash: :remove () now accept ArrayAccess objects along with array data.

Validation

e Validation: :enum() and Validator: :enum() were added. These validation methods simplify validating
backed enum values.

e Validation::enumOnly () and Validation::enumExcept() were added to check for specific cases and
further simplify validating backed enum values.

View
¢ View cells now emit events around their actions Cell.beforeAction and Cell.afterAction.

e NumberHelper: : format () now accepts a roundingMode option to override how rounding is done.

Helpers

e TextHelper: :autoLinkUrls() has options added for better link label printing: * stripProtocol: Strips
http:// and https:// from the beginning of the link. Default off. * maxLength: The maximum length of the
link label. Default off. * ellipsis: The string to append to the end of the link label. Defaults to UTF8 version.

e HtmlHelper::meta() can now create a meta tag containing the current CSRF token using
meta('csrfToken').

5.2 Migration Guide

The 5.2.0 release is a backwards compatible with 5.0. It adds new functionality and introduces new deprecations. Any
functionality deprecated in 5.x will be removed in 6.0.0.

Behavior Changes

e ValidationSet::add() will now raise errors when a rule is added with a name that is already defined. This
change aims to prevent rules from being overwritten by accident.

* Http\Session will now raise an exception when an invalid session preset is used.

e FormProtectionComponent now raises Cake\Controller\Exception\FormProtectionException.
This class is a subclass of BadRequestException, and offers the benefit of being filterable from logging.

e NumericPaginator: :paginate() now uses the finder option even when a SelectQuery instance is passed
to it.

5.2 Migration Guide 43

CakePHP Book, Release 5.x

Deprecations
Console

e Arguments::getMultipleOption() is deprecated. Use getArrayOption() instead.

Datasource

» The ability to cast an EntityInterface instance to string has been deprecated. You should json_encode()
the entity instead.

e Mass assigning multiple entity fields using EntityInterface::set() 1is deprecated. Use
EntityInterface::patch() instead. For e.g. change usage like $entity->set(['fieldl' =>
'valuel', 'field2' => 'value2']) to S$entity->patch(['fieldl' => 'valuel', 'field2'
=> 'value2']).

Event
* Returning values from event listeners / callbacks is deprecated. Use $event->setResult() instead or
$event->stopPropogation() to just stop the event propogation.
View

e The errorClass option of FormHelper has been deprecated in favour of using a template string. To upgrade
move your errorClass definition to a template set. See Creating DELETE Links.

New Features

Console

e The cake counter_cache command was added. This command can be used to regenerate counters for models
that use CounterCacheBehavior.

* ConsoleIntegrationTestTrait: :debugOutput () makes it easier to debug integration tests for console
commands.

¢ ConsoleInputArgument now supports a separator option. This option allows positional arguments to be
delimited with a character sequence like ,. CakePHP will split the positional argument into an array when
arguments are parsed.

e Arguments::getArrayArgumentAt (), and Arguments: :getArrayArgument () were added. These meth-
ods allow you to read separator delimitered positional arguments as arrays.

e ConsoleInputOption now supports a separator option. This option allows option values to be delimited
with a character sequence like ,. CakePHP will split the option value into an array when arguments are parsed.

e Arguments: :getArrayArgumentAt(), Arguments: :getArrayArgument (), and
Arguments: :getArrayOption() were added. These methods allow you to read separator delimitered
positional arguments as arrays.

Database

e The nativeuuid type was added. This type enables uuid columns to be used in Mysql connections with Mari-
aDB. In all other drivers, nativeuuid is an alias for uuid.

¢ Cake\Database\Type\JsonType: :setDecodingOptions() was added. This method lets you define the
value for the $flags argument of json_decode().

e CounterCacheBehavior: :updateCounterCache() was added. This method allows you to update the
counter cache values for all records of the configured associations. CounterCacheCommand was also added
to do the same through the console.

44 Chapter 3. Migration Guides

CakePHP Book, Release 5.x

e Cake\Database\Driver: :quote() was added. This method provides a way to quote values to be used in SQL
queries where prepared statements cannot be used.

Datasource

e Application rules can now use Closure to define the validation message. This allows you to create dynamic
validation messages based on the entity state and validation rule options.

Error

» Custom exceptions can have specific error handling logic defined in ErrorController.

ORM

e CounterCacheBehavior: :updateCounterCache() has been added. This method allows you to update the
counter cache values for all records of the configured associations.

¢ BelongsToMany: : setJunctionProperty() and getJunctionProperty() were added. These methods al-
low you to customize the _joinData property that is used to hydrate junction table records.

e Table: :findOrCreate() now accepts an array as second argument to directly pass data in.

TestSuite

* TestFixture::$strictFields was added. Enabling this property will make fixtures raise an error if a fix-
ture’s record list contains fields that do not exist in the schema.
View

e FormHelper::deleteLink() has been added as convenience wrapper for delete links in templates using
DELETE method.

e HtmlHelper::importmap() was added. This method allows you to define import maps for your JavaScript
files.

* FormHelper now uses the containerClass template to apply a class to the form control div. The default value
is input.

PHPUnit 10 Upgrade

With CakePHP 5 the minimum PHPUnit version has changed from A8.5 || 49.3 to A10.1. This introduces a few
breaking changes from PHPUnit as well as from CakePHP’s side.

phpunit.xml adjustments

It is recommended to let PHPUnit update its configuration file via the following command:

vendor/bin/phpunit --migrate-configuration

© Note

Make sure you are already on PHPUnit 10 via vendor/bin/phpunit --version before executing this command!

With this command out of the way your phpunit.xml already has most of the recommended changes present.

PHPUnit 10 Upgrade 45

CakePHP Book, Release 5.x

New event system

PHPUnit 10 removed the old hook system and introduced a new Event system®®

your phpunit.xml to be adjusted from:

which requires the following code in

<extensions>
<extension class="Cake\TestSuite\Fixture\PHPUnitExtension"/>
</extensions>

to:

<extensions>
<bootstrap class="Cake\TestSuite\Fixture\Extension\PHPUnitExtension"/>
</extensions>

->withConsecutive() has been removed

You can convert the removed ->withConsecutive() method to a working interim solution like you can see here:

->withConsecutive(['firstCallArg'], ['secondCallArg'])

should be converted to:

->with(
...self::withConsecutive(['firstCallArg'], ['secondCallArg'])

the static self::withConsecutive() method has been added via the Cake\TestSuite\
PHPUnitConsecutiveTrait to the base Cake\TestSuite\TestCase class so you don’t have to manually
add that trait to your Testcase classes.

data providers have to be static

If your testcases leverage the data provider feature of PHPUnit then you have to adjust your data providers to be static:

public function myProvider(): array

should be converted to:

public static function myProvider(): array

36 https://docs.phpunit.de/en/10.5/extending- phpunit html#extending- the-test-runner

46 Chapter 3. Migration Guides

https://docs.phpunit.de/en/10.5/extending-phpunit.html#extending-the-test-runner

CHAPTER 4

Tutorials & Examples

In this section, you can walk through typical CakePHP applications to see how all of the pieces come together.

Alternatively, you can refer to the non-official CakePHP plugin repository CakePackages®’ and the Bakery*® for existing
applications and components.

Content Management Tutorial

This tutorial will walk you through the creation of a simple CMS application. To start with, we’ll be installing CakePHP,
creating our database, and building simple article management.

Here’s what you’ll need:

1. A database server. We're going to be using MySQL server in this tutorial. You’ll need to know enough about
SQL in order to create a database, and run SQL snippets from the tutorial. CakePHP will handle building all the
queries your application needs. Since we’re using MySQL, also make sure that you have pdo_mysql enabled in
PHP.

2. Basic PHP knowledge.

Before starting you should make sure that you're using a supported PHP version:
php -v

You should at least have got installed PHP 8.1 (CLI) or higher. Your webserver’s PHP version must also be of 8.1 or
higher, and should be the same version your command line interface (CLI) PHP is.

37 https://plugins.cakephp.org/
38 https://bakery.cakephp.org/

47

https://plugins.cakephp.org/
https://bakery.cakephp.org/

CakePHP Book, Release 5.x

Getting CakePHP

The easiest way to install CakePHP is to use Composer. Composer is a simple way of installing CakePHP from your
terminal or command line prompt. First, you’ll need to download and install Composer if you haven’t done so already.
If you have cURL installed, run the following:

curl -s https://getcomposer.org/installer | php

Or, you can download composer . phar from the Composer website™.

Then simply type the following line in your terminal from your installation directory to install the CakePHP application
skeleton in the ems directory of the current working directory:

php composer.phar create-project --prefer-dist cakephp/app:5 cms

If you downloaded and ran the Composer Windows Installer*’, then type the following line in your terminal from your
installation directory (ie. C:\wamp\www\dev):

composer self-update && composer create-project --prefer-dist cakephp/app:5.* cms

The advantage to using Composer is that it will automatically complete some important set up tasks, such as setting
the correct file permissions and creating your config/app.php file for you.

There are other ways to install CakePHP. If you cannot or don’t want to use Composer, check out the /nstallation section.

Regardless of how you downloaded and installed CakePHP, once your set up is completed, your directory setup should
look like the following, though other files may also be present:

cms/
bin/
config/
plugins/
resources/
src/
templates/
tests/
tmp/
vendor/
webroot/
composer. json
index.php
README .md

Now might be a good time to learn a bit about how CakePHP’s directory structure works: check out the CakePHP
Folder Structure section.

If you get lost during this tutorial, you can see the finished result on GitHub*'.

© Tip

The bin/cake console utility can build most of the classes and data tables in this tutorial automatically. However,
we recommend following along with the manual code examples to understand how the pieces fit together and how
to add your application logic.

39 https://getcomposer.org/download/
40 https://getcomposer.org/Composer-Setup.exe
41 https://github.com/cakephp/cms-tutorial

48 Chapter 4. Tutorials & Examples

https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
https://github.com/cakephp/cms-tutorial

CakePHP Book, Release 5.x

Checking our Installation

We can quickly check that our installation is correct, by checking the default home page. Before you can do that, you’ll
need to start the development server:

cd /path/to/our/app

bin/cake server

© Note

For Windows, the command needs to be bin\cake server (note the backslash).

This will start PHP’s built-in webserver on port 8765. Open up http://localhost:8765 in your web browser to see
the welcome page. All the bullet points should be green chef hats other than CakePHP being able to connect to your
database. If not, you may need to install additional PHP extensions, or set directory permissions.

Next, we will build our Database.

CMS Tutorial - Creating the Database

Now that we have CakePHP installed, let’s set up the database for our CMS application. If you haven’t already done
so, create an empty database for use in this tutorial, with the name of your choice such as cake_cms. If you are using
MySQL/MariaDB, you can execute the following SQL to create the necessary tables:

CREATE DATABASE cake_cms;
USE cake_cms;

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created DATETIME,
modified DATETIME

);

CREATE TABLE articles (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created DATETIME,
modified DATETIME,
UNIQUE KEY (slug),
FOREIGN KEY user_key (user_id) REFERENCES users(id)
) CHARSET=utf8mb4;

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,

(continues on next page)

CMS Tutorial - Creating the Database 49

CakePHP Book, Release 5.x

(continued from previous page)

title VARCHAR(191),

created DATETIME,

modified DATETIME,

UNIQUE KEY (title)
) CHARSET=utf8mb4;

CREATE TABLE articles_tags (
article_id INT NOT NULL,
tag_id INT NOT NULL,
PRIMARY KEY (article_id, tag_id),
FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),
FOREIGN KEY article_key(article_id) REFERENCES articles(id)

);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOWQ));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, 'First Post', 'first-post', 'This is the first post.', 1, NOW(Q), NOWQ));

If you are using PostgreSQL, connect to the cake_cms database and execute the following SQL instead:

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created TIMESTAMP,
modified TIMESTAMP

DE

CREATE TABLE articles (
id SERIAL PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (slug),
FOREIGN KEY (user_id) REFERENCES users(id)
DE

CREATE TABLE tags (
id SERIAL PRIMARY KEY,
title VARCHAR(191),
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (title)

(continues on next page)

50 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

(continued from previous page)

CREATE TABLE articles_tags (
article_id INT NOT NULL,
tag_id INT NOT NULL,
PRIMARY KEY (article_id, tag_id),
FOREIGN KEY (tag_id) REFERENCES tags(id),
FOREIGN KEY (article_id) REFERENCES articles(id)
);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOW(Q));

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, 'First Post', 'first-post', 'This is the first post.', TRUE, NOW(), NOW(Q));

You may have noticed that the articles_tags table uses a composite primary key. CakePHP supports composite
primary keys almost everywhere, allowing you to have simpler schemas that don’t require additional id columns.

The table and column names we used were not arbitrary. By using CakePHP’s naming conventions, we can lever-
age CakePHP more effectively and avoid needing to configure the framework. While CakePHP is flexible enough to
accommodate almost any database schema, adhering to the conventions will save you time as you can leverage the
convention-based defaults CakePHP provides.

Database Configuration

Next, let’s tell CakePHP where our database is and how to connect to it. Replace the values in the Datasources.
default array in your config/app_local.php file with those that apply to your setup. A sample completed configuration
array might look something like the following:

<?php
// config/app_local.php
return [
// More configuration above.
'Datasources' => [
'default' => [
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~"',
'database' => 'cake_cms',
'url' => env('DATABASE_URL', null),
Jg
1,
// More configuration below.

i

Once you’ve saved your config/app_local.php file, you should see that the ‘CakePHP is able to connect to the database’
section has a green chef hat.

© Note

The file config/app_local.php is a local override of the file config/app.php used to configure your development

CMS Tutorial - Creating the Database 51

CakePHP Book, Release 5.x

L environment quickly. J

Migrations

The SQL statements to create the tables for this tutorial can also be generated using the Migrations Plugin. Migrations
provide a platform-independent way to run queries so the subtle differences between MySQL, PostgreSQL, SQLite,
etc. don’t become obstacles.

bin/cake bake migration CreateUsers email:string password:string created modified
bin/cake bake migration CreateArticles user_id:integer title:string.
—slug:string[191] :unique body:text published:boolean created modified

bin/cake bake migration CreateTags title:string[191]:unique created modified
bin/cake bake migration CreateArticlesTags article_id:integer:primary tag_
—.id:integer:primary created modified

© Note

Some adjustments to the generated code might be necessary. For example, the composite primary key on
articles_tags will be set to auto-increment both columns:

$table->addColumn('article_id', 'integer', [
'autoIncrement' => true,
'default' => null,
"limit' => 11,
'null' => false,
D;
$table->addColumn('tag_id', 'integer', [
'autoIncrement' => true,
'default' => null,
"limit' => 11,
'null' => false,

D;
Remove those lines to prevent foreign key problems. Once adjustments are done:

bin/cake migrations migrate

Likewise, the starter data records can be done with seeds.

bin/cake bake seed Users
bin/cake bake seed Articles

Fill the seed data above into the new UsersSeed and ArticlesSeed classes, then:

bin/cake migrations seed

Read more about building migrations and data seeding: Migrations*’

With the database built, we can now build Models.

42 https://book.cakephp.org/migrations/4/

52 Chapter 4. Tutorials & Examples

https://book.cakephp.org/migrations/4/

CakePHP Book, Release 5.x

CMS Tutorial - Creating our First Model

Models are the heart of CakePHP applications. They enable us to read and modify our data. They allow us to build
relations between our data, validate data, and apply application rules. Models provide the foundation necessary to
create our controller actions and templates.

CakePHP’s models are composed of Table and Entity objects. Table objects provide access to the collection of
entities stored in a specific table. They are stored in src¢/Model/Table. The file we’ll be creating will be saved to
src/Model/Table/ArticlesTable.php. The completed file should look like this:

<?php

// src/Model/Table/ArticlesTable.php
declare(strict_types=1);

namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table

{
public function initialize(array $config): void
{
parent::initialize($config);
$this->addBehavior('Timestamp');
3
}

We’ve attached the Timestamp behavior, which will automatically populate the created and modified columns of
our table. By naming our Table object ArticlesTable, CakePHP can use naming conventions to know that our model
uses the articles table. CakePHP also uses conventions to know that the id column is our table’s primary key.

© Note

CakePHP will dynamically create a model object for you if it cannot find a corresponding file in src/Model/Table.
This also means that if you accidentally name your file wrong (i.e. articlestable.php or ArticleTable.php), CakePHP
will not recognize any of your settings and will use the generated model instead.

We’ll also create an Entity class for our Articles. Entities represent a single record in the database and provide row-level
behavior for our data. Our entity will be saved to sre/Model/Entity/Article.php. The completed file should look like
this:

<?php
// src/Model/Entity/Article.php
declare(strict_types=1);

namespace App\Model\Entity;
use Cake\ORM\Entity;

class Article extends Entity
{
protected array $_accessible = [
'user_id' => true,

(continues on next page)

CMS Tutorial - Creating our First Model 53

CakePHP Book, Release 5.x

(continued from previous page)

'title' => true,

'slug' => true,

'body' => true,

'published' => true,

'created' => true,

'modified' => true,

'user' => true,

'tags' => true,

13

Right now, our entity is quite slim; we’ve only set up the _accessible property, which controls how properties can
be modified by Mass Assignment.

© Tip
The ArticlesTable and Article Entity classes can be generated from a terminal:

bin/cake bake model articles

We can’t do much with this model yet. Next, we’ll create our first Controller and Template to allow us to interact with
our model.

CMS Tutorial - Creating the Articles Controller

With our model created, we need a controller for our articles. Controllers in CakePHP handle HTTP requests and
execute business logic contained in model methods, to prepare the response. We’ll place this new controller in a file
called ArticlesController.php inside the src/Controller directory. Here’s what the basic controller should look like:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController
{
3

Now, let’s add an action to our controller. Actions are controller methods that have routes connected to them. For exam-
ple, when a user requests www.example.com/articles/index (which is also the same as www.example.com/articles),
CakePHP will call the index method of your ArticlesController. This method should query the model layer, and
prepare a response by rendering a Template in the View. The code for that action would look like this:

<?php
// src/Controller/ArticlesController.php

namespace App\Controller;

class ArticlesController extends AppController

{
public function index()
(continues on next page)

54 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

(continued from previous page)

$articles = $this->paginate($this->Articles);
$this->set(compact('articles'));

By defining function index() in our ArticlesController, users can now access the logic there by requesting
www.example.com/articles/index. Similarly, if we were to define a function called foobar (), users would be able to
access that at www.example.com/articles/foobar. You may be tempted to name your controllers and actions in a way
that allows you to obtain specific URLs. Resist that temptation. Instead, follow the CakePHP Conventions creating
readable, meaningful action names. You can then use Routing to connect the URLs you want to the actions you’ve
created.

Our controller action is very simple. It fetches a paginated set of articles from the database, using the Articles Model
that is automatically loaded via naming conventions. It then uses set () to pass the articles into the Template (which
we’ll create soon). CakePHP will automatically render the template after our controller action completes.

Create the Article List Template

Now that we have our controller pulling data from the model, and preparing our view context, let’s create a view
template for our index action.

CakePHP view templates are presentation-flavored PHP code that is inserted inside the application’s layout. While
we’ll be creating HTML here, Views can also generate JSON, CSV or even binary files like PDFs.

A layout is presentation code that is wrapped around a view. Layout files contain common site elements like headers,
footers and navigation elements. Your application can have multiple layouts, and you can switch between them, but for
now, let’s just use the default layout.

CakePHP’s template files are stored in templates inside a folder named after the controller they correspond to. So we’ll
have to create a folder named ‘Articles’ in this case. Add the following code to your application:

<!-- File: templates/Articles/index.php -->

<hl>Articles</hl1>
<table>
<tr>
<th>Title</th>
<th>Created</th>
</tr>

<!-- Here is where we iterate through our $articles query object, printing out.
—article info -->

<?php foreach ($articles as $article): ?>

<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
</tr>

(continues on next page)

CMS Tutorial - Creating the Articles Controller 55

CakePHP Book, Release 5.x

(continued from previous page)

<?php endforeach; 7>
</table>

In the last section we assigned the ‘articles’ variable to the view using set(). Variables passed into the view are
available in the view templates as local variables which we used in the above code.

You might have noticed the use of an object called $this->Html. This is an instance of the CakePHP Hrml/Helper.
CakePHP comes with a set of view helpers that make tasks like creating links, forms, and pagination buttons. You can
learn more about Helpers in their chapter, but what’s important to note here is that the 1ink () method will generate
an HTML link with the given link text (the first parameter) and URL (the second parameter).

When specifying URLs in CakePHP, it is recommended that you use arrays or named routes. These syntaxes allow you
to leverage the reverse routing features CakePHP offers.

At this point, you should be able to point your browser to http://localhost:8765/articles/index. You should see your
list view, correctly formatted with the title and table listing of the articles.

Create the View Action

If you were to click one of the ‘view’ links in our Articles list page, you’d see an error page saying that action hasn’t
been implemented. Lets fix that now:

// Add to existing src/Controller/ArticlesController.php file

public function view($slug = null)

{
$article = $this->Articles->findBySlug($slug)->firstOrFail();
$this->set(compact('article'));

While this is a simple action, we’ve used some powerful CakePHP features. We start our action off by using
f£indBySlug() which is a Dynamic Finder. This method allows us to create a basic query that finds articles by a
given slug. We then use firstOrFail () to either fetch the first record, or throw a \Cake\Datasource\Exception\
RecordNotFoundException.

Our action takes a $slug parameter, but where does that parameter come from? If a user requests /articles/view/
first-post, then the value ‘first-post’ is passed as $slug by CakePHP’s routing and dispatching layers. If we reload
our browser with our new action saved, we’d see another CakePHP error page telling us we’re missing a view template;
let’s fix that.

Create the View Template

Let’s create the view for our new ‘view’ action and place it in templates/Articles/view.php

<l-- File: templates/Articles/view.php -->

<hl><?= h($article->title) ?></hl>

<p><?= h(S$article->body) ?></p>

<p><small>Created: <?= S$article->created->format(DATE_RFC850) 7></small></p>
<p><?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) ?></p>

You can verify that this is working by trying the links at /articles/index or manually requesting an article by
accessing URLs like /articles/view/first-post.

56 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

Adding Articles

With the basic read views created, we need to make it possible for new articles to be created. Start by creating an add ()
action in the ArticlesController. Our controller should now look like:

<?php

// src/Controller/ArticlesController.php
namespace App\Controller;

use App\Controller\AppController;

class ArticlesController extends AppController

{
public function index()
{
$articles = $this->paginate($this->Articles);
$this->set(compact('articles'));
}
public function view($slug)
{
$article = $this->Articles->findBySlug($slug)->firstOrFail();
$this->set(compact('article'));
1
public function add()
{
$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity(Sarticle, $this->request->getData());
// Hardcoding the user_id is temporary, and will be removed later
// when we build authentication out.
$article->user_id = 1;
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));
}
$this->set('article’', $article);
}
}
© Note

You need to include the Flash component in any controller where you will use it. Often it makes sense to include
it in your AppController, which is there already for this tutorial.

Here’s what the add () action does:

* If the HTTP method of the request was POST, try to save the data using the Articles model.

CMS Tutorial - Creating the Articles Controller 57

CakePHP Book, Release 5.x

« If for some reason it doesn’t save, just render the view. This gives us a chance to show the user validation errors
or other warnings.

Every CakePHP request includes a request object which is accessible using $this->request. The request object
contains information regarding the request that was just received. We use the Cake\Http\ServerRequest::is()
method to check that the request is a HTTP POST request.

Our POST data is available in $this->request->getData(). You can use the pr() or debug() functions to print
it out if you want to see what it looks like. To save our data, we first ‘marshal’ the POST data into an Article Entity.
The Entity is then persisted using the ArticlesTable we created earlier.

After saving our new article we use FlashComponent’s success () method to set a message into the session. The
success method is provided using PHP’s magic method features*’. Flash messages will be displayed on the
next page after redirecting. In our layout we have <?= $this->Flash->render() 7> which displays flash mes-
sages and clears the corresponding session variable. Finally, after saving is complete, we use Cake\Controller\
Controller: :redirect to send the user back to the articles list. The param ['action' => 'index'] translates to
URL /articlesi.ethe index action of the ArticlesController. You canrefer to Cake\Routing\Router: :url()

function on the API** to see the formats in which you can specify a URL for various CakePHP functions.

Create Add Template

Here’s our add view template:

<l-- File: templates/Articles/add.php -->

<h1>Add Article</hl>
<?php
echo $this->Form->create($article);
// Hard code the user for now.
echo $this->Form->control('user_id', ['type' => 'hidden', 'value' => 1]);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

We use the FormHelper to generate the opening tag for an HTML form. Here’s the HTML that
$this->Form->create() generates:

<form method="post" action="/articles/add">

Because we called create() without a URL option, FormHelper assumes we want the form to submit back to the
current action.

The $this->Form->control () method is used to create form elements of the same name. The first parameter tells
CakePHP which field they correspond to, and the second parameter allows you to specify a wide array of options - in
this case, the number of rows for the textarea. There’s a bit of introspection and conventions used here. The control ()
will output different form elements based on the model field specified, and use inflection to generate the label text. You
can customize the label, the input or any other aspect of the form controls using options. The $this->Form->end()
call closes the form.

Now let’s go back and update our templates/Articles/index.php view to include a new “Add Article” link. Before the
<table>, add the following line:

43 https://php.net/manual/en/language.oop5.overloading. php#object.call
44 https://api.cakephp.org

58 Chapter 4. Tutorials & Examples

https://php.net/manual/en/language.oop5.overloading.php#object.call
https://api.cakephp.org

CakePHP Book, Release 5.x

<?= $this->Html->link('Add Article', ['action' => 'add']) ?>

Adding Simple Slug Generation

If we were to save an Article right now, saving would fail as we are not creating a slug attribute, and the column is NOT
NULL. Slug values are typically a URL-safe version of an article’s title. We can use the beforeSave() callback of the
ORM to populate our slug:

<?php
// in src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;

// the Text class

use Cake\Utility\Text;

// the EventInterface class
use Cake\Event\EventInterface;

// Add the following method.

public function beforeSave(EventInterface $event, $entity, $options): void

{
if (fentity->isNew() && !S$entity->slug) {
$sluggedTitle = Text::slug($entity->title);
// trim slug to maximum length defined in schema
$entity->slug = substr($sluggedTitle, 0, 191);

}

This code is simple, and doesn’t take into account duplicate slugs. But we’ll fix that later on.

Add Edit Action

Our application can now save articles, but we can’t edit them. Lets rectify that now. Add the following action to your
ArticlesController:

// in src/Controller/ArticlesController.php
// Add the following method.

public function edit($slug)
{
$article = $this->Articles
->findBySlug($slug)
->firstOrFail();

if ($this->request->is(['post', 'put']l)) {
$this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));

return $this->redirect(['action' => 'index']);

(continues on next page)

CMS Tutorial - Creating the Articles Controller 59

CakePHP Book, Release 5.x

(continued from previous page)

$this->Flash->error(__('Unable to update your article.'));

}

$this->set('article', $article);

This action first ensures that the user has tried to access an existing record. If they haven’t passed in an $s1ug parameter,
or the article does not exist, a RecordNotFoundException will be thrown, and the CakePHP ErrorHandler will render
the appropriate error page.

Next the action checks whether the request is either a POST or a PUT request. If it is, then we use the POST/PUT data
to update our article entity by using the patchEntity() method. Finally, we call save(), set the appropriate flash
message, and either redirect or display validation errors.

Create Edit Template
The edit template should look like this:

<l-- File: templates/Articles/edit.php -->

<h1>Edit Article</hl>
<?php
echo $this->Form->create($article);
echo $this->Form->control('user_id', ['type' => 'hidden']);
echo $this->Form->control('title');
echo $this->Form->control('body', ['rows' => '3']);
echo $this->Form->button(__('Save Article'));
echo $this->Form->end();
7>

This template outputs the edit form (with the values populated), along with any necessary validation error messages.

You can now update your index view with links to edit specific articles:

<l-- File: templates/Articles/index.php (edit links added) -->

<hl>Articles</hl>
<p><?= $this->Html->1ink("Add Article", ['action' => 'add']) ?></p>
<table>
<tr>
<th>Title</th>
<th>Created</th>
<th>Action</th>
</tr>

<!-- Here's where we iterate through our $articles query object, printing out article.
—~info -->

<?php foreach ($articles as $article): ?>
<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>

(continues on next page)

60 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

(continued from previous page)

<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
<td>
<?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) ?>
</td>
</tr>

<?php endforeach; 7>

</table>

Update Validation Rules for Articles

Up until this point our Articles had no input validation done. Lets fix that by using a validator:

// src/Model/Table/ArticlesTable.php

// add this use statement right below the namespace declaration to import
// the Validator class
use Cake\Validation\Validator;

// Add the following method.
public function validationDefault(Validator $validator): Validator

{
$validator
->notEmptyString('title')
->minLength('title', 10)
->maxLength('title', 255)
->notEmptyString('body"')
->minLength('body', 10);
return $validator;
}

The validationDefault () method tells CakePHP how to validate your data when the save() method is called.
Here, we’ve specified that both the title, and body fields must not be empty, and have certain length constraints.

CakePHP’s validation engine is powerful and flexible. It provides a suite of frequently used rules for tasks like email
addresses, IP addresses etc. and the flexibility for adding your own validation rules. For more information on that
setup, check the Validation documentation.

Now that your validation rules are in place, use the app to try to add an article with an empty title or body to see how
it works. Since we’ve used the Cake\View\Helper\FormHelper: :control () method of the FormHelper to create
our form elements, our validation error messages will be shown automatically.

Add Delete Action

Next, let’s make a way for users to delete articles. Start with a delete() action in the ArticlesController:

// src/Controller/ArticlesController.php

// Add the following method.

(continues on next page)

CMS Tutorial - Creating the Articles Controller 61

CakePHP Book, Release 5.x

(continued from previous page)

public function delete($slug)

{
$this->request->allowMethod(['post', 'delete']);
$article = $this->Articles->findBySlug($slug)->firstOrFail();
if ($this->Articles->delete($article)) {
$this->Flash->success(__('The {0} article has been deleted.', $article->title));
return $this->redirect(['action' => 'index']);
3
}

This logic deletes the article specified by $slug, and uses $this->Flash->success() to show the user a confir-
mation message after redirecting them to /articles. If the user attempts to delete an article using a GET request,
allowMethod () will throw an exception. Uncaught exceptions are captured by CakePHP’s exception handler, and a
nice error page is displayed. There are many built-in Exceptions that can be used to indicate the various HTTP errors
your application might need to generate.

A\ Warning

Allowing content to be deleted using GET requests is very dangerous, as web crawlers could accidentally delete all
your content. That is why we used allowMethod() in our controller.

Because we’re only executing logic and redirecting to another action, this action has no template. You might want to
update your index template with links that allow users to delete articles:

<l-- File: templates/Articles/index.php (delete links added) -->

<hl>Articles</hl1>
<p><?= $this->Html->link("Add Article", ['action' => 'add']) 7></p>
<table>

<tr>
<th>Title</th>
<th>Created</th>
<th>Action</th>
</tr>
<!-- Here's where we iterate through our $articles query object, printing out article.
—info -->

<?php foreach ($articles as $article): ?>

<tr>
<td>
<?= $this->Html->link($article->title, ['action' => 'view', S$article->slug]).
7>
</td>
<td>
<?= $article->created->format (DATE_RFC850) 7>
</td>
<td>

(continues on next page)

62 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

(continued from previous page)

<?= $this->Html->link('Edit', ['action' => 'edit', S$article->slug]) 7>

<?= $this->Form->deleteLink(
'Delete’,
['"action' => 'delete', $article->slug],
['confirm' => 'Are you sure?'])

7>

</td>
</tr>
<?php endforeach; ?>

</table>

Using deleteLink () will create a link that uses JavaScript to do a DELETE request deleting our article. Prior to
CakePHP 5.2 you need to use postLink() instead.

© Note

This view code also uses the FormHelper to prompt the user with a JavaScript confirmation dialog before they
attempt to delete an article.

© Tip
The ArticlesController can also be built with bake:

/bin/cake bake controller articles

However, this does not build the templates/Articles/*.php files.

With a basic articles management setup, we’ll create the basic actions for our Tags and Users tables.

CMS Tutorial - Tags and Users

With the basic article creation functionality built, we need to enable multiple authors to work in our CMS. Previously,
we built all the models, views and controllers by hand. This time around we’re going to use Bake Console to create our
skeleton code. Bake is a powerful code generation CLI (Command Line Interface) tool that leverages the conventions
CakePHP uses to create skeleton CRUD (Create, Read, Update, Delete) applications very efficiently. We’re going to
use bake to build our users code:

cd /path/to/our/app

You can overwrite any existing files.
bin/cake bake model users

bin/cake bake controller users
bin/cake bake template users

These 3 commands will generate:
* The Table, Entity, Fixture files.

¢ The Controller
e The CRUD templates.

CMS Tutorial - Tags and Users 63

CakePHP Book, Release 5.x

* Test cases for each generated class.

Bake will also use the CakePHP conventions to infer the associations, and validation your models have.

Adding Tagging to Articles

With multiple users able to access our small CMS it would be nice to have a way to categorize our content. We’ll use
tags and tagging to allow users to create free-form categories and labels for their content. Again, we’ll use bake to
quickly generate some skeleton code for our application:

Generate all the code at once.
bin/cake bake all tags

Once you have the scaffold code created, create a few sample tags by going to http://localhost:8765/tags/add.

Now that we have a Tags table, we can create an association between Articles and Tags. We can do so by adding the
following to the initialize method on the ArticlesTable:

public function initialize(array $config): void

{

$this->addBehavior (' Timestamp');
$this->belongsToMany('Tags'); // Add this line

This association will work with this simple definition because we followed CakePHP conventions when creating our
tables. For more information, read Associations - Linking Tables Together.

Updating Articles to Enable Tagging

Now that our application has tags, we need to enable users to tag their articles. First, update the add action to look like:

<?php
// in src/Controller/ArticlesController.php
namespace App\Controller;

use App\Controller\AppController;

class ArticlesController extends AppController
{
public function add()
{
$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity($article, $this->request->getData());

// Hardcoding the user_id is temporary, and will be removed later
// when we build authentication out.
$article->user_id = 1;

if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));

return $this->redirect(['action' => 'index']);

}
$this->Flash->error(__('Unable to add your article.'));

(continues on next page)

64 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

(continued from previous page)

}
// Get a list of tags.
$tags = $this->Articles->Tags->find('list')->all(Q);

// Set tags to the view context
$this->set('tags', $tags);

$this->set('article', $article);

}

// Other actions
}

The added lines load a list of tags as an associative array of id => title. This format will let us create a new tag
input in our template. Add the following to the PHP block of controls in templates/Articles/add.php:

echo $this->Form->control('tags._ids', ['options' => $tags]);

This will render a multiple select element that uses the $tags variable to generate the select box options. You should
now create a couple new articles that have tags, as in the following section we’ll be adding the ability to find articles
by tags.

You should also update the edit method to allow adding or editing tags. The edit method should now look like:

public function edit($slug)

{
$article = $this->Articles
->findBySlug($slug)
->contain('Tags') // load associated Tags
->firstOrFail();
if ($this->request->is(['post', 'put'])) {
$this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to update your article.'));
3
// Get a list of tags.
$tags = $this->Articles->Tags->find('list')->all(Q;
// Set tags to the view context
$this->set('tags', $tags);
$this->set('article', $article);
}

Remember to add the new tags multiple select control we added to the add.php template to the tem-
plates/Articles/edit.php template as well.

CMS Tutorial - Tags and Users 65

CakePHP Book, Release 5.x

Finding Articles By Tags

Once users have categorized their content, they will want to find that content by the tags they used. For this feature
we’ll implement a route, controller action, and finder method to search through articles by tag.

Ideally, we’d have a URL that looks like http://localhost:8765/articles/tagged/funny/cat/gifs. This would let us find
all the articles that have the ‘funny’, ‘cat’ or ‘gifs’ tags. Before we can implement this, we’ll add a new route. Your
config/routes.php (with the baked comments removed) should look like:

<?php
use Cake\Routing\Route\DashedRoute;
use Cake\Routing\RouteBuilder;

$routes->setRouteClass(DashedRoute: :class);

$routes->scope('/', function (RouteBuilder S$builder) {

$builder->connect('/', ['controller' => 'Pages', 'action' => 'display', 'home']);
$builder->connect('/pages/*', ['controller' => 'Pages', 'action' => 'display']);
// Add this

// New route we're adding for our tagged action.

// The trailing **° tells CakePHP that this action has

// passed parameters.

$builder->scope('/articles', function (RouteBuilder $builder) {
$builder->connect('/tagged/*', ['controller' => 'Articles', 'action' => 'tags']);

b

$builder->fallbacks(Q);
19K

The above defines a new ‘route’ which connects the /articles/tagged/ path, to ArticlesController::tags(Q).
By defining routes, you can isolate how your URLSs look, from how they are implemented. If we were to visit
http://localhost:8765/articles/tagged, we would see a helpful error page from CakePHP informing you that the con-
troller action does not exist. Let’s implement that missing method now. In src/Controller/ArticlesController.php add
the following:

public function tags()

{
// The 'pass' key is provided by CakePHP and contains all
// the passed URL path segments in the request.
$tags = $this->request->getParam('pass');
// Use the ArticlesTable to find tagged articles.
$articles = $this->Articles->find('tagged', tags: $tags)
->allQ);
// Pass variables into the view template context.
$this->set ([
'articles' => $articles,
'tags' => $tags
DX
3

To access other parts of the request data, consult the Request section.

Since passed arguments are passed as method parameters, you could also write the action using PHP’s variadic argu-

66 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

ment:

public function tags(...$tags)
{
// Use the ArticlesTable to find tagged articles.
$articles = $this->Articles->find('tagged', tags: $tags)
->allQ);

// Pass variables into the view template context.
$this->set ([

'articles' => $articles,

'tags' => $tags
D;

Creating the Finder Method

In CakePHP we like to keep our controller actions slim, and put most of our application’s logic in the model layer. If
you were to visit the /articles/tagged URL now you would see an error that the findTagged () method has not been
implemented yet, so let’s do that. In src/Model/Table/ArticlesTable.php add the following:

// add this use statement right below the namespace declaration to import
// the Query class
use Cake\ORM\Query\SelectQuery;

// The $query argument is a query builder instance.

// The $options array will contain the 'tags' option we passed

// to find('tagged') in our controller action.

public function findTagged(SelectQuery $query, array $tags = []): SelectQuery

{

$columns = [

'Articles.id', 'Articles.user_id', 'Articles.title',
'Articles.body', 'Articles.published', 'Articles.created',
'Articles.slug’',

18

$query = $query
->select($columns)
->distinct($columns);

if (empty($tags)) {
// If there are no tags provided, find articles that have no tags.
$query->leftJoinWith('Tags"')
->where(['Tags.title IS' => null]);
} else {
// Find articles that have one or more of the provided tags.
$query->innerJoinWith('Tags"')
->where(['Tags.title IN' => $tags]);
}

return $query->groupBy(['Articles.id']);

We just implemented a custom finder method. This is a very powerful concept in CakePHP that allows you to package

CMS Tutorial - Tags and Users 67

CakePHP Book, Release 5.x

up re-usable queries. Finder methods always get a Query Builder object and an array of options as parameters. Finders
can manipulate the query and add any required conditions or criteria. When complete, finder methods must return a
modified query object. In our finder we’ve leveraged the distinct() and leftJoin() methods which allow us to
find distinct articles that have a ‘matching’ tag.

Creating the View

Now if you visit the /articles/tagged URL again, CakePHP will show a new error letting you know that you have not
made a view file. Next, let’s build the view file for our tags() action:

<!-- In templates/Articles/tags.php -->
<hl>
Articles tagged with
<?= $this->Text->toList(h($tags), 'or') ?>

</h1>
<section>
<?php foreach ($articles as $article): ?>
<article>
<!-- Use the HtmlHelper to create a link -->
<h4><?= $this->Html->1ink(
$article->title,
['controller' => 'Articles', 'action' => 'view', $article->slug]
) ?></h4>
<?= h($article->created) ?>
</article>
<?php endforeach; 7>
</section>

In the above code we use the Hrml and Text helpers to assist in generating our view output. We also use the h shortcut
function to HTML encode output. You should remember to always use h() when outputting data to prevent HTML
injection issues.

The tags.php file we just created follows the CakePHP conventions for view template files. The convention is to have
the template use the lower case and underscored version of the controller action name.

You may notice that we were able to use the $tags and $articles variables in our view template. When we use
the set() method in our controller, we set specific variables to be sent to the view. The View will make all passed
variables available in the template scope as local variables.

You should now be able to visit the /articles/tagged/funny URL and see all the articles tagged with ‘funny’.

Improving the Tagging Experience

Right now, adding new tags is a cumbersome process, as authors need to pre-create all the tags they want to use. We
can improve the tag selection Ul by using a comma separated text field. This will let us give a better experience to our
users, and use some more great features in the ORM.

Adding a Computed Field

Because we’ll want a simple way to access the formatted tags for an entity, we can add a virtual/computed field to the
entity. In sre/Model/Entity/Article.php add the following:

// add this use statement right below the namespace declaration to import
// the Collection class
use Cake\Collection\Collection;
(continues on next page)

68 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

(continued from previous page)

// Update the accessible property to contain ‘tag_string’
protected array $_accessible = [

//other fields...

'tag_string' => true

1;
protected function _getTagString()
{
if (isset($this->_fields['tag_string'])) {
return $this->_fields['tag_string'];
}
if (empty($this->tags)) {
return '';
}
$tags = new Collection($this->tags);
$str = $tags->reduce(function ($string, $tag) {
return $string . $tag->title . ', ';
PO H
return trim($str, ', ');
}

This will let us access the $article->tag_string computed property. We’ll use this property in controls later on.

Updating the Views

With the entity updated we can add a new control for our tags. In templates/Articles/add.php and tem-
plates/Articles/edit.php, replace the existing tags._ids control with the following:

echo $this->Form->control('tag_string', ['type' => 'text']);

We’ll also need to update the article view template. In templates/Articles/view.php add the line as shown:

<l-- File: templates/Articles/view.php -->

<h1><?= h($article->title) ?></hl>

<p><?= h($article->body) ?></p>

// Add the following line

<p>Tags: <?= h($article->tag_string) 7></p>

You should also update the view method to allow retrieving existing tags:

// src/Controller/ArticlesController.php file

public function view($slug = null)
{
// Update retrieving tags with contain()
$article = $this->Articles
->findBySlug($slug)
->contain('Tags")
->firstOrFail();

(continues on next page)

CMS Tutorial - Tags and Users 69

CakePHP Book, Release 5.x

(continued from previous page)

$this->set(compact('article'));

Persisting the Tag String

Now that we can view existing tags as a string, we’ll want to save that data as well. Because we marked the tag_string
as accessible, the ORM will copy that data from the request into our entity. We can use a beforeSave () hook method
to parse the tag string and find/build the related entities. Add the following to src/Model/Table/ArticlesTable.php:

public function beforeSave(EventInterface $event, $entity, $options): void
{
if (fentity->tag_string) {
$entity->tags = $this->_buildTags($entity->tag_string);

}

// Other code
}

protected function _buildTags($tagString)
{
// Trim tags
$newTags = array_map('trim', explode(',', $tagString));
// Remove all empty tags
$newTags = array_filter($newTags);
// Reduce duplicated tags
$newTags = array_unique($newTags);

$out = [];

$tags = $this->Tags->find()
->where(['Tags.title IN' => $newTags])
->allQ);

// Remove existing tags from the list of new tags.
foreach ($tags->extract('title') as S$existing) {
$index = array_search($existing, $newTags);
if ($index !== false) {
unset ($newTags[$index]);
}
}
// Add existing tags.
foreach ($tags as $tag) {
$out[] = $tag;
}
// Add new tags.
foreach ($newTags as $tag) {
$out[] = $this->Tags->newEntity(['title' => $tag]l);

}

return $out;

¥

If you now create or edit articles, you should be able to save tags as a comma separated list of tags, and have the tags
and linking records automatically created.

70 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

While this code is a bit more complicated than what we’ve done so far, it helps to showcase how powerful the ORM
in CakePHP is. You can manipulate query results using the Collections methods, and handle scenarios where you are
creating entities on the fly with ease.

Auto-populating the Tag String

Before we finish up, we’ll need a mechanism that will load the associated tags (if any) whenever we load an article.

In your src/Model/Table/ArticlesTable.php, change:

public function initialize(array $config): void

{
$this->addBehavior('Timestamp');
// Change this line
$this->belongsToMany('Tags', [
'joinTable' => 'articles_tags',
'dependent' => true
DX
3

This will tell the Articles table model that there is a join table associated with tags. The ‘dependent’ option tells the
table to delete any associated records from the join table if an article is deleted.

Lastly, update the findBySlug() method calls in src/Controller/ArticlesController.php:

public function edit($slug)
{
// Update this line
$article = $this->Articles
->findBySlug($slug)
->contain('Tags"')
->firstOrFail();

¥

public function view($slug = null)
{
// Update this line
$article = $this->Articles
->findBySlug($slug)
->contain('Tags')
->firstOrFail();
$this->set(compact('article'));

}

The contain() method tells the ArticlesTable object to also populate the Tags association when the article is
loaded. Now when tag_string is called for an Article entity, there will be data present to create the string!

Next we’ll be adding authentication.

CMS Tutorial - Authentication

Now that our CMS has users, we can enable them to login using the cakephp/authentication*> plugin. We’ll start off by
ensuring passwords are stored securely in our database. Then we are going to provide a working login and logout, and

45 https://book.cakephp.org/authentication/

CMS Tutorial - Authentication 71

https://book.cakephp.org/authentication/

CakePHP Book, Release 5.x

enable new users to register.

Installing Authentication Plugin

Use composer to install the Authentication Plugin:

composer require "cakephp/authentication:~3.0"

Adding Password Hashing

You need to have created the Controller, Table, Entity and templates for the users table in your database. You
can do this manually like you did before for the ArticlesController, or you can use the bake shell to generate the classes
for you using:

bin/cake bake all users

If you create or update a user with this setup, you might notice that the passwords are stored in plain text. This is really
bad from a security point of view, so lets fix that.

This is also a good time to talk about the model layer in CakePHP. In CakePHP, we use different classes to operate on
collections of records and single records. Methods that operate on the collection of entities are put in the Table class,
while features belonging to a single record are put on the Entity class.

For example, password hashing is done on the individual record, so we’ll implement this behavior on the entity object.
Because we want to hash the password each time it is set, we’ll use a mutator/setter method. CakePHP will call a
convention based setter method any time a property is set in one of your entities. Let’s add a setter for the password.
In src/Model/Entity/User.php add the following:

<?php
namespace App\Model\Entity;

use Authentication\PasswordHasher\DefaultPasswordHasher; // Add this line
use Cake\ORM\Entity;

class User extends Entity

{
// Code from bake.
// Add this method
protected function _setPassword(string $password) : ?string
{
if (strlen($password) > 0) {
return (new DefaultPasswordHasher())->hash($password);
}
return null;
1
}

Now, point your browser to http://localhost:8765/users to see a list of users. Remember you’ll need to have your local
server running. Start a standalone PHP server using bin/cake server.

You can edit the default user that was created during /nstallation. If you change that user’s password, you should see a
hashed password instead of the original value on the list or view pages. CakePHP hashes passwords with berypt*© by

46 https://codahale.com/how-to-safely-store-a-password/

72 Chapter 4. Tutorials & Examples

https://codahale.com/how-to-safely-store-a-password/

CakePHP Book, Release 5.x

default. We recommend berypt for all new applications to keep your security standards high. This is the recommended
password hash algorithm for PHP*’.

© Note

Create a hashed password for at least one of the user accounts now! It will be needed in the next steps. After
updating the password, you’ll see a long string stored in the password column. Note berypt will generate a different
hash even for the same password saved twice.

Adding Login

Now it’s time to configure the Authentication Plugin. The Plugin will handle the authentication process using 3 different
classes:

* Application will use the Authentication Middleware and provide an AuthenticationService, holding all the
configuration we want to define how are we going to check the credentials, and where to find them.

e AuthenticationService will be a utility class to allow you configure the authentication process.

e AuthenticationMiddleware will be executed as part of the middleware queue, this is before your Controllers
are processed by the framework, and will pick the credentials and process them to check if the user is authenti-
cated.

If you remember, we used AuthComponent before to handle all these steps. Now the logic is divided into specific
classes and the authentication process happens before your controller layer. First it checks if the user is authenticated
(based on the configuration you provided) and injects the user and the authentication results into the request for further
reference.

In sre/Application.php, add the following imports:

// In src/Application.php add the following imports

use Authentication\AuthenticationService;

use Authentication\AuthenticationServiceInterface;

use Authentication\AuthenticationServiceProviderInterface;
use Authentication\Middleware\AuthenticationMiddleware;
use Cake\Routing\Router;

use Psr\Http\Message\ServerRequestInterface;

Then implement the authentication interface on your Application class:

// in src/Application.php
class Application extends BaseApplication
implements AuthenticationServiceProviderInterface

{

Then add the following:

// src/Application.php
public function middleware(MiddlewareQueue $middlewareQueue): MiddlewareQueue
{
$middlewareQueue
// ... other middleware added before
->add(new RoutingMiddleware($this))
->add(new BodyParserMiddleware())

(continues on next page)

47 https://www.php.net/manual/en/function.password-hash.php

CMS Tutorial - Authentication 73

https://www.php.net/manual/en/function.password-hash.php
https://www.php.net/manual/en/function.password-hash.php

CakePHP Book, Release 5.x

(continued from previous page)

// Add the AuthenticationMiddleware. It should be after routing and body parser.
->add(new AuthenticationMiddleware($this));

return $middlewareQueue;

public function getAuthenticationService(ServerRequestInterface $request):.
—AuthenticationServiceInterface

{
$authenticationService = new AuthenticationService([
'unauthenticatedRedirect' => Router::url('/users/login'),
'queryParam' => 'redirect',
D;
// Load identifiers, ensure we check email and password fields
$authenticationService->loadIdentifier('Authentication.Password', [
'fields' => [
'username' => 'email',
'password' => 'password',
Js
D;
// Load the authenticators, you want session first
$authenticationService->loadAuthenticator('Authentication.Session');
// Configure form data check to pick email and password
$authenticationService->loadAuthenticator('Authentication.Form', [
'fields' => [
'username' => 'email',
'password' => 'password',
g
'loginUrl' => Router::url('/users/login'),
D;
return $authenticationService;
}

In your AppController class add the following code:

// src/Controller/AppController.php
public function initialize(): void
{
parent::initialize();
$this->loadComponent('Flash');

// Add this line to check authentication result and lock your site
$this->loadComponent ('Authentication.Authentication');

Now, on every request, the AuthenticationMiddleware will inspect the request session to look for an authenticated
user. If we are loading the /users/login page, it will also inspect the posted form data (if any) to extract the cre-
dentials. By default the credentials will be extracted from the username and password fields in the request data. The
authentication result will be injected in a request attribute named authentication. You can inspect the result at any
time using $this->request->getAttribute('authentication') from your controller actions. All your pages
will be restricted as the AuthenticationComponent is checking the result on every request. When it fails to find any

74 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

authenticated user, it will redirect the user to the /users/login page. Note at this point, the site won’t work as we
don’t have a login page yet. If you visit your site, you’ll get an “infinite redirect loop” so let’s fix that.

© Note

If your application serves from both SSL and non-SSL protocols, then you might have problems with sessions being
lost, in case your application is on non-SSL protocol. You need to enable access by setting session.cookie_secure
to false in your config config/app.php or config/app_local.php. (See CakePHP'’s defaults on session.cookie_secure)

In your UsersController, add the following code:

public function beforeFilter(\Cake\Event\EventInterface $event): void

{
parent: :beforeFilter($event);
// Configure the login action to not require authentication, preventing
// the infinite redirect loop issue
$this->Authentication->addUnauthenticatedActions(['login']);

}

public function login()
{
$this->request->allowMethod(['get', 'post']l);
$result = $this->Authentication->getResult();
// regardless of POST or GET, redirect if user is logged in
if ($result && $result->isValid()) {
// redirect to /articles after login success
$redirect = $this->request->getQuery('redirect', [
'controller' => 'Articles',
'action' => 'index',

D;

return $this->redirect($redirect);
3
// display error if user submitted and authentication failed
if ($this->request->is('post') && !$result->isValid()) {
$this->Flash->error(__('Invalid username or password'));

}

Add the template logic for your login action:

<l-- in /templates/Users/login.php -->
<div class="users form">
<?= $this->Flash->render() ?>

<h3>Login</h3>
<?= $this->Form->create() 7>
<fieldset>
<legend><?= __('Please enter your username and password') ?></legend>

<?= $this->Form->control('email', ['required' => true]) ?>
<?= $this->Form->control('password', ['required' => true]) 7>
</fieldset>
<?= $this->Form->submit(__('Login')); ?>
<?= $this->Form->end() ?>
(continues on next page)

CMS Tutorial - Authentication 75

CakePHP Book, Release 5.x

(continued from previous page)

<?= $this->Html->1ink("Add User", ['action' => 'add']) 7>
</div>

Now login page will allow us to correctly login into the application. Test it by requesting any page of your site. After
being redirected to the /users/login page, enter the email and password you picked previously when creating your
user. You should be redirected successfully after login.

We need to add a couple more details to configure our application. We want all view and index pages accessible
without logging in so we’ll add this specific configuration in AppController:

// in src/Controller/AppController.php
public function beforeFilter(\Cake\Event\EventInterface $event): void
{
parent: :beforeFilter($event);
// for all controllers in our application, make index and view
// actions public, skipping the authentication check
$this->Authentication->addUnauthenticatedActions(['index', 'view']);

© Note

If you don’t have a user with a hashed password yet, comment the $this->loadComponent ('Authentication.
Authentication') line in your AppController and all other lines where Authentication is used. Then go to
/users/add to create a new user picking email and password. Afterward, make sure to uncomment the lines we
just temporarily commented!

Try it out by visiting /articles/add before logging in! Since this action is not allowed, you will be redirected to the
login page. After logging in successfully, CakePHP will automatically redirect you back to /articles/add.

Logout

Add the logout action to the UsersController class:

// in src/Controller/UsersController.php
public function logout()

{
$result = $this->Authentication->getResult();
// regardless of POST or GET, redirect if user is logged in
if ($result && $result->isValid(Q)) {
$this->Authentication->logout();
return $this->redirect(['controller' => 'Users', 'action' => 'login']);
}
}

Now you can visit /users/logout to log out. You should then be sent to the login page.

76 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

Enabling Registrations

If you try to visit fusers/add without being logged in, you will be redirected to the login page. We should fix that as
we want to allow people to sign up for our application. In the UsersController fix the following line:

// Add to the beforeFilter method of UsersController
$this->Authentication->addUnauthenticatedActions(['login', 'add']);

The above tells AuthenticationComponent that the add() action of the UsersController does not require au-
thentication or authorization. You may want to take the time to clean up the Users/add.php and remove the misleading
links, or continue on to the next section. We won’t be building out user editing, viewing or listing in this tutorial, but
that is an exercise you can complete on your own.

Now that users can log in, we’ll want to limit users to only edit articles that they created by applying authorization
policies.

CMS Tutorial - Authorization

With users now able to login to our CMS, we want to apply authorization rules to ensure that each user only edits the
posts they own. We’ll use the authorization plugin*® to do this.

Installing Authorization Plugin

Use composer to install the Authorization Plugin:

composer require "cakephp/authorization:23.0"

Load the plugin by adding the following statement to the bootstrap () method in src/Application.php:

$this->addPlugin('Authorization');

Enabling the Authorization Plugin

The Authorization plugin integrates into your application as a middleware layer and optionally a component to make
checking authorization easier. First, lets apply the middleware. In src/Application.php add the following to the class
imports:

use Authorization\AuthorizationService;

use Authorization\AuthorizationServiceInterface;

use Authorization\AuthorizationServiceProviderInterface;
use Authorization\Middleware\AuthorizationMiddleware;
use Authorization\Policy\OrmResolver;

Add the AuthorizationServiceProviderInterface to the implemented interfaces on your application:

class Application extends BaseApplication
implements AuthenticationServiceProviderInterface,
AuthorizationServiceProviderInterface

Then add the following to your middleware () method:

// Add authorization **after** authentication
$middlewareQueue->add(new AuthorizationMiddleware($this));

48 https://book.cakephp.org/authorization/2

CMS Tutorial - Authorization 77

https://book.cakephp.org/authorization/2

CakePHP Book, Release 5.x

The AuthorizationMiddleware will call a hook method on your application when it starts handling the request.
This hook method allows your application to define the AuthorizationService it wants to use. Add the following
method your src/Application.php:

public function getAuthorizationService(ServerRequestInterface $request):.
—AuthorizationServiceInterface

{

$resolver = new OrmResolver();

return new AuthorizationService($resolver);

The OrmResolver lets the authorization plugin find policy classes for ORM entities and queries. Other resolvers can
be used to find policies for other resources types.

Next, lets add the AuthorizationComponent to AppController. In src/Controller/AppController.php add the
following to the initialize () method:

$this->loadComponent ('Authorization.Authorization');

Lastly we’ll mark the add, login, and logout actions as not requiring authorization by adding the following to
src/Controller/UsersController.php:

// In the add, login, and logout methods
$this->Authorization->skipAuthorization();

The skipAuthorization() method should be called in any controller action that should be accessible to all users
even those who have not logged in yet.

Creating our First Policy

The Authorization plugin models authorization and permissions as Policy classes. These classes implement the logic
to check whether or not a identity is allowed to perform an action on a given resource. Our identity is going to be
our logged in user, and our resources are our ORM entities and queries. Lets use bake to generate a basic policy:

bin/cake bake policy --type entity Article

This will generate an empty policy class for our Article entity. You can find the generated policy in
src/Policy/ArticlePolicy.php. Next update the policy to look like the following:

<?php
namespace App\Policy;

use App\Model\Entity\Article;
use Authorization\IdentityInterface;

class ArticlePolicy

{

public function canAdd(IdentityInterface $user, Article $article)

{
// All logged in users can create articles.
return true;

}

public function canEdit(IdentityInterface S$user, Article S$article)
(continues on next page)

78 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

(continued from previous page)

// logged in users can edit their own articles.
return $this->isAuthor($user, S$article);

}

public function canDelete(IdentityInterface $user, Article S$article)

{
// logged in users can delete their own articles.
return $this->isAuthor($user, $article);

}

protected function isAuthor(IdentityInterface S$user, Article S$article)

{

return $article->user_id === S$user->getIdentifier();

}

While we’ve defined some very simple rules, you can use as complex logic as your application requires in your policies.

Checking Authorization in the ArticlesController

With our policy created we can start checking authorization in each controller action. If we forget to check or skip
authorization in an controller action the Authorization plugin will raise an exception letting us know we forgot to apply
authorization. In src/Controller/ArticlesController.php add the following to the add, edit and delete methods:

public function add()

{
$article = $this->Articles->newEmptyEntity();
$this->Authorization->authorize($article);
// Rest of the method
}
public function edit($slug)
{
$article = $this->Articles
->findBySlug($slug)
->contain('Tags') // load associated Tags
->firstOrFail();
$this->Authorization->authorize($article);
// Rest of the method.
3
public function delete($slug)
{
$this->request->allowMethod(['post', 'delete']);
$article = $this->Articles->findBySlug($slug)->firstOrFail();
$this->Authorization->authorize($article);
// Rest of the method.
}

The AuthorizationComponent::authorize() method will use the current controller action name to generate the
policy method to call. If you’d like to call a different policy method you can call authorize with the operation name:

CMS Tutorial - Authorization 79

CakePHP Book, Release 5.x

$this->Authorization->authorize($article, 'update');

Lastly add the following to the tags, view, and index methods on the ArticlesController:

// View, index and tags actions are public methods
// and don't require authorization checks.
$this->Authorization->skipAuthorization();

Fixing the Add & Edit Actions

While we’ve blocked access to the edit action, we’re still open to users changing the user_id attribute of articles during
edit. We will solve these problems next. First up is the add action.

When creating articles, we want to fix the user_id to be the currently logged in user. Replace your add action with
the following:

// in src/Controller/ArticlesController.php

public function add()

{
$article = $this->Articles->newEmptyEntity();
$this->Authorization->authorize($article);
if ($this->request->is('post')) {
$article = $this->Articles->patchEntity($article, $this->request->getData());
// Changed: Set the user_id from the current user.
$article->user_id = $this->request->getAttribute('identity')->getIdentifier();
if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been saved.'));
return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));
3
$tags = $this->Articles->Tags->find('list')->all(Q);
$this->set(compact('article', 'tags'));
}

Next we’ll update the edit action. Replace the edit method with the following:

// in src/Controller/ArticlesController.php

public function edit($slug)
{
$article = $this->Articles
->findBySlug($slug)
->contain('Tags') // load associated Tags
->firstOrFail();
$this->Authorization->authorize($article);

if ($this->request->is(['post', 'put'])) {
(continues on next page)

80 Chapter 4. Tutorials & Examples

CakePHP Book, Release 5.x

}

}

(continued from previous page)

$this->Articles->patchEntity($article, $this->request->getData(), [
// Added: Disable modification of user_id.
'accessibleFields' => ['user_id' => false]

D;

if ($this->Articles->save($article)) {
$this->Flash->success(__('Your article has been updated.'));

return $this->redirect(['action' => 'index']);

}

$this->Flash->error(__('Unable to update your article.'));

$tags = $this->Articles->Tags->find('list')->all(Q;
$this->set(compact('article', 'tags'));

Here we’re modifying which properties can be mass-assigned, via the options for patchEntity(). See the
Changing Accessible Fields section for more information. Remember to remove the user_id control from tem-
plates/Articles/edit.php as we no longer need it.

Wrapping Up

We’ve built a simple CMS application that allows users to login, post articles, tag them, explore posted articles by
tag, and applied basic access control to articles. We’ve also added some nice UX improvements by leveraging the
FormHelper and ORM capabilities.

Thank you for taking the time to explore CakePHP. Next, you should learn more about the Database Access & ORM,
or you peruse the /topics.

CMS Tutorial - Authorization 81

CakePHP Book, Release 5.x

82 Chapter 4. Tutorials & Examples

CHAPTER 5

Contributing

There are a number of ways you can contribute to CakePHP. The following sections cover the various ways you can
contribute to CakePHP:

Documentation

Contributing to the documentation is simple. The files are hosted on https://github.com/cakephp/docs. Feel free to
fork the repo, add your changes/improvements/translations and give back by issuing a pull request. You can even edit
the docs online with GitHub, without ever downloading the files — the “Improve this Doc” button on any given page
will direct you to GitHub’s online editor for that page.

CakePHP documentation is continuously integrated*’, and deployed after each pull request is merged.

Translations

Email the docs team (docs at cakephp dot org) or hop on IRC (#cakephp on freenode) to discuss any translation efforts
you would like to participate in.

New Translation Language

We want to provide translations that are as complete as possible. However, there may be times where a translation file
is not up-to-date. You should always consider the English version as the authoritative version.

If your language is not in the current languages, please contact us through Github and we will consider creating a
skeleton folder for it. The following sections are the first one you should consider translating as these files don’t change
often:

e index.rst
e intro.rst

* quickstart.rst

49 https://en.wikipedia.org/wiki/Continuous_integration

83

https://github.com/cakephp/docs
https://en.wikipedia.org/wiki/Continuous_integration

CakePHP Book, Release 5.x

e installation.rst
¢ /intro folder

* /tutorials-and-examples folder

Reminder for Docs Administrators

The structure of all language folders should mirror the English folder structure. If the structure changes for the English
version, we should apply those changes in the other languages.

For example, if a new English file is created in en/file.rst, we should:
¢ Add the file in all other languages : fr/file.rst, zh/file.rst, ...

* Delete the content, but keeping the title, meta information and eventual toc-tree elements. The following
note will be added while nobody has translated the file:

File Title
HHHHAHA AR

. note::
The documentation is not currently supported in XX language for this
page.

Please feel free to send us a pull request on
"Github <https://github.com/cakephp/docs>"_ or use the **Improve This Doc**
button to directly propose your changes.

You can refer to the English version in the select top menu to have
information about this pagems topic.

// If toc-tree elements are in the English version
. toctree::
:maxdepth: 1

one-toc-file
other-toc-file

. meta::
:title lang=xx: File Title
:keywords lang=xx: title, description,...

Translator tips

* Browse and edit in the language you want the content to be translated to - otherwise you won’t see what has
already been translated.

¢ Feel free to dive right in if your chosen language already exists on the book.
e Use Informal Form.
¢ Translate both the content and the title at the same time.

* Do compare to the English content before submitting a correction (if you correct something, but don’t integrate
an ‘upstream’ change your submission won’t be accepted).

30 https://en.wikipedia.org/wiki/Register#Linguistics

84 Chapter 5. Contributing

https://en.wikipedia.org/wiki/Register#Linguistics

CakePHP Book, Release 5.x

¢ If you need to write an English term, wrap it in tags. For example, “asdf asdf Controller asdf” or “asdf
asdf Kontroller (Controller) asfd”.

* Do not submit partial translations.

* Do not edit a section with a pending change.

* Do not use HTML entities’! for accented characters, the book uses UTF-8.
* Do not significantly change the markup (HTML) or add new content.

* If the original content is missing some info, submit an edit for that first.

Documentation Formatting Guide

The new CakePHP documentation is written with ReST formatted text’>. ReST (Re Structured Text) is a plain text
markup syntax similar to markdown, or textile. To maintain consistency it is recommended that when adding to the
CakePHP documentation you follow the guidelines here on how to format and structure your text.

Line Length

Lines of text should be wrapped at 80 columns. The only exception should be long URLS, and code snippets.

Headings and Sections
Section headers are created by underlining the title with punctuation characters at least the length of the text.
* # Is used to denote page titles.
» =Is used for sections in a page.
* - Is used for subsections.
* ~Is used for sub-subsections.
» 4 Is used for sub-sub-subsections.

Headings should not be nested more than 5 levels deep. Headings should be preceded and followed by a blank line.

Paragraphs
Paragraphs are simply blocks of text, with all the lines at the same level of indentation. Paragraphs should be separated
by one blank line.
Inline Markup
* One asterisk: fext for emphasis (italics) We’ll use it for general highlighting/emphasis.
- *text*.

* Two asterisks: text for strong emphasis (boldface) We’ll use it for working directories, bullet list subject, table
names and excluding the following word “table”.

- **/config/Migrations**, **articles*¥*, etc.

* Two backquotes: text for code samples We’ll use it for names of method options, names of table columns,
object names, excluding the following word “object” and for method/function names — include “()”.

— " “cascadeCallbacks™ °, " “true °, " "id’ ", " "PagesController °, " “config(Q) °, etc.

51 https://en.wikipedia.org/wiki/List_of XML_and_HTML_character_entity_references
52 https://en.wikipedia.org/wiki/ReStructured Text

Documentation 85

https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
https://en.wikipedia.org/wiki/ReStructuredText

CakePHP Book, Release 5.x

If asterisks or backquotes appear in running text and could be confused with inline markup delimiters, they have to be
escaped with a backslash.

Inline markup has a few restrictions:
* [t may not be nested.
» Content may not start or end with whitespace: * text*® is wrong.
* Content must be separated from surrounding text by non-word characters. Use a backslash escaped space to
work around that: onelong\ *bolded*\ word.
Lists

List markup is very similar to markdown. Unordered lists are indicated by starting a line with a single asterisk and a
space. Numbered lists can be created with either numerals, or # for auto numbering:

* This is a bullet
* So is this. But this line
has two lines.

1. First line

2. Second line

#. Automatic numbering

#. Will save you some time.

Indented lists can also be created, by indenting sections and separating them with an empty line:

* First line
* Second line

* Going deeper
* Thoah

* Back to the first level.

Definition lists can be created by doing the following:
term

definition
CakePHP

An MVC framework for PHP

Terms cannot be more than one line, but definitions can be multi-line and all lines should be indented consistently.

Links
There are several kinds of links, each with their own uses.
External Links

Links to external documents can be done with the following:

"External Link to php.net <https://php.net>"

86 Chapter 5. Contributing

CakePHP Book, Release 5.x

The resulting link would look like this: External Link to php.net™

Links to Other Pages

:doc:

Other pages in the documentation can be linked to using the :doc: role. You can link to the specified document
using either an absolute or relative path reference. You should omit the .rst extension. For example, if the ref-
erence :doc: form™ appears in the document core-helpers/html, then the link references core-helpers/
form. If the reference was :doc: " /core-helpers’, it would always reference /core-helpers regardless of
where it was used.

Cross Referencing Links

iref:

You can cross reference any arbitrary title in any document using the :ref: role. Link label targets must be
unique across the entire documentation. When creating labels for class methods, it’s best to use class-method
as the format for your link label.

The most common use of labels is above a title. Example:

. _label-name:

Section heading

More content here.

Elsewhere you could reference the above section using :ref: label-name . The link’s text would be the title
that the link preceded. You can also provide custom link text using :ref: Link text <label-name>'.

Prevent Sphinx to Output Warnings

Sphinx will output warnings if a file is not referenced in a toc-tree. It’s a great way to ensure that all files have a link
directed to them, but sometimes, you don’t need to insert a link for a file, eg. for our epub-contents and pdf-contents
files. In those cases, you can add :orphan: at the top of the file, to suppress warnings that the file is not in the toc-tree.

Describing Classes and their Contents

The CakePHP documentation uses the phpdomain®* to provide custom directives for describing PHP objects and con-
structs. Using these directives and roles is required to give proper indexing and cross referencing features.

Describing Classes and Constructs

Each directive populates the index, and or the namespace index.

. php:global:: name

This directive declares a new PHP global variable.

. php:function:: name(signature)

Defines a new global function outside of a class.

33 https://php.net
54 https://pypi.org/project/sphinxcontrib-phpdomain/

Documentation 87

https://php.net
https://pypi.org/project/sphinxcontrib-phpdomain/

CakePHP Book, Release 5.x

. php:const:: name

This directive declares a new PHP constant, you can also use it nested inside a class directive to create class
constants.

. php:exception:: name

This directive declares a new Exception in the current namespace. The signature can include constructor argu-
ments.

. php:class:: name
Describes a class. Methods, attributes, and constants belonging to the class should be inside this directive’s body:

. php:class:: MyClass
Class description
. php:method:: method($argument)

Method description

Attributes, methods and constants don’t need to be nested. They can also just follow the class declaration:

. php:class:: MyClass
Text about the class
[[[@hp:method:: methodName ()

Text about the method

e See also

php:method, php:attr, php:const

. php:method:: name(signature)

Describe a class method, its arguments, return value, and exceptions:

. php:method:: instanceMethod($one, $two)

:param string $one: The first parameter.
:param string $two: The second parameter.
:returns: An array of stuff.

:throws: InvalidArgumentException

This is an instance method.

. php:staticmethod:: ClassName: :methodName(signature)

Describe a static method, its arguments, return value and exceptions, see php :method for options.

. php:attr:: name

Describe an property/attribute on a class.

88

Chapter 5. Contributing

CakePHP Book, Release 5.x

Prevent Sphinx to Output Warnings

Sphinx will output warnings if a function is referenced in multiple files. It’s a great way to ensure that you did not add
a function two times, but sometimes, you actually want to write a function in two or more files, eg. debug object is
referenced in /development/debugging and in /core-libraries/global-constants-and-functions. In this case, you can add
:noindex: under the function debug to suppress warnings. Keep only one reference without :no-index: to still
have the function referenced:

. php:function:: debug(mixed $var, boolean $showHtml = null, S$showFrom = true)
:noindex:

Cross Referencing

The following roles refer to PHP objects and links are generated if a matching directive is found:

:php: func:
Reference a PHP function.

:php:global:
Reference a global variable whose name has $ prefix.

:php:const:
Reference either a global constant, or a class constant. Class constants should be preceded by the owning class:

DateTime has an :php:const: DateTime::ATOM constant.
:php:class:

Reference a class by name:

:php:class: ClassName"
:php:meth:

Reference a method of a class. This role supports both kinds of methods:

:php:meth: DateTime: :setDate’
:php:meth: Classname: :staticMethod"

:php:attr:
Reference a property on an object:
:php:attr: ClassName: : $propertyName"

:php:exc:

Reference an exception.

Source Code

Literal code blocks are created by ending a paragraph with : :. The literal block must be indented, and like all paragraphs
be separated by single lines:

This is a paragraph::

while ($i--) {
doStuff()

(continues on next page)

Documentation 89

CakePHP Book, Release 5.x

(continued from previous page)

This is regular text again.
Literal text is not modified or formatted, save that one level of indentation is removed.

Notes and Warnings

There are often times when you want to inform the reader of an important tip, special note or a potential hazard.
Admonitions in sphinx are used for just that. There are fives kinds of admonitions.

e .. tip:: Tips are used to document or re-iterate interesting or important information. The content of the
directive should be written in complete sentences and include all appropriate punctuation.

e .. note:: Notes are used to document an especially important piece of information. The content of the direc-
tive should be written in complete sentences and include all appropriate punctuation.

e .. warning:: Warnings are used to document potential stumbling blocks, or information pertaining to security.
The content of the directive should be written in complete sentences and include all appropriate punctuation.

e .. versionadded:: X.Y.Z “Version added” admonitions are used to display notes specific to new features
added at a specific version, X.Y.Z being the version on which the said feature was added.

e .. deprecated:: X.Y.Z Asopposed to “version added” admonitions, “deprecated” admonition are used to
notify of a deprecated feature, X.Y.Z being the version on which the said feature was deprecated.

All admonitions are made the same:

. note::

Indented and preceded and followed by a blank line. Just like a
paragraph.

This text is not part of the note.

Samples
© Tip

This is a helpful tid-bit you probably forgot.

© Note

You should pay attention here.

Warning

It could be dangerous.

Added in version 4.0.0: This awesome feature was added in version 4.0.0

Deprecated since version 4.0.1: This old feature was deprecated on version 4.0.1

90 Chapter 5. Contributing

CakePHP Book, Release 5.x

Tickets

Getting feedback and help from the community in the form of tickets is an extremely important part of the CakePHP
development process. All of CakePHP’s tickets are hosted on GitHub”.

Reporting Bugs
Well written bug reports are very helpful. There are a few steps to help create the best bug report possible:

* Do: Please search’® for a similar existing ticket, and ensure someone hasn’t already reported your issue, or that
it hasn’t already been fixed in the repository.

* Do: Please include detailed instructions on how to reproduce the bug. This could be in the form of a test-case
or a snippet of code that demonstrates the issue. Not having a way to reproduce an issue means it’s less likely to
get fixed.

* Do: Please give as many details as possible about your environment: (OS, PHP version, CakePHP version).

* Don’t: Please don’t use the ticket system to ask support questions. Both the support channel on the CakePHP
Slack workspace®’ and the #cakephp IRC channel on Freenode’® have many developers available to help answer
your questions. Also have a look at Stack Overflow’” or the official CakePHP forum®’.

Reporting Security Issues

If you’ve found a security issue in CakePHP, please use the following procedure instead of the normal bug reporting
system. Instead of using the bug tracker, mailing list or IRC please send an email to security [at] cakephp.org. Emails
sent to this address go to the CakePHP core team on a private mailing list.

For each report, we try to first confirm the vulnerability. Once confirmed, the CakePHP team will take the following
actions:

* Acknowledge to the reporter that we’ve received the issue, and are working on a fix. We ask that the reporter
keep the issue confidential until we announce it.

 Get a fix/patch prepared.
* Prepare a post describing the vulnerability, and the possible exploits.
* Release new versions of all affected versions.

* Prominently feature the problem in the release announcement.

Code

Patches and pull requests are a great way to contribute code back to CakePHP. Pull requests can be created in GitHub,
and are preferred over patch files in ticket comments.

Initial Setup

Before working on patches for CakePHP, it’s a good idea to get your environment setup. You’ll need the following
software:

* Git

33 https://github.com/cakephp/cakephp/issues

36 https://github.com/cakephp/cakephp/search?q=it+is+broken&ref=cmdformé&type=Issues
57 https://cakesf.herokuapp.com

38 https://webchat.freenode.net

39 https://stackoverflow.com/questions/tagged/cakephp

60 https://discourse.cakephp.org

Tickets 91

https://github.com/cakephp/cakephp/issues
https://github.com/cakephp/cakephp/search?q=it+is+broken&ref=cmdform&type=Issues
https://cakesf.herokuapp.com
https://cakesf.herokuapp.com
https://webchat.freenode.net
https://stackoverflow.com/questions/tagged/cakephp
https://discourse.cakephp.org

CakePHP Book, Release 5.x

* PHP 8.1 or greater
e PHPUnit 5.7.0 or greater

Set up your user information with your name/handle and working email address:

git config --global user.name 'Bob Barker'
git config --global user.email 'bob.barker@example.com'

O Note

If you are new to Git, we highly recommend you to read the excellent and free ProGit°®' book.

Get a clone of the CakePHP source code from GitHub:
* If you don’t have a GitHub®? account, create one.
* Fork the CakePHP repository® by clicking the Fork button.

After your fork is made, clone your fork to your local machine:

git clone git@github.com:YOURNAME/cakephp.git

Add the original CakePHP repository as a remote repository. You’ll use this later to fetch changes from the CakePHP
repository. This will let you stay up to date with CakePHP:

cd cakephp
git remote add upstream git://github.com/cakephp/cakephp.git

Now that you have CakePHP setup you should be able to define a $test database connection, and run all the tests.

Working on a Patch
Each time you want to work on a bug, feature or enhancement create a topic branch.

The branch you create should be based on the version that your fix/enhancement is for. For example if you are fixing a
bug in 3.x you would want to use the master branch as the base for your branch. If your change is a bug fix for the
2.x release series, you should use the 2. x branch:

fixing a bug on 3.x
git fetch upstream
git checkout -b ticket-1234 upstream/master

fixing a bug on 2.x
git fetch upstream
git checkout -b ticket-1234 upstream/2.x

© Tip

Use a descriptive name for your branch. Referencing the ticket or feature name is a good convention. Examples
include ticket-1234 and feature-awesome.

61 https://git-scm.com/book/
62 https://github.com
63 https://github.com/cakephp/cakephp

92 Chapter 5. Contributing

https://git-scm.com/book/
https://github.com
https://github.com/cakephp/cakephp

CakePHP Book, Release 5.x

The above will create a local branch based on the upstream (CakePHP) 2.x branch. Work on your fix, and make as
many commits as you need; but keep in mind the following:

* Follow the Coding Standards.
* Add a test case to show the bug is fixed, or that the new feature works.

* Keep your commits logical, and write clear commit messages that provide context on what you changed and why.

Submitting a Pull Request

Once your changes are done and you’re ready for them to be merged into CakePHP, you’ll want to update your branch:

Rebase fix on top of master
git checkout master

git fetch upstream

git merge upstream/master

git checkout <branch_name>
git rebase master

This will fetch + merge in any changes that have happened in CakePHP since you started. It will then rebase - or replay
your changes on top of the current code. You might encounter a conflict during the rebase. If the rebase quits early you
can see which files are conflicted/un-merged with git status. Resolve each conflict, and then continue the rebase:

git add <filename> # do this for each conflicted file.
git rebase --continue

Check that all your tests continue to pass. Then push your branch to your fork:

git push origin <branch-name>

If you’ve rebased after pushing your branch, you’ll need to use force push:

git push --force origin <branch-name>
Once your branch is on GitHub, you can submit a pull request on GitHub.

Choosing Where Your Changes will be Merged Into

When making pull requests you should make sure you select the correct base branch, as you cannot edit it once the pull
request is created.

« If your change is a bugfix and doesn’t introduce new functionality and only corrects existing behavior that is
present in the current release. Then choose master as your merge target.

* If your change is a new feature or an addition to the framework, then you should choose the branch with the next
version number. For example if the current stable release is 4.0.0, the branch accepting new features will be
4.next.

* If your change is a breaks existing functionality, or APIs then you’ll have to choose then next major release. For
example, if the current release is 4. 0.0 then the next time existing behavior can be broken will be in 5. x so you
should target that branch.

© Note

Remember that all code you contribute to CakePHP will be licensed under the MIT License, and the Cake Software
Foundation®* will become the owner of any contributed code. Contributors should follow the CakePHP Community
Guidelines®.

Code 93

https://cakefoundation.org/old
https://cakefoundation.org/old
https://cakephp.org/get-involved
https://cakephp.org/get-involved

CakePHP Book, Release 5.x

All bug fixes merged into a maintenance branch will also be merged into upcoming releases periodically by the core
team.

Coding Standards

CakePHP developers will use the PSR-12 coding style guide® in addition to the following rules as coding standards.
It is recommended that others developing Cakelngredients follow the same standards.

You can use the CakePHP Code Sniffer®’ to check that your code follows required standards.

Adding New Features

No new features should be added, without having their own tests — which should be passed before committing them to
the repository.

IDE Setup

Please make sure your IDE is set up to “trim right” on whitespaces. There should be no trailing spaces per line.

Most modern IDEs also support an .editorconfig file. The CakePHP app skeleton ships with it by default. It already
contains best practise defaults.

We recommend to use the IdeHelper®® plugin if you want to maximize IDE compatibility. It will assist to keep the
annotations up-to-date which will make the IDE fully understand how all classes work together and provides better
type-hinting and auto-completion.

Indentation
Four spaces will be used for indentation.

So, indentation should look like this:

// base level
// level 1
// level 2
// level 1
// base level

Or:

$booleanVariable = true;

$stringVariable = 'moose';

if ($booleanVariable) {
echo 'Boolean value is true';
if ($stringVariable === 'moose') {

echo 'We have encountered a moose';

}

}

In cases where you’re using a multi-line function call use the following guidelines:

64 https://cakefoundation.org/old

65 https://cakephp.org/get-involved

6 https://www.php-fig.org/pst/psr- 12/

67 https://github.com/cakephp/cakephp-codesniffer

68 https://github.com/dereuromark/cakephp-ide-helper

94 Chapter 5. Contributing

https://www.php-fig.org/psr/psr-12/
https://github.com/cakephp/cakephp-codesniffer
https://github.com/dereuromark/cakephp-ide-helper

CakePHP Book, Release 5.x

* Opening parenthesis of a multi-line function call must be the last content on the line.
* Only one argument is allowed per line in a multi-line function call.
* Closing parenthesis of a multi-line function call must be on a line by itself.

As an example, instead of using the following formatting:

$matches = array_intersect_key($this->_listeners,
array_flip(preg_grep($matchPattern,
array_keys($this->_listeners), 0)));

Use this instead:

$matches = array_intersect_key(
$this->_listeners,
array_£flip(
preg_grep($matchPattern, array_keys($this->_listeners), 0)
)
);

Line Length

It is recommended to keep lines at approximately 100 characters long for better code readability. A limit of 80 or 120
characters makes it necessary to distribute complex logic or expressions by function, as well as give functions and
objects shorter, more expressive names. Lines must not be longer than 120 characters.

In short:
¢ 100 characters is the soft limit.

¢ 120 characters is the hard limit.

Control Structures

Control structures are for example “if”, “for”, “foreach”, “while”, “switch” etc. Below, an example with “if”:

if (Cexpr_1) || (expr_2)) {
// action_1;

} elseif (!(expr_3) && (expr_4)) {
// action_2;

} else {
// default_action;

}

* In the control structures there should be 1 (one) space before the first parenthesis and 1 (one) space between the
last parenthesis and the opening bracket.

* Always use curly brackets in control structures, even if they are not needed. They increase the readability of the
code, and they give you fewer logical errors.

* Opening curly brackets should be placed on the same line as the control structure. Closing curly brackets should
be placed on new lines, and they should have same indentation level as the control structure. The statement
included in curly brackets should begin on a new line, and code contained within it should gain a new level of
indentation.

* Inline assignments should not be used inside of the control structures.

Coding Standards 95

CakePHP Book, Release 5.x

// wrong = no brackets, badly placed statement
if (expr) statement;

// wrong = no brackets
if (expr)
statement;

// good
if (expr) {
statement;

¥

// wrong = inline assignment
if ($variable = Class::function()) {
statement;

¥

// good
$variable = Class::function();
if ($variable) {

statement;

¥

Ternary Operator

Ternary operators are permissible when the entire ternary operation fits on one line. Longer ternaries should be split
into if else statements. Ternary operators should not ever be nested. Optionally parentheses can be used around the
condition check of the ternary for clarity:

// Good, simple and readable
$variable = isset($options['variable']) ? S$options['variable'] : true;

// Nested ternaries are bad
$variable = isset($options['variable']) ? isset($options['othervar']) ? true : false :.
—false;

Template Files

In template files developers should use keyword control structures. Keyword control structures are easier to read in
complex template files. Control structures can either be contained in a larger PHP block, or in separate PHP tags:

<?php
if ($isAdmin):
echo '<p>You are the admin user.</p>';
endif;
7>
<p>The following is also acceptable:</p>
<?php if ($isAdmin): ?>
<p>You are the admin user.</p>
<?php endif; 7>

96 Chapter 5. Contributing

CakePHP Book, Release 5.x

Comparison

Always try to be as strict as possible. If a non-strict test is deliberate it might be wise to comment it as such to avoid
confusing it for a mistake.

For testing if a variable is null, it is recommended to use a strict check:

if ($value === null) {
J/ ...
}

The value to check against should be placed on the right side:

// not recommended

if (null === $this->foo()) {
/) ...

}

// recommended

if ($this->foo() === null) {
A co-

}

Function Calls

Functions should be called without space between function’s name and starting parenthesis. There should be one space
between every parameter of a function call:

$var = foo($bar, $bar2, S$bar3);

As you can see above there should be one space on both sides of equals sign (=).

Method Definition

Example of a method definition:

public function someFunction($argl, S$arg2 = '')
{
if (expr) {
statement;
}

return $var;

}

Parameters with a default value, should be placed last in function definition. Try to make your functions return some-
thing, at least true or false, so it can be determined whether the function call was successful:

public function connection($dns, $persistent = false)
{
if (is_array($dns)) {
$dnsInfo = $dns;
} else {
$dnsInfo = BD::parseDNS($dns);
}

(continues on next page)

Coding Standards 97

CakePHP Book, Release 5.x

¥

if (! ($dnsInfo) || !($dnsInfo['phpType']l)) {
return $this->addError();

}

return true;

There are spaces on both side of the equals sign.

Bail Early

Try to avoid unnecessary nesting by bailing early:

public function run(array $data)

{

}

if (!$success) {
return false;

}

public function check(array $data)

{

}

if (!$success) {
throw new RuntimeException(/* ... */);

}

This helps to keep the logic sequential which improves readability.

Typehinting

(continued from previous page)

Arguments that expect objects, arrays or callbacks (callable) can be typehinted. We only typehint public methods,
though, as typehinting is not cost-free:

Vasd

* Some method description.

* @param
* @param
* @param
* @param
*/
public function foo(Table $table, array $array, callable $callback, $boolean)

{
}

\Cake\ORM\Table $table The table class to use.
array $array Some array value.

callable $callback Some callback.

bool $boolean Some boolean value.

98

Chapter 5. Contributing

CakePHP Book, Release 5.x

Here $table must be an instance of \Cake\ORM\Table, $array must be an array and $callback must be of type
callable (a valid callback).

Note that if you want to allow $array to be also an instance of \ArrayObject you should not typehint as array
accepts only the primitive type:

/7’: *

* Some method description.

* @param array|\ArrayObject $array Some array value.
:'r/

public function foo($array)

{

}

Anonymous Functions (Closures)

Defining anonymous functions follows the PSR-12% coding style guide, where they are declared with a space after the
function keyword, and a space before and after the use keyword:

$closure = function ($argl, $arg2) use ($varl, $var2) {
// code
};

Method Chaining

Method chaining should have multiple methods spread across separate lines, and indented with four spaces:

$email->from(' foo@example.com')
->to('bar@example.com')
->subject('A great message')
->send();

Commenting Code
All comments should be written in English, and should in a clear way describe the commented block of code.
Comments can include the following phpDocumentor’ tags:

» @deprecated’! Using the @version <vector> <description> format, where version and description
are mandatory. Version refers to the one it got deprecated in.
+ @example’

s @ignore”?

e @internal™*
e @link”

o @see’®

9 https://www.php-fig.org/pst/pst-12/

70 https://phpdoc.org

71 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/deprecated.html
72 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/example.html
73 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/ignore. html

74 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/internal html

75 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/link.html

76 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/see.html

Coding Standards 99

https://www.php-fig.org/psr/psr-12/
https://phpdoc.org
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/deprecated.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/example.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/ignore.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/internal.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/link.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/see.html

CakePHP Book, Release 5.x

o @since’’
o @version’®

PhpDoc tags are very much like JavaDoc tags in Java. Tags are only processed if they are the first thing in a DocBlock
line, for example:

/-.': W%

* Tag example.

* @author this tag is parsed, but this @version is ignored
* @version 1.0 this tag is also parsed

-.'.-/

Vi
* Example of inline phpDoc tags.

* This function works hard with foo() to rule the world.

* @return void
*/
function bar()
{
}

/:’: *

* Foo function.

* @return void
%/
function foo()
{
}

Comment blocks, with the exception of the first block in a file, should always be preceded by a newline.

Variable Types
Variable types for use in DocBlocks:

Type

Description

mixed

A variable with undefined (or multiple) type.
int

Integer type variable (whole number).

float
Float type (point number).

bool
Logical type (true or false).

77 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/since.html
78 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/version.html

100 Chapter 5. Contributing

https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/since.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/version.html

CakePHP Book, Release 5.x

string
String type (any value in “ “or *).
null
Null type. Usually used in conjunction with another type.
array
Array type.
object
Object type. A specific class name should be used if possible.
resource
Resource type (returned by for example mysql_connect()). Remember that when you specify the type as mixed,
you should indicate whether it is unknown, or what the possible types are.
callable

Callable function.

You can also combine types using the pipe char:

int|bool

For more than two types it is usually best to just use mixed.

When returning the object itself (for example, for chaining), one should use $this instead:

/:’: *

* Foo function.

* @return $this
7’:/
public function foo()

{

return $this;

}

Including Files

include, require, include_once and require_once do not have parentheses:

// wrong = parentheses
require_once('ClassFileName.php');
require_once ($class);

// good = no parentheses

require_once 'ClassFileName.php';
require_once $class;

When including files with classes or libraries, use only and always the require_once’® function.

PHP Tags

Always use long tags (<?php ?>) instead of short tags (<? ?7>). The short echo should be used in template files where
appropriate.

79 https://php.net/require_once

Coding Standards 101

https://php.net/require_once

CakePHP Book, Release 5.x

Short Echo

The short echo should be used in template files in place of <?php echo. It should be immediately followed by a single
space, the variable or function value to echo, a single space, and the php closing tag:

// wrong = semicolon, no spaces
<td><?=%$name; ?></td>

// good = spaces, no semicolon
<td><?= $name ?></td>

As of PHP 5.4 the short echo tag (<?=) is no longer to be consider a ‘short tag’ is always available regardless of the
short_open_tag ini directive.

Naming Convention
Functions

Write all functions in camelBack:

function longFunctionName ()
{
}

Classes

Class names should be written in CamelCase, for example:

class ExampleClass
{
}

Variables

Variable names should be as descriptive as possible, but also as short as possible. All variables should start with a
lowercase letter, and should be written in camelBack in case of multiple words. Variables referencing objects should
in some way associate to the class the variable is an object of. Example:

$user = 'John';
$users = ['John', 'Hans', 'Arne'];

$dispatcher = new Dispatcher();

Member Visibility

Use PHP’s public, protected and private keywords for methods and variables.

Example Addresses

For all example URL and mail addresses use “example.com”, “example.org” and “example.net”, for example:
* Email: someone@example.com
* WWW: http://www.example.com

* FTP: ftp://ftp.example.com

102 Chapter 5. Contributing

mailto:someone@example.com
http://www.example.com
ftp://ftp.example.com

CakePHP Book, Release 5.x

The “example.com” domain name has been reserved for this (see RFC 2606"’) and is recommended for use in docu-
mentation or as examples.
Files

File names which do not contain classes should be lowercased and underscored, for example:

long_file_name.php

Casting

For casting we use:

Type

Description

(bool)
Cast to boolean.

(int)
Cast to integer.

(float)
Cast to float.

(string)
Cast to string.

(array)
Cast to array.

(object)
Cast to object.

Please use (int)$var instead of intval($var) and (float) $var instead of floatval($var) when applicable.

Constants

Constants should be defined in capital letters:

define('CONSTANT', 1);

If a constant name consists of multiple words, they should be separated by an underscore character, for example:

define('LONG_NAMED_CONSTANT', 2);

Enums

Enum cases are defined in CamelCase style:

enum ArticleStatus: string

{
case Published = 'Y';

case NotPublishedYet = 'N';

80 https://datatracker.ietf.org/doc/html/rfc2606.html

Coding Standards 103

https://datatracker.ietf.org/doc/html/rfc2606.html

CakePHP Book, Release 5.x

Careful when using empty()/isset()

While empty () often seems correct to use, it can mask errors and cause unintended effects when '0' and 0 are given.
When variables or properties are already defined, the usage of empty() is not recommended. When working with
variables, it is better to rely on type-coercion to boolean instead of empty():

function manipulate($var)
{
// Not recommended, $var is already defined in the scope
if (empty($var)) {
J/ ..
}

// Use boolean type coercion
if (!$var)
/) ...
}
if ($var) {
/) ...
}
}

When dealing with defined properties you should favour null checks over empty ()/isset () checks:

class Thing

{
private S$property; // Defined
public function readProperty()
{
// Not recommended as the property is defined in the class
if (lisset($this->property)) {
/) ...
}
// Recommended
if ($this->property === null) {
}
}
}

When working with arrays, it is better to merge in defaults over using empty () checks. By merging in defaults, you
can ensure that required keys are defined:

function doWork(array S$array)
{
// Merge defaults to remove need for empty checks.
$array += [
'key' => null,
1;

// Not recommended, the key is already set
if (isset(S$array['key'])) {
/) ...

(continues on next page)

104 Chapter 5. Contributing

CakePHP Book, Release 5.x

(continued from previous page)

}

// Recommended

if (Sarray['key'] !== null) {
/) ..

}

Backwards Compatibility Guide

Ensuring that you can upgrade your applications easily and smoothly is important to us. That’s why we only break
compatibility at major release milestones. You might be familiar with semantic versioning®', which is the general
guideline we use on all CakePHP projects. In short, semantic versioning means that only major releases (such as 2.0,
3.0, 4.0) can break backwards compatibility. Minor releases (such as 2.1, 3.1, 3.2) may introduce new features, but
are not allowed to break compatibility. Bug fix releases (such as 2.1.2, 3.0.1) do not add new features, but fix bugs or
enhance performance only.

© Note

Deprecations are removed with the next major version of the framework. It is advised that you adapt to deprecations
as they are introduced to ensure future upgrades are easier.

To clarify what changes you can expect in each release tier we have more detailed information for developers using
CakePHP, and for developers working on CakePHP that helps set expectations of what can be done in minor releases.
Major releases can have as many breaking changes as required.

Migration Guides

For each major and minor release, the CakePHP team will provide a migration guide. These guides explain the new
features and any breaking changes that are in each release. They can be found in the Appendices section of the cookbook.
Using CakePHP

If you are building your application with CakePHP, the following guidelines explain the stability you can expect.

Interfaces

Outside of major releases, interfaces provided by CakePHP will not have any existing methods changed. New methods
may be added, but no existing methods will be changed.

Classes

Classes provided by CakePHP can be constructed and have their public methods and properties used by application
code and outside of major releases backwards compatibility is ensured.

© Note

Some classes in CakePHP are marked with the @internal API doc tag. These classes are not stable and do not
have any backwards compatibility promises.

81 https://semver.org/

Backwards Compatibility Guide 105

https://semver.org/

CakePHP Book, Release 5.x

In minor releases, new methods may be added to classes, and existing methods may have new arguments added. Any
new arguments will have default values, but if you’ve overridden methods with a differing signature you may see fatal
errors. Methods that have new arguments added will be documented in the migration guide for that release.

The following table outlines several use cases and what compatibility you can expect from CakePHP:

If you. .. Backwards compatibility ?
Typehint against the class Yes
Create a new instance Yes
Extend the class Yes
Access a public property Yes
Call a public method Yes
Extend a class and...

Override a public property Yes
Access a protected property No'
Override a protected property No'
Override a protected method No'
Call a protected method No'
Add a public property No
Add a public method No
Add an argument to an overridden method No'

Add a default argument value to an existing method argument Yes

Working on CakePHP

If you are helping make CakePHP even better please keep the following guidelines in mind when adding/changing
functionality:

In a minor release you can:

! Your code may be broken by minor releases. Check the migration guide for details.

106 Chapter 5. Contributing

CakePHP Book, Release 5.x

In a minor release can you. ..

Classes

Remove a class No
Remove an interface No
Remove a trait No
Make final No
Make abstract No
Change name Yes’
Properties

Add a public property Yes
Remove a public property No
Add a protected property Yes
Remove a protected property Yes®
Methods

Add a public method Yes
Remove a public method No
Add a protected method Yes
Move to parent class Yes
Remove a protected method Yes®
Reduce visibility No
Change method name Yes”
Add a new argument with default value Yes
Add a new required argument to an existing method. No
Remove a default value from an existing argument No
Change method type void Yes

Deprecations

In each minor release, features may be deprecated. If features are deprecated, API documentation and runtime warnings
will be added. Runtime errors help you locate code that needs to be updated before it breaks. If you wish to disable
runtime warnings you can do so using the Error. errorLevel configuration value:

// in config/app.php
/) ..
"Error' => [
'errorLevel' => E_ALL A E_USER_DEPRECATED,
]
/) ..

Will disable runtime deprecation warnings.

Experimental Features

Experimental features are not included in the above backwards compatibility promises. Experimental features can
have breaking changes made in minor releases as long as they remain experimental. Experimental features can be
identified by the warning in the book and the usage of @experimental in the API documentation.

Experimental features are intended to help gather feedback on how a feature works before it becomes stable. Once the
interfaces and behavior has been vetted with the community the experimental flags will be removed.

2 You can change a class/method name as long as the old name remains available. This is generally avoided unless renaming has significant
benefit.
3 Avoid whenever possible. Any removals need to be documented in the migration guide.

Backwards Compatibility Guide 107

CakePHP Book, Release 5.x

108 Chapter 5. Contributing

CHAPTER 6

Installation

CakePHP has a few system requirements:

HTTP Server. For example: Apache. Having mod_rewrite is preferred, but by no means required. You can also
use nginx, or Microsoft IIS if you prefer.

Minimum PHP 8.1 (8.4 supported).
mbstring PHP extension

intl PHP extension

SimpleXML PHP extension

PDO PHP extension

© Note

In XAMPP, intl extension is included but you have to uncomment extension=php_intl.dll (or
extension=intl) in php.ini and restart the server through the XAMPP Control Panel.

In WAMP, the intl extension is “activated” by default but not working. To make it work you have to go to php folder
(by default) C:\wamp\bin\php\php{version}, copy all the files that looks like icu*.dll and paste them into the
apache bin directory C:\wamp\bin\apache\apache{version}\bin. Then restart all services and it should be OK.

While a database engine isn’t required, we imagine that most applications will utilize one. CakePHP supports a variety
of database storage engines:

MySQL (5.7 or higher)
MariaDB (10.1 or higher)
PostgreSQL (9.6 or higher)

* Microsoft SQL Server (2012 or higher)

109

CakePHP Book, Release 5.x

« SQLite 3

The Oracle database is supported through the Driver for Oracle Database®> community plugin.

© Note

All built-in drivers require PDO. You should make sure you have the correct PDO extensions installed.

Installing CakePHP

Before starting you should make sure that your PHP version is up to date:
php -v

You should have PHP 8.1 (CLI) or higher. Your webserver’s PHP version must also be of 8.1 or higher, and should be
the same version your command line interface (CLI) uses.

Installing Composer

CakePHP uses Composer®?, a dependency management tool, as the officially supported method for installation.
* Installing Composer on Linux and macOS

1. Run the installer script as described in the official Composer documentation® and follow the instructions
to install Composer.

2. Execute the following command to move the composer.phar to a directory that is in your path:

mv composer.phar /usr/local/bin/composer

¢ Installing Composer on Windows

For Windows systems, you can download Composer’s Windows installer here®. Further instructions for Com-
poser’s Windows installer can be found within the README here®.

Create a CakePHP Project

You can create a new CakePHP application using composer’s create-project command:

composer create-project --prefer-dist cakephp/app:~5.0 my_app_name

Once Composer finishes downloading the application skeleton and the core CakePHP library, you should have a func-
tioning CakePHP application installed via Composer. Be sure to keep the composer.json and composer.lock files with
the rest of your source code.

You can now visit the path to where you installed your CakePHP application and see the default home page. To change
the content of this page, edit templates/Pages/home.php.

Although composer is the recommended installation method, there are pre-installed downloads available on Github®’.
Those downloads contain the app skeleton with all vendor packages installed. Also it includes the composer.phar so
you have everything you need for further use.

82 https://github.com/CakeDC/cakephp-oracle-driver

83 https://getcomposer.org

84 https://getcomposer.org/download/

85 https://github.com/composer/windows-setup/releases/
86 https://github.com/composer/windows-setup

87 https://github.com/cakephp/cakephp/tags

110 Chapter 6. Installation

https://github.com/CakeDC/cakephp-oracle-driver
https://getcomposer.org
https://getcomposer.org/download/
https://github.com/composer/windows-setup/releases/
https://github.com/composer/windows-setup
https://github.com/cakephp/cakephp/tags

CakePHP Book, Release 5.x

Keeping Up To Date with the Latest CakePHP Changes

By default this is what your application composer.json looks like:

"require": {
"cakephp/cakephp": "5.0.*"
}

Each time you run php composer.phar update you will receive patch releases for this minor version. You can
instead change this to A5 .0 to also receive the latest stable minor releases of the 5.x branch.

Installation using DDEV

Another quick way to install CakePHP is via DDEV®®. It is an open source tool for launching local web development
environments.

If you want to configure a new project, you just need:

mkdir my-cakephp-app

cd my-cakephp-app

ddev config --project-type=cakephp --docroot=webroot
ddev composer create --prefer-dist cakephp/app:~5.0
ddev launch

If you have an existing project:

git clone <your-cakephp-repo>

cd <your-cakephp-project>

ddev config --project-type=cakephp --docroot=webroot
ddev composer install

ddev launch

Please check DDEV Docs® for details on how to install / update DDEV.

© Note

IMPORTANT: This is not a deployment script. It is aimed to help developers to set up a development environment
quickly. It is not intended for production environments.

Permissions

CakePHP uses the tmp directory for a number of different operations. Model descriptions, cached views, and session
information are a few examples. The logs directory is used to write log files by the default FileLog engine.

As such, make sure the directories logs, tmp and all its subdirectories in your CakePHP installation are writable by the
web server user. Composer’s installation process makes tmp and its subfolders globally writeable to get things up and
running quickly but you can update the permissions for better security and keep them writable only for the web server
user.

One common issue is that logs and tmp directories and subdirectories must be writable both by the web server and the
command line user. On a UNIX system, if your web server user is different from your command line user, you can run
the following commands from your application directory just once in your project to ensure that permissions will be
setup properly:

88 https://ddev.com/
89 https://ddev.readthedocs.io/

Permissions 111

https://ddev.com/
https://ddev.readthedocs.io/

CakePHP Book, Release 5.x

HTTPDUSER="ps aux | grep -E '[a]pache|[h]ttpd|[_Jwww|[w]ww-data|[n]ginx' | grep -v root.
—| head -1 | cut -d\ -f1°

setfacl -R -m u:${HTTPDUSER}:rwx tmp

setfacl -R -d -m u:${HTTPDUSER}:rwx tmp

setfacl -R -m u:${HTTPDUSER}:rwx logs

setfacl -R -d -m u:${HTTPDUSER}:rwx logs

In order to use the CakePHP console tools, you need to ensure that bin/cake file is executable. On *nix or macOS,
you can execute:

chmod +x bin/cake

On Windows, the .bat file should be executable already. If you are using a Vagrant, or any other virtualized environ-
ment, any shared directories need to be shared with execute permissions (Please refer to your virtualized environment’s
documentation on how to do this).

If, for whatever reason, you cannot change the permissions of the bin/cake file, you can run the CakePHP console
with:

php bin/cake.php

Development Server

A development installation is the fastest way to setup CakePHP. In this example, we use CakePHP’s console to run
PHP’s built-in web server which will make your application available at http://host:port. From the app directory,
execute:

bin/cake server

By default, without any arguments provided, this will serve your application at http://localhost:8765/.

If there is conflict with localhost or port 8765, you can tell the CakePHP console to run the web server on a specific
host and/or port utilizing the following arguments:

bin/cake server -H 192.168.13.37 -p 5673
This will serve your application at http://192.168.13.37:5673/.

That’s it! Your CakePHP application is up and running without having to configure a web server.

© Note

Try bin/cake server -H 0.0.0.0 if the server is unreachable from other hosts.

A\ Warning

The development server should never be used in a production environment. It is only intended as a basic develop-
ment server.

If you’d prefer to use a real web server, you should be able to move your CakePHP install (including the hidden files)
inside your web server’s document root. You should then be able to point your web-browser at the directory you moved
the files into and see your application in action.

112 Chapter 6. Installation

CakePHP Book, Release 5.x

Production

A production installation is a more flexible way to setup CakePHP. Using this method allows an entire domain to act as
a single CakePHP application. This example will help you install CakePHP anywhere on your filesystem and make it
available at http://www.example.com. Note that this installation may require the rights to change the DocumentRoot
on Apache webservers.

After installing your application using one of the methods above into the directory of your choosing - we’ll assume you
chose /cake_install - your production setup will look like this on the file system:

cake_install/
bin/
config/
logs/
plugins/
resources/
src/
templates/
tests/
tmp/
vendor/
webroot/ (this directory is set as DocumentRoot)
.gitignore
.htaccess
composer. json
index.php
phpunit.xml.dist
README . md

Developers using Apache should set the DocumentRoot directive for the domain to:

DocumentRoot /cake_install/webroot

If your web server is configured correctly, you should now find your CakePHP application accessible at http://www.
example.com.

Fire It Up

Alright, let’s see CakePHP in action. Depending on which setup you used, you should point your browser to http://
example.com/ or http://localhost:8765/. At this point, you’ll be presented with CakePHP’s default home, and a message
that tells you the status of your current database connection.

Congratulations! You are ready to create your first CakePHP application.

URL Rewriting
Apache

While CakePHP is built to work with mod_rewrite out of the box—and usually does—we’ve noticed that a few users
struggle with getting everything to play nicely on their systems.

Here are a few things you might try to get it running correctly. First look at your httpd.conf. (Make sure you are editing
the system httpd.conf rather than a user- or site-specific httpd.conf.)

Production 113

http://www.example.com
http://www.example.com
http://www.example.com
http://example.com/
http://example.com/
http://localhost:8765/

CakePHP Book, Release 5.x

These files can vary between different distributions and Apache versions. You may also take a look at https://cwiki.
apache.org/confluence/display/httpd/DistrosDefaultLayout for further information.

1.

Make sure that an .htaccess override is allowed and that AllowOverride is set to All for the correct DocumentRoot.
You should see something similar to:

Each directory to which Apache has access can be configured with respect
to which services and features are allowed and/or disabled in that
directory (and its subdirectories).

First, we configure the "default" to be a very restrictive set of
features.
<Directory />
Options FollowSymLinks
AllowOverride All
Order deny,allow
Deny from all
</Directory>

FHOoHh R R R K%

2. Make sure you are loading mod_rewrite correctly. You should see something like:

LoadModule rewrite_module libexec/apache2/mod_rewrite.so

In many systems these will be commented out by default, so you may just need to remove the leading # symbols.
After you make changes, restart Apache to make sure the settings are active.

Verify that your .htaccess files are actually in the right directories. Some operating systems treat files that start

with .’ as hidden and therefore won’t copy them.

3. Make sure your copy of CakePHP comes from the downloads section of the site or our Git repository, and has

been unpacked correctly, by checking for .htaccess files.

CakePHP app directory (will be copied to the top directory of your application by bake):

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteRule Ag webroot/ [L]
RewriteRule (.*) webroot/$1 [L]
</IfModule>

CakePHP webroot directory (will be copied to your application’s web root by bake):

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule A index.php [L]
</IfModule>

If your CakePHP site still has problems with mod_rewrite, you might want to try modifying settings for Virtual
Hosts. On Ubuntu, edit the file /etc/apache2/sites-available/default (location is distribution-dependent). In this
file, ensure that AllowOverride None is changed to AllowOverride All, so you have:

<Directory />
Options FollowSymLinks
AllowOverride All
</Directory>
(continues on next page)

114

Chapter 6. Installation

https://cwiki.apache.org/confluence/display/httpd/DistrosDefaultLayout
https://cwiki.apache.org/confluence/display/httpd/DistrosDefaultLayout

CakePHP Book, Release 5.x

(continued from previous page)

<Directory /var/www>
Options FollowSymLinks
AllowOverride All
Order Allow,Deny
Allow from all
</Directory>

On macOS, another solution is to use the tool virtualhostx”’ to make a Virtual Host to point to your folder.

For many hosting services (GoDaddy, land1l), your web server is being served from a user directory that al-
ready uses mod_rewrite. If you are installing CakePHP into a user directory (http://example.com/~username/
cakephp/), or any other URL structure that already utilizes mod_rewrite, you’ll need to add RewriteBase state-
ments to the .htaccess files CakePHP uses (.htaccess, webroot/.htaccess).

This can be added to the same section with the RewriteEngine directive, so for example, your webroot .htaccess
file would look like:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/app
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule A index.php [L]
</IfModule>

The details of those changes will depend on your setup, and can include additional things that are not related to
CakePHP. Please refer to Apache’s online documentation for more information.

4. (Optional) To improve production setup, you should prevent invalid assets from being parsed by CakePHP. Mod-
ify your webroot .htaccess to something like:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/app/
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !A/(webroot/)?(img|css|js)/(.*)$
RewriteRule A index.php [L]
</IfModule>

The above will prevent incorrect assets from being sent to index.php and instead display your web server’s 404
page.

Additionally you can create a matching HTML 404 page, or use the default built-in CakePHP 404 by adding an
ErrorDocument directive:

ErrorDocument 404 /404-not-found

nginx

nginx does not make use of .htaccess files like Apache, so it is necessary to create those rewrit-
ten URLs in the site-available configuration. This is usually found in /etc/nginx/sites-available/
your_virtual_host_conf_file. Depending on your setup, you will have to modify this, but at the very least,
you will need PHP running as a FastCGI instance. The following configuration redirects the request to webroot/
index.php:

90 https://clickontyler.com/virtualhostx/

URL Rewriting 115

https://clickontyler.com/virtualhostx/
http://example.com/~username/cakephp/
http://example.com/~username/cakephp/

CakePHP Book, Release 5.x

location / {
try_files $uri $uri/ /index.php?$args;
}

A sample of the server directive is as follows:

server {
listen 380;
listen [::1:80;
server_name www.example.com;
return 301 http://example.com$request_uri;

}
server {
listen 80;
listen [::7:80;
server_name example.com;
root /var/www/example.com/public/webroot;
index index.php;
access_log /var/www/example.com/log/access.log;
error_log /var/www/example.com/log/error.log;
location / {
try_files $uri $uri/ /index.php?$args;
}
location ~ \.php$ {
try_files $uri =404;
include fastcgi_params;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_intercept_errors on;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
3
}
© Note

Recent configurations of PHP-FPM are set to listen to the unix php-fpm socket instead of TCP port 9000 on address
127.0.0.1. If you get 502 bad gateway errors from the above configuration, try update fastcgi_pass to use the
unix socket path (eg: fastcgi_pass unix:/var/run/php/php7.1-fpm.sock;) instead of the TCP port.

NGINX Unit

NGINX Unit”' is dynamically configurable in runtime; the following configuration relies on webroot/index.php,
also serving other .php scripts if present via cakephp_direct:

1 https://unit.nginx.org

116 Chapter 6. Installation

https://unit.nginx.org

CakePHP Book, Release 5.x

"listeners": {

"*:80": {
"pass": "routes/cakephp"
}
I
"routes": {
"cakephp": [
{
"match": {
"uri": [
"*.php",
"*.php/*"
]
L
"action": {
"pass": "applications/cakephp_direct"
}
e
{
"action": {
"share": "/path/to/cakephp/webroot/",
"fallback": {
"pass": "applications/cakephp_index"
}
}
}
]
1,

"applications": {
"cakephp_direct": {

"type": "php",
"root": "/path/to/cakephp/webroot/",
"user": "www-data"

o

"cakephp_index": {
“type": "php",
"root": "/path/to/cakephp/webroot/",
"user": "www-data'",

"script": "index.php"

}

To enable this config (assuming it’s saved as cakephp. json):

curl -X PUT --data-binary @cakephp.json --unix-socket \
/path/to/control.unit.sock http://localhost/config

URL Rewriting 117

CakePHP Book, Release 5.x

IS7 (Windows hosts)

IIS7 does not natively support .htaccess files. While there are add-ons that can add this support, you can also import
htaccess rules into IIS to use CakePHP’s native rewrites. To do this, follow these steps:

1. Use Microsoft’s Web Platform Installer” to install the URL Rewrite Module 2.0”* or download it directly (32-
bit™* / 64-bit*).

2. Create a new file called web.config in your CakePHP root folder.

3. Using Notepad or any XML-safe editor, copy the following code into your new web.config file:

<?xml version="1.0" encoding="UTF-8"7>

<configuration>
<system.webServer>
<rewrite>
<rules>
<rule name="Exclude direct access to webroot/*"
stopProcessing="true">
<match url="Awebroot/(.*)$" ignoreCase="false" />
<action type="None" />
</rule>
<rule name="Rewrite routed access to assets(img, css, files, js, favicon)
stopProcessing="true">
<match url="A(font|img|css|files|js|favicon.ico)(.*)$" />
<action type="Rewrite" url="webroot/{R:1}{R:2}"
appendQueryString="false" />
</rule>
<rule name="Rewrite requested file/folder to index.php"
stopProcessing="true">
<match url="A(.*)$" ignoreCase="false" />
<action type="Rewrite" url="index.php"
appendQueryString="true" />
</rule>
</rules>
</rewrite>
</system.webServer>
</configuration>

Once the web.config file is created with the correct IIS-friendly rewrite rules, CakePHP’s links, CSS, JavaScript, and
rerouting should work correctly.

Lighttpd

Lighttpd does not make use of .htaccess files like Apache, so it is necessary to add a url.rewrite-once configuration
in conf/lighttpd.conf. Ensure the following is present in your lighthttpd configuration:

server.modules += (
"mod_alias",
"mod_cgi",
"mod_rewrite"

(continues on next page)

92 https://www.microsoft.com/web/downloads/platform.aspx

93 https://www.iis.net/downloads/microsoft/url-rewrite

94 https://download.microsoft.com/download/D/8/1/D81E5DD6- 1 ABB-46B0-9B4B-21894E 18B77F/rewrite_x86_en-US.msi
95 https://download.microsoft.com/download/1/2/8/128E2E22-C1B9-44A4-BE2A-5859ED 1D4592/rewrite_amd64_en-US.msi

118 Chapter 6. Installation

https://www.microsoft.com/web/downloads/platform.aspx
https://www.iis.net/downloads/microsoft/url-rewrite
https://download.microsoft.com/download/D/8/1/D81E5DD6-1ABB-46B0-9B4B-21894E18B77F/rewrite_x86_en-US.msi
https://download.microsoft.com/download/D/8/1/D81E5DD6-1ABB-46B0-9B4B-21894E18B77F/rewrite_x86_en-US.msi
https://download.microsoft.com/download/1/2/8/128E2E22-C1B9-44A4-BE2A-5859ED1D4592/rewrite_amd64_en-US.msi

CakePHP Book, Release 5.x

(continued from previous page)

)

Directory Alias

alias.url = ("/TestCake" => "C:/Users/Nicola/Documents/TestCake")
CGI Php

cgi.assign = (".php" => "c:/php/php-cgi.exe")

Rewrite Cake Php (on /TestCake path)

url.rewrite-once = (
"A/TestCake/(css|files|img|js|stats)/(.*)$" => "/TestCake/webroot/$1/$2",
"A/TestCake/(.*)$" => "/TestCake/webroot/index.php/$1"

)

The above lines include PHP CGI configuration and example application configuration for an application on the /
TestCake path.

I Can’t Use URL Rewriting

If you don’t want or can’t get mod_rewrite (or some other compatible module) running on your server, you will need
to use CakePHP’s built in pretty URLs. In config/app.php, uncomment the line that looks like:

"App' => [

Y/

// 'baseUrl' => env('SCRIPT_NAME"),
]

Also remove these .htaccess files:

/.htaccess
webroot/.htaccess

This will make your URLs look like www.example.com/index.php/controllername/actionname/param rather than
www.example.com/controllername/actionname/param.

URL Rewriting 119

CakePHP Book, Release 5.x

120 Chapter 6. Installation

CHAPTER 7

Configuration

While conventions remove the need to configure all of CakePHP, you’ll still need to configure a few things like your
database credentials.

Additionally, there are optional configuration options that allow you to swap out default values & implementations with
ones tailored to your application.

Configuring your Application

Configuration is generally stored in either PHP or INI files, and loaded during the application bootstrap. CakePHP
comes with one configuration file by default, but if required you can add additional configuration files and load them
in your application’s bootstrap code. Cake\Core\Configure is used for global configuration, and classes like Cache
provide setConfig() methods to make configuration simple and transparent.

The application skeleton features a config/app.php file which should contain configuration that doesn’t vary across the
various environments your application is deployed in. The config/app_local.php file should contain the configuration
data that varies between environments and should be managed by configuration management, or your deployment
tooling. Both of these files reference environment variables through the env() function that enables configuration
values to set through the server environment.

Loading Additional Configuration Files

If your application has many configuration options it can be helpful to split configuration into multiple files. After
creating each of the files in your config/ directory you can load them in bootstrap.php:

use Cake\Core\Configure;
use Cake\Core\Configure\Engine\PhpConfig;

Configure: :setConfig('default', new PhpConfig());
Configure::load('app', 'default', false);
Configure::load('other_config', 'default');

121

CakePHP Book, Release 5.x

Environment Variables

Many modern cloud providers, like Heroku, let you define environment variables for configuration data. You can
configure your CakePHP through environment variables in the 12factor app style’®. Environment variables allow your
application to require less state making your application easier to manage when it is deployed across a number of
environments.

As you can see in your app.php, the env () function is used to read configuration from the environment, and build the
application configuration. CakePHP uses DSN strings for databases, logs, email transports and cache configurations
allowing you to easily vary these libraries in each environment.

For local development, CakePHP leverages dotenv’’ to make local development automatically reload environment
variables. Use composer to require this library and then there is a block of code in bootstrap.php that needs to be
uncommented to harness it.

You will see a config/.env.example in your application. By copying this file into config/.env and customizing
the values you can configure your application.

You should avoid committing the config/ . env file to your repository and instead use the config/.env.example as
a template with placeholder values so everyone on your team knows what environment variables are in use and what
should go in each one.

Once your environment variables have been set, you can use env () to read data from the environment:

$debug = env('APP_DEBUG', false);

The second value passed to the env function is the default value. This value will be used if no environment variable
exists for the given key.

General Configuration
Below is a description of the variables and how they affect your CakePHP application.

debug
Changes CakePHP debugging output. false =Production mode. No error messages, errors, or warnings shown.
true = Errors and warnings shown.

App.namespace
The namespace to find app classes under.

© Note

When changing the namespace in your configuration, you will also need to update your composer.json
file to use this namespace as well. Additionally, create a new autoloader by running php composer.phar
dumpautoload.

App.baseUrl
Un-comment this definition if you don’t plan to use Apache’s mod_rewrite with CakePHP. Don’t forget to remove
your .htaccess files too.

App.base
The base directory the app resides in. If false this will be auto detected. If not false, ensure your string starts
with a/ and does NOT end with a /. For example, /basedir is a valid App.base.

9 https://12factor.net/
97 https://github.com/josegonzalez/php-dotenv

122 Chapter 7. Configuration

https://12factor.net/
https://github.com/josegonzalez/php-dotenv

CakePHP Book, Release 5.x

App.encoding
Define what encoding your application uses. This encoding is used to generate the charset in the layout, and
encode entities. It should match the encoding values specified for your database.

App.webroot
The webroot directory.

App.wwwRoot
The file path to webroot.

App.fullBaseUrl
The fully qualified domain name (including protocol) to your application’s root. This is used when generating
absolute URLs. By default this value is generated using the $_SERVER environment. However, you should define
it manually to optimize performance or if you are concerned about people manipulating the Host header. In a CLI
context (from command) the fullBaseUrl cannot be read from $_SERVER, as there is no webserver involved.
You do need to specify it yourself if you do need to generate URLs from a shell (for example, when sending
emails).

App.imageBaseUrl
Web path to the public images directory under webroot. If you are using a CDN you should set this value to the
CDN’s location.

App.cssBaseUrl
Web path to the public css directory under webroot. If you are using a CDN you should set this value to the
CDN’s location.

App.jsBaseUrl
Web path to the public js directory under webroot. If you are using a CDN you should set this value to the CDN’s
location.

App.paths
Configure paths for non class based resources. Supports the plugins, templates, locales subkeys, which
allow the definition of paths for plugins, view templates and locale files respectively.

App.uploadedFilesAsObjects
Defines whether uploaded files are being represented as objects (true), or arrays (false). This option is being
treated as enabled by default. See the File Uploads section in the Request & Response Objects chapter for more
information.

Security.salt
A random string used in hashing. This value is also used as the HMAC salt when doing symmetric encryption.

Asset.timestamp
Appends a timestamp which is last modified time of the particular file at the end of asset files URLs (CSS,
JavaScript, Image) when using proper helpers. Valid values:

* (bool) false - Doesn’t do anything (default)
* (bool) true - Appends the timestamp when debug is true
e (string) ‘force’ - Always appends the timestamp.

Asset.cacheTime
Sets the asset cache time. This determines the http header Cache-Control’s max-age, and the http header’s
Expire’s time for assets. This can take anything that you version of PHP’s strtotime function’® can take. The
default is +1 day.

98 https://php.net/manual/en/function.strtotime.php

Environment Variables 123

https://php.net/manual/en/function.strtotime.php

CakePHP Book, Release 5.x

Using a CDN

To use a CDN for loading your static assets, change App . imageBaseUrl, App.cssBaseUrl, App. jsBaseUrl to point
the CDN URI, for example: https://mycdn.example.com/ (note the trailing /).

All images, scripts and styles loaded via HtmlHelper will prepend the absolute CDN path, matching the same relative
path used in the application. Please note there is a specific use case when using plugin based assets: plugins will not
use the plugin’s prefix when absolute . . .BaseUrl URI is used, for example By default:

e $this->Helper->assetUrl('TestPlugin.logo.png') resolves to test_plugin/logo.png
If you set App.imageBaseUrl to https://mycdn.example.com/:

¢ $this->Helper->assetUrl('TestPlugin.logo.png') resolves to https://mycdn.example.com/
logo.png.

Database Configuration

See the Database Configuration for information on configuring your database connections.

Caching Configuration

See the Caching Configuration for information on configuring caching in CakePHP.

Error and Exception Handling Configuration

See the Error and Exception Configuration for information on configuring error and exception handlers.

Logging Configuration

See the Logging Configuration for information on configuring logging in CakePHP.

Email Configuration

See the Email Configuration for information on configuring email presets in CakePHP.

Session Configuration

See the Session Configuration for information on configuring session handling in CakePHP.

Routing configuration

See the Routes Configuration for more information on configuring routing and creating routes for your application.

Additional Class Paths

Additional class paths are setup through the autoloaders your application uses. When using composer to generate your
autoloader, you could do the following, to provide fallback paths for controllers in your application:

"autoload": {
"psr-4": {
"App\\Controller\\": "/path/to/directory/with/controller/folders/",
"App\\": "src/"

124 Chapter 7. Configuration

CakePHP Book, Release 5.x

The above would setup paths for both the App and App\Controller namespace. The first key will be searched, and
if that path does not contain the class/file the second key will be searched. You can also map a single namespace to
multiple directories with the following:

"autoload": {
"psr-4": {
"App\\": ["src/", "/path/to/directory/"]
}

Plugin, View Template and Locale Paths

Since plugins, view templates and locales are not classes, they cannot have an autoloader configured. CakePHP provides
three Configure variables to setup additional paths for these resources. In your config/app.php you can set these
variables:

return [
// More configuration
"App' => [
'paths' => [
'plugins' => [
ROOT . DS . 'plugins' . DS,
' /path/to/other/plugins/"',
ie
'templates' => [
ROOT . DS . 'templates' . DS,
ROOT . DS . 'templates2' . DS,
Ae
'locales' => [
ROOT . DS . 'resources' . DS . 'locales' . DS,
ie
i
1,
iK;

Paths should end with a directory separator, or they will not work properly.

Inflection Configuration

See the Inflection Configuration docs for more information.

Configure Class

class Cake\Core\Configure

CakePHP’s Configure class can be used to store and retrieve application or runtime specific values. Be careful, this
class allows you to store anything in it, then use it in any other part of your code: a sure temptation to break the MVC
pattern CakePHP was designed for. The main goal of Configure class is to keep centralized variables that can be shared
between many objects. Remember to try to live by “convention over configuration” and you won’t end up breaking the
MVC structure CakePHP provides.

Inflection Configuration 125

CakePHP Book, Release 5.x

Writing Configuration data
static Cake\Core\Configure::write($key, $value)

Use write() to store data in the application’s configuration:

Configure: :write('Company.name', 'Pizza, Inc.');
Configure: :write('Company.slogan', 'Pizza for your body and soul');
© Note

The dot notation used in the $key parameter can be used to organize your configuration settings into logical groups.

The above example could also be written in a single call:

Configure: :write('Company', [
'name' => 'Pizza, Inc.',
'slogan' => 'Pizza for your body and soul'

D;

You can use Configure: :write('debug', $bool) to switch between debug and production modes on the fly.

© Note

Any configuration changes done using Configure: :write() are in memory and will not persist across requests.

Reading Configuration Data
static Cake\Core\Configure::read($key = null, $default = null)

Used to read configuration data from the application. If a key is supplied, the data is returned. Using our examples
from write() above, we can read that data back:

// Returns 'Pizza Inc.'
Configure: :read('Company.name') ;

// Returns 'Pizza for your body and soul'
Configure: :read('Company.slogan');

Configure: :read('Company');
// Returns:
['name' => 'Pizza, Inc.', 'slogan' => 'Pizza for your body and soul'];

// Returns 'fallback' as Company.nope is undefined.
Configure: :read('Company.nope', 'fallback');

If $key is left null, all values in Configure will be returned.
static Cake\Core\Configure::readOrFail ($key)

Reads configuration data just like Cake\Core\Configure: :read() but expects to find a key/value pair. In case the
requested pair does not exist, a RuntimeException will be thrown:

126 Chapter 7. Configuration

CakePHP Book, Release 5.x

Configure: :readOrFail (' Company.name') ; // Yields: 'Pizza, Inc.'
Configure: :readOrFail ('Company.geolocation'); // Will throw an exception

Configure: :readOrFail ('Company"');

// Yields:
['name' => 'Pizza, Inc.', 'slogan' => 'Pizza for your body and soul'];

Checking to see if Configuration Data is Defined
static Cake\Core\Configure::check(8$key)
Used to check if a key/path exists and has non-null value:

$exists = Configure::check('Company.name');

Deleting Configuration Data
static Cake\Core\Configure::delete($key)
Used to delete information from the application’s configuration:

Configure: :delete('Company.name');

Reading & Deleting Configuration Data
static Cake\Core\Configure: :consume ($key)

Read and delete a key from Configure. This is useful when you want to combine reading and deleting values in a single
operation.

static Cake\Core\Configure::consumeOrFail ($key)

Consumes configuration data just like Cake\Core\Configure: :consume () but expects to find a key/value pair. In
case the requested pair does not exist, a RuntimeException will be thrown:

Configure: : consumeOrFail (' Company.name"') ; // Yields: 'Pizza, Inc.'
Configure: : consumeOrFail ('Company.geolocation'); // Will throw an exception

Configure: : consumeOrFail (' Company');

// Yields:
['name' => 'Pizza, Inc.', 'slogan' => 'Pizza for your body and soul'];

Reading and writing configuration files

static Cake\Core\Configure::setConfig($name, $engine)

CakePHP comes with two built-in configuration file engines. Cake\Core\Configure\Engine\PhpConfig is able
to read PHP config files, in the same format that Configure has historically read. Cake\Core\Configure\Engine\
IniConfig is able to read ini config files. See the PHP documentation”” for more information on the specifics of ini
files. To use a core config engine, you’ll need to attach it to Configure using Configure: :config():

9 https://php.net/parse_ini_file

Reading and writing configuration files 127

https://php.net/parse_ini_file

CakePHP Book, Release 5.x

use Cake\Core\Configure\Engine\PhpConfig;

// Read config files from config
Configure::config('default', new PhpConfig());

// Read config files from another path.
Configure::config('default', new PhpConfig('/path/to/your/config/files/"'));

You can have multiple engines attached to Configure, each reading different kinds or sources of configuration files.
You can interact with attached engines using a few other methods on Configure. To check which engine aliases are
attached you can use Configure: :configured():

// Get the array of aliases for attached engines.
Configure: :configured();

// Check if a specific engine is attached
Configure: :configured('default');

static Cake\Core\Configure: :drop($name)

You can also remove attached engines. Configure: :drop('default') would remove the default engine alias. Any
future attempts to load configuration files with that engine would fail:

Configure: :drop('default');

Loading Configuration Files
static Cake\Core\Configure::load($key, Sconfig = 'default’, $merge = true)
Once you’ve attached a config engine to Configure you can load configuration files:

// Load my_file.php using the 'default' engine object.
Configure::load('my_file', 'default');

Loaded configuration files merge their data with the existing runtime configuration in Configure. This allows you to
overwrite and add new values into the existing runtime configuration. By setting $merge to true, values will not ever
overwrite the existing configuration.

A Warning

When merging configuration files with $merge = true, dot notation in keys is not expanded:
// configl.php
'Keyl' => [
'Key2' => [
'Key3' => ['NestedKeyl' => 'Value'],
1,
1,

// config2.php
'Keyl.Key2' => [

'Key3' => ['NestedKey2' => 'Value2'],
]

128 Chapter 7. Configuration

CakePHP Book, Release 5.x

Configure::load('configl', 'default');
Configure::load('config2', 'default', true);

// Now Keyl.Key2.Key3 has the value ['NestedKey2' => 'ValueZ2']
// instead of [NestedKeyl' => 'Value', 'NestedKey2' => 'Value2']

Creating or Modifying Configuration Files
static Cake\Core\Configure::dump($key, $config = 'default’, $keys = [])

Dumps all or some of the data in Configure into a file or storage system supported by a config engine. The serialization
format is decided by the config engine attached as $config. For example, if the ‘default’ engine is a Cake\Core\
Configure\Engine\PhpConfig, the generated file will be a PHP configuration file loadable by the Cake\Core\
Configure\Engine\PhpConfig

Given that the ‘default’ engine is an instance of PhpConfig. Save all data in Configure to the file my_config.php:

Configure: :dump('my_config', 'default');

Save only the error handling configuration:

Configure: :dump('error', 'default', ['Error', 'Exception']);

Configure::dump() can be used to either modify or overwrite configuration files that are readable with
Configure: :load()

Storing Runtime Configuration
static Cake\Core\Configure::store($name, $cacheConfig = 'default', $data = null)

You can also store runtime configuration values for use in a future request. Since configure only remembers values for
the current request, you will need to store any modified configuration information if you want to use it in subsequent
requests:

// Store the current configuration in the 'user_1234' key in the 'default' cache.
Configure::store('user_1234"', 'default');

Stored configuration data is persisted in the named cache configuration. See the Caching documentation for more
information on caching.

Restoring Runtime Configuration
static Cake\Core\Configure::restore($name, $cacheConfig = 'default")

Once you've stored runtime configuration, you’ll probably need to restore it so you can access it again.
Configure: :restore() does exactly that:

// Restore runtime configuration from the cache.
Configure::restore('user_1234"', 'default');

When restoring configuration information it’s important to restore it with the same key, and cache configuration as was
used to store it. Restored information is merged on top of the existing runtime configuration.

Reading and writing configuration files 129

CakePHP Book, Release 5.x

Configuration Engines

CakePHP provides the ability to load configuration files from a number of different sources, and features a pluggable
system for creating your own configuration engines'”’. The built in configuration engines are:

+ JsonConfig'’!

* IniConfig'”
 PhpConfig!*®

By default your application will use PhpConfig.

100 https://api.cakephp.org/5.x/interface- Cake.Core.Configure.ConfigEnginelnterface.html
10T hitps://api.cakephp.org/5.x/class-Cake.Core.Configure.Engine.JsonConfig.html

102 https://api.cakephp.org/5.x/class-Cake.Core.Configure. Engine. IniConfig.html

103 https://api.cakephp.org/5.x/class-Cake.Core.Configure. Engine. PhpConfig html

130 Chapter 7. Configuration

https://api.cakephp.org/5.x/interface-Cake.Core.Configure.ConfigEngineInterface.html
https://api.cakephp.org/5.x/class-Cake.Core.Configure.Engine.JsonConfig.html
https://api.cakephp.org/5.x/class-Cake.Core.Configure.Engine.IniConfig.html
https://api.cakephp.org/5.x/class-Cake.Core.Configure.Engine.PhpConfig.html

CHAPTER 8

Routing

class Cake\Routing\RouterBuilder

Routing provides you tools that map URLSs to controller actions. By defining routes, you can separate how your appli-
cation is implemented from how its URLSs are structured.

Routing in CakePHP also encompasses the idea of reverse routing, where an array of parameters can be transformed
into a URL string. By using reverse routing, you can re-factor your application’s URL structure without having to
update all your code.

Quick Tour

This section will teach you by example the most common uses of the CakePHP Router. Typically you want to display
something as a landing page, so you add this to your config/routes.php file:

/%% @var \Cake\Routing\RouteBuilder $routes */
$routes->connect('/', ['controller' => 'Articles', 'action' => 'index']);

This will execute the index method in the ArticlesController when the homepage of your site is visited. Sometimes
you need dynamic routes that will accept multiple parameters, this would be the case, for example of a route for viewing
an article’s content:

$routes->connect('/articles/*', ['controller' => 'Articles', 'action' => 'view']);

The above route will accept any URL looking like /articles/15 and invoke the method view(15) in the
ArticlesController. This will not, though, prevent people from trying to access URLs looking like /articles/
foobar. If you wish, you can restrict some parameters to conform to a regular expression:

// Using fluent interface
$routes->connect(
'/articles/{id}"',

(continues on next page)

131

CakePHP Book, Release 5.x

(continued from previous page)
['controller' => 'Articles', 'action' => 'view'],
)
->setPatterns(['id"' => '\d+'])
->setPass(['id']);

// Using options array

$routes->connect(
'/articles/{id}"',
['controller' => 'Articles', 'action' => 'view'],
['id" => '\d+', 'pass' => ['id']]

);

The previous example changed the star matcher by a new placeholder {id}. Using placeholders allows us to validate
parts of the URL, in this case we used the \d+ regular expression so that only digits are matched. Finally, we told the
Router to treat the id placeholder as a function argument to the view() function by specifying the pass option. More
on using this option later.

The CakePHP Router can also reverse match routes. That means that from an array containing matching parameters,
it is capable of generating a URL string:

use Cake\Routing\Router;

echo Router::url(['controller' => 'Articles', 'action' => 'view', 'id' => 15]);
// Will output
/articles/15

Routes can also be labelled with a unique name, this allows you to quickly reference them when building links instead
of specifying each of the routing parameters:

// In routes.php

$routes->connect(
' /upgrade',
['controller' => 'Subscriptions', 'action' => 'create'],
['_name' => 'upgrade']

);
use Cake\Routing\Router;

echo Router::url(['_name' => 'upgrade']);
// Will output
/upgrade

To help keep your routing code DRY, the Router has the concept of ‘scopes’. A scope defines a common path segment,
and optionally route defaults. Any routes connected inside a scope will inherit the path/defaults from their wrapping
scopes:

$routes->scope('/blog', ['plugin' => 'Blog'], function (RouteBuilder $routes) {
$routes->connect('/', ['controller' => 'Articles']);

b;

The above route would match /blog/ and send it to Blog\Controller\ArticlesController: :index().

The application skeleton comes with a few routes to get you started. Once you’ve added your own routes, you can
remove the default routes if you don’t need them.

132 Chapter 8. Routing

CakePHP Book, Release 5.x

Connecting Routes

To keep your code DRY you should use ‘routing scopes’. Routing scopes not only let you keep your code DRY, they
also help Router optimize its operation. This method defaults to the / scope. To create a scope and connect some routes
we’ll use the scope () method:

// In config/routes.php
use Cake\Routing\RouteBuilder;
use Cake\Routing\Route\DashedRoute;

$routes->scope('/', function (RouteBuilder S$routes) {
// Connect the generic fallback routes.
$routes->fallbacks(DashedRoute: :class);

b;

The connect () method takes up to three parameters: the URL template you wish to match, the default values for your
route elements, and the options for the route. Options frequently include regular expression rules to help the router
match elements in the URL.

The basic format for a route definition is:

$routes->connect(
'/url/template’,
['targetKey' => 'targetValue'],
['option' => 'matchingRegex']

);

The first parameter is used to tell the router what sort of URL you’re trying to control. The URL is a normal slash
delimited string, but can also contain a wildcard (*) or Route Elements. Using a wildcard tells the router that you are
willing to accept any additional arguments supplied. Routes without a * only match the exact template pattern supplied.

Once you’ve specified a URL, you use the last two parameters of connect () to tell CakePHP what to do with a request
once it has been matched. The second parameter defines the route ‘target’. This can be defined either as an array, or as
a destination string. A few examples of route targets are:

// Array target to an application controller
$routes->connect(

'/users/view/*",

['controller' => 'Users', 'action' => 'view']
);
$routes->connect (' /users/view/*', 'Users::view');

// Array target to a prefixed plugin controller
$routes->connect(

'/admin/cms/articles’,

['prefix' => 'Admin', 'plugin' => 'Cms', 'controller' => 'Articles', 'action' =>
—'index"']
);
$routes->connect('/admin/cms/articles', 'Cms.Admin/Articles::index');

The first route we connect matches URLs starting with /users/view and maps those requests to the
UsersController->view(). The trailing /* tells the router to pass any additional segments as method arguments.
For example, /users/view/123 would map to UsersController->view(123).

The above example also illustrates string targets. String targets provide a compact way to define a route’s destination.
String targets have the following syntax:

Connecting Routes 133

CakePHP Book, Release 5.x

[Plugin] . [Prefix]/[Controller]:: [action]

Some example string targets are:

// Application controller
'Articles::view'

// Application controller with prefix
Admin/Articles::view

// Plugin controller
Cms.Articles::edit

// Prefixed plugin controller
Vendor/Cms .Management/Admin/Articles: :view

Earlier we used the greedy star (/*) to capture additional path segments, there is also the trailing star (/**). Using a
trailing double star, will capture the remainder of a URL as a single passed argument. This is useful when you want to
use an argument that included a / in it:

$routes->connect (
'/pages/**"',
['controller' => 'Pages', 'action' => 'show']

)

The incoming URL of /pages/the-example-/-and-proof would result in a single passed argument of
the-example-/-and-proof.

The second parameter of connect () can define any parameters that compose the default route parameters:

$routes->connect (
' /government ',
['controller' => 'Pages', 'action' => 'display', 5]

s

This example uses the second parameter of connect() to define default parameters. If you built an application that
features products for different categories of customers, you might consider creating a route. This allows you to link to
/government rather than /pages/display/5.

A common use for routing is to rename controllers and their actions. Instead of accessing our users controller at /
users/some-action/5, we’d like to be able to access it through /cooks/some-action/5. The following route
takes care of that:

$routes->connect(
'/cooks/{action}/*', ['controller' => 'Users']

);

This is telling the Router that any URL beginning with /cooks/ should be sent to the UsersController. The action
called will depend on the value of the {action} parameter. By using Route Elements, you can create variable routes,
that accept user input or variables. The above route also uses the greedy star. The greedy star indicates that this
route should accept any additional positional arguments given. These arguments will be made available in the Passed
Arguments array.

When generating URLs, routes are used too. Using ['controller' => 'Users', 'action' =>
'some-action', 5] as a URL will output /cooks/some-action/5 if the above route is the first match
found.

134 Chapter 8. Routing

CakePHP Book, Release 5.x

The routes we’ve connected so far will match any HTTP verb. If you are building a REST API you’ll often want to map
HTTP actions to different controller methods. The RouteBuilder provides helper methods that make defining routes
for specific HTTP verbs simpler:

// Create a route that only responds to GET requests.
$routes->get(
'/cooks/{id}"',
['controller' => 'Users', 'action' => 'view'],
'users:view'

);

// Create a route that only responds to PUT requests
$routes->put (
'/cooks/{id}"',
['controller' => 'Users', 'action' => 'update'l],
'users:update’

);
The above routes map the same URL to different controller actions based on the HTTP verb used. GET requests will
go to the ‘view’ action, while PUT requests will go to the ‘update’ action. There are HTTP helper methods for:

e GET

* POST

« PUT

* PATCH

* DELETE

* OPTIONS

e HEAD

All of these methods return the route instance allowing you to leverage the fluent setters to further configure your route.

Route Elements

You can specify your own route elements and doing so gives you the power to define places in the URL where pa-
rameters for controller actions should lie. When a request is made, the values for these route elements are found in
$this->request->getParam() in the controller. When you define a custom route element, you can optionally spec-
ify a regular expression - this tells CakePHP how to know if the URL is correctly formed or not. If you choose to not
provide a regular expression, any non / character will be treated as part of the parameter:

$routes->connect(
'/{controller}/{id}"',
['action' => 'view']
)->setPatterns(['id' => '[0-9]+']);

$routes->connect(
'/{controller}/{id}"',
['action' => 'view'],
['id" => '"[0-9]+']

DL

The above example illustrates how to create a quick way to view models from any controller by crafting a URL that looks
like /controller-name/{id}. The URL provided to connect () specifies two route elements: {controller} and

Connecting Routes 135

CakePHP Book, Release 5.x

{id}. The {controller} element is a CakePHP default route element, so the router knows how to match and identify
controller names in URLs. The {id} element is a custom route element, and must be further clarified by specifying a
matching regular expression in the third parameter of connect().

CakePHP does not automatically produce lowercased and dashed URLs when using the {controller} parameter. If
you need this, the above example could be rewritten like so:

use Cake\Routing\Route\DashedRoute;

// Create a builder with a different route class.
$routes->scope('/', function (RouteBuilder S$routes) {
$routes->setRouteClass(DashedRoute: :class);
$routes->connect('/{controller}/{id}', ['action' => 'view'])
->setPatterns(['id"' => '[0-9]+']);

$routes->connect(
'/{controller}/{id}"',
['action' => 'view'],
['id" => "[0-9]+']
N
9N

The DashedRoute class will make sure that the {controller} and {plugin} parameters are correctly lowercased
and dashed.

© Note

Patterns used for route elements must not contain any capturing groups. If they do, Router will not function cor-
rectly.

Once this route has been defined, requesting /apples/5 would call the view () method of the ApplesController. Inside
the view () method, you would need to access the passed ID at $this->request->getParam('id").

If you have a single controller in your application and you do not want the controller name to appear in the URL, you
can map all URLSs to actions in your controller. For example, to map all URLSs to actions of the home controller, e.g
have URLs like /demo instead of /home/demo, you can do the following:

$routes->connect('/{action}', ['controller' => 'Home']);

If you would like to provide a case insensitive URL, you can use regular expression inline modifiers:

$routes->connect(

' /{userShortcut}',

['controller' => 'Teachers', 'action' => 'profile', 1],
)->setPatterns(['userShortcut' => '(?i:principal)']);

One more example, and you’ll be a routing pro:

$routes->connect(
'/{controller}/{year}/{month}/{day}"',
['action' => 'index']
)->setPatterns([
'year' => '[12][0-9]1{3}',
'month' => 'O[1-9]|1[012]",

(continues on next page)

136 Chapter 8. Routing

CakePHP Book, Release 5.x

(continued from previous page)
'day' => 'O[1-9]|[12][0-9]|3[01]"
D

This is rather involved, but shows how powerful routes can be. The URL supplied has four route elements. The first is
familiar to us: it’s a default route element that tells CakePHP to expect a controller name.
Next, we specify some default values. Regardless of the controller, we want the index () action to be called.

Finally, we specify some regular expressions that will match years, months and days in numerical form. Note that
parenthesis (capturing groups) are not supported in the regular expressions. You can still specify alternates, as above,
but not grouped with parenthesis.

Once defined, this route will match /articles/2007/02/01, /articles/2004/11/16, handing the requests to the
index () actions of their respective controllers, with the date parameters in $this->request->getParam().

Reserved Route Elements

There are several route elements that have special meaning in CakePHP, and should not be used unless you want the
special meaning

* controller Used to name the controller for a route.

¢ action Used to name the controller action for a route.

* plugin Used to name the plugin a controller is located in.
» prefix Used for Prefix Routing

» _ext Used for File extentions routing.

e _base Set to false to remove the base path from the generated URL. If your application is not in the root
directory, this can be used to generate URLs that are ‘cake relative’.

» _scheme Set to create links on different schemes like webcal or ftp. Defaults to the current scheme.
* _host Set the host to use for the link. Defaults to the current host.
e _port Set the port if you need to create links on non-standard ports.

e _full If true the value of App. fullBaseUrl mentioned in General Configuration will be prepended to gen-
erated URLs.

* # Allows you to set URL hash fragments.
e _https Set to true to convert the generated URL to https or false to force http. Prior to 4.5.0 use _ss1.
e _method Define the HTTP verb/method to use. Useful when working with RESTful Routing.

* _name Name of route. If you have setup named routes, you can use this key to specify it.

Configuring Route Options

There are a number of route options that can be set on each route. After connecting a route you can use its fluent
builder methods to further configure the route. These methods replace many of the keys in the $options parameter of
connect():

$routes->connect(

'/{lang}/articles/{slug}’,

['controller' => 'Articles', 'action' => 'view'],
)
// Allow GET and POST requests.

(continues on next page)

Connecting Routes 137

CakePHP Book, Release 5.x

(continued from previous page)

->setMethods(['GET', 'POST'])

// Only match on the blog subdomain.
->setHost('blog.example.com")

// Set the route elements that should be converted to passed arguments
->setPass(['slug'])

// Set the matching patterns for route elements
->setPatterns([

'slug' => '[a-z0-9-_]+',

'lang' => 'en|fr|es"',

D

// Also allow JSON file extensions
->setExtensions(['json'])

// Set lang to be a persistent parameter
->setPersist(['lang']);

Passing Parameters to Action

When connecting routes using Route Elements you may want to have routed elements be passed arguments instead.
The pass option indicates which route elements should also be made available as arguments passed into the controller
functions:

// src/Controller/BlogsController.php
public function view($articleId = null, $slug = null)
{

// Some code here...

}

// routes.php
$routes->scope('/', function (RouteBuilder $routes) {
$routes->connect(
'/blog/{id}-{slug}', // For example, /blog/3-CakePHP_Rocks
['controller' => 'Blogs', 'action' => 'view']
)
// Define the route elements in the route template
// to prepend as function arguments. Order matters as this
// will pass the ‘$id’ and ‘$slug’ elements as the first and
// second parameters. Any additional passed parameters in your
// route will be added after the setPass() arguments.
->setPass(['id', 'slug'l)
// Define a pattern that ‘id must match.
->setPatterns([
'id' = '[0-9]+"',
D;
B;

Now thanks to the reverse routing capabilities, you can pass in the URL array like below and CakePHP will know how
to form the URL as defined in the routes:

138 Chapter 8. Routing

CakePHP Book, Release 5.x

// view.php
// This will return a link to /blog/3-CakePHP_Rocks
echo $this->Html->link('CakePHP Rocks', [
'controller' => 'Blog',
'action' => 'view',
'id' = 3,
'slug' => 'CakePHP_Rocks'
D;

// You can also used numerically indexed parameters.
echo $this->Html->1ink('CakePHP Rocks', [
'controller' => 'Blog',
'action' => 'view',
35
'CakePHP_Rocks'
D

Using Path Routing

We talked about string targets above. The same also works for URL generation using Router: :pathUrl():

echo Router::pathUrl('Articles::index');
// outputs: /articles

echo Router::pathUrl('MyBackend.Admin/Articles::view', [3]);
// outputs: /admin/my-backend/articles/view/3

© Tip

IDE support for Path Routing autocomplete can be enabled with CakePHP IdeHelper Plugin'**.

Using Named Routes

Sometimes you’ll find typing out all the URL parameters for a route too verbose, or you’d like to take advantage of
the performance improvements that named routes have. When connecting routes you can specify a _name option, this
option can be used in reverse routing to identify the route you want to use:

// Connect a route with a name.

$routes->connect(
'/login',
['controller' => 'Users', 'action' => 'login'],
['_name' => 'login']

);

// Name a verb specific route

$routes->post (
'/logout',
['controller' => 'Users', 'action' => 'logout'],
'logout’

DE

(continues on next page)

104 hitps://github.com/dereuromark/cakephp-ide-helper

Connecting Routes 139

https://github.com/dereuromark/cakephp-ide-helper

CakePHP Book, Release 5.x

(continued from previous page)

// Generate a URL using a named route.
$url = Router::url(['_name' => 'logout']);

// Generate a URL using a named route,
// with some query string args.
$url = Router::url(['_name' => 'login', 'username' => 'jimmy']);

If your route template contains any route elements like {controller} you’ll need to supply those as part of the options
to Router: :url(Q).

© Note

Route names must be unique across your entire application. The same _name cannot be used twice, even if the
names occur inside a different routing scope.

When building named routes, you will probably want to stick to some conventions for the route names. CakePHP
makes building up route names easier by allowing you to define name prefixes in each scope:

$routes->scope('/api', ['_namePrefix' => 'api:'], function (RouteBuilder $routes) {
// This route's name will be ‘api:ping’
$routes->get('/ping', ['controller' => 'Pings'], 'ping');

19K

// Generate a URL for the ping route

Router: :url(['_name' => 'api:ping']);

// Use namePrefix with plugin()
$routes->plugin('Contacts’', ['_namePrefix' => 'contacts:'], function (RouteBuilder
—$routes) {

// Connect routes.

b;

// Or with prefix()
$routes->prefix('Admin', ['_namePrefix' => 'admin:'], function (RouteBuilder S$routes) {
// Connect routes.

b;

You can also use the _namePrefix option inside nested scopes and it works as you’d expect:

$routes->plugin('Contacts', ['_namePrefix' => 'contacts:'], function (RouteBuilder
~$routes) {
$routes->scope('/api', ['_namePrefix' => 'api:'], function (RouteBuilder $routes) {
// This route's name will be ‘contacts:api:ping’
$routes->get('/ping', ['controller' => 'Pings'], 'ping');
s
s

// Generate a URL for the ping route
Router: :url(['_name' => 'contacts:api:ping']);

Routes connected in named scopes will only have names added if the route is also named. Nameless routes will not
have the _namePrefix applied to them.

140 Chapter 8. Routing

CakePHP Book, Release 5.x

Prefix Routing
static Cake\Routing\RouterBuilder: :prefix($name, $callback)

Many applications require an administration section where privileged users can make changes. This is often done
through a special URL such as /admin/users/edit/5. In CakePHP, prefix routing can be enabled by using the
prefix scope method:

use Cake\Routing\Route\DashedRoute;

$routes->prefix('Admin', function (RouteBuilder $routes) {
// All routes here will be prefixed with “/admin®, and
// have the “prefix' => 'Admin" route element added that
// will be required when generating URLs for these routes
$routes->fallbacks(DashedRoute::class);

b;

Prefixes are mapped to sub-namespaces in your application’s Controller namespace. By having prefixes as separate
controllers you can create smaller and simpler controllers. Behavior that is common to the prefixed and non-prefixed
controllers can be encapsulated using inheritance, Components, or traits. Using our users example, accessing the URL
/admin/users/edit/5 would call the edit () method of our sr¢/Controller/Admin/UsersController.php passing
5 as the first parameter. The view file used would be templates/Admin/Users/edit.php

You can map the URL /admin to your index () action of pages controller using following route:

$routes->prefix('Admin', function (RouteBuilder $routes) {
// Because you are in the admin scope,
// you do not need to include the /admin prefix
// or the Admin route element.
$routes->connect('/', ['controller' => 'Pages', 'action' => 'index']);

b;

When creating prefix routes, you can set additional route parameters using the $options argument:

$routes->prefix('Admin', ['param' => 'value'], function (RouteBuilder $routes) {
// Routes connected here are prefixed with '/admin' and
// have the 'param' routing key set.
$routes->connect('/{controller}');

b;

Note the additional route parameters will be added to all the connected routes defined inside the prefix block. You
will need to use all the parameters in the url array to build the route later, if you don’t use them you’ll get a
MissingRouteException.

Multi word prefixes are by default converted using dasherize inflection, ie MyPrefix would be mapped to my-prefix
in the URL. Make sure to set a path for such prefixes if you want to use a different format like for example underscoring:

$routes->prefix('MyPrefix', ['path' => '/my_prefix'], function (RouteBuilder S$routes) {
// Routes connected here are prefixed with '/my_prefix'
$routes->connect('/{controller}');

b;

You can define prefixes inside plugin scopes as well:

$routes->plugin('DebugKit', function (RouteBuilder $routes) {
$routes->prefix('Admin', function (RouteBuilder $routes) {
(continues on next page)

Connecting Routes 141

CakePHP Book, Release 5.x

(continued from previous page)
$routes->connect('/{controller}');

b
b;

The above would create a route template like /debug-kit/admin/{controller}. The connected route would have
the plugin and prefix route elements set.

When defining prefixes, you can nest multiple prefixes if necessary:

$routes->prefix('Manager', function (RouteBuilder $routes) {
$routes->prefix('Admin', function (RouteBuilder $routes) {
$routes->connect('/{controller}/{action}');
b
B

The above would create a route template like /manager/admin/{controller}/{action}. The connected route
would have the prefix route element set to Manager/Admin.

The current prefix will be available from the controller methods through $this->request->getParam('prefix')

When using prefix routes it’s important to set the prefix option, and to use the same CamelCased format that is used
in the prefix () method. Here’s how to build this link using the HTML helper:

// Go into a prefixed route.
echo $this->Html->1ink(
'Manage articles',
['prefix' => 'Manager/Admin', 'controller' => 'Articles', 'action' => 'add']

);

// Leave a prefix
echo $this->Html->1ink(
'View Post',
['prefix' => false, 'controller' => 'Articles', 'action' => 'view', 5]

);

Creating Links to Prefix Routes

You can create links that point to a prefix, by adding the prefix key to your URL array:

echo $this->Html->1ink(
'New admin todo',
['prefix' => 'Admin', 'controller' => 'TodolItems', 'action' => 'create']

);
When using nesting, you need to chain them together:

echo $this->Html->1link(
'New todo',
['prefix' => 'Admin/MyPrefix', 'controller' => 'TodoItems', 'action' => 'create']

);

This would link to a controller with the namespace App\Controller\Admin\MyPrefix and the file path src/
Controller/Admin/MyPrefix/TodoItemsController.php.

142 Chapter 8. Routing

CakePHP Book, Release 5.x

O Note

The prefix is always CamelCased here, even if the routing result is dashed. The route itself will do the inflection if
necessary.

Plugin Routing
static Cake\Routing\RouterBuilder: :plugin($name, $options =[], $callback)

Routes for Plugins should be created using the plugin() method. This method creates a new routing scope for the
plugin’s routes:

$routes->plugin('DebugKit', function (RouteBuilder $routes) {
// Routes connected here are prefixed with '/debug-kit' and
// have the plugin route element set to DebugKit'.
$routes->connect('/{controller}');

b;

When creating plugin scopes, you can customize the path element used with the path option:

$routes->plugin('DebugKit', ['path' => '/debugger'], function (RouteBuilder $routes) {
// Routes connected here are prefixed with '/debugger' and
// have the plugin route element set to 'DebugKit'.
$routes->connect('/{controller}');

B;

When using scopes you can nest plugin scopes within prefix scopes:

$routes->prefix('Admin', function (RouteBuilder $routes) {
$routes->plugin('DebugKit', function (RouteBuilder $routes) {
$routes->connect('/{controller}');
s
s

The above would create a route that looks like /admin/debug-kit/{controller}. It would have the prefix, and
plugin route elements set. The Plugin Routes section has more information on building plugin routes.

Creating Links to Plugin Routes

You can create links that point to a plugin, by adding the plugin key to your URL array:

echo $this->Html->1link(
'New todo',
['plugin' => 'Todo', 'controller' => 'TodoItems', 'action' => 'create']

);

Conversely if the active request is a plugin request and you want to create a link that has no plugin you can do the
following:

echo $this->Html->1ink(
'New todo',
['plugin' => null, 'controller' => 'Users', 'action' => 'profile']

);

By setting 'plugin' => null you tell the Router that you want to create a link that is not part of a plugin.

Connecting Routes 143

CakePHP Book, Release 5.x

SEO-Friendly Routing

Some developers prefer to use dashes in URLs, as it’s perceived to give better search engine rankings. The
DashedRoute class can be used in your application with the ability to route plugin, controller, and camelized action
names to a dashed URL.

For example, if we had a ToDo plugin, with a TodoItems controller, and a showItems() action, it could be accessed
at /to-do/todo-items/show-items with the following router connection

use Cake\Routing\Route\DashedRoute;

$routes->plugin('ToDo', ['path' => 'to-do'], function (RouteBuilder $routes) {
$routes->fallbacks(DashedRoute::class);
19K

Matching Specific HTTP Methods
Routes can match specific HTTP methods using the HTTP verb helper methods:

$routes->scope('/', function (RouteBuilder S$routes) {
// This route only matches on POST requests.
$routes->post(
'/reviews/start',
['controller' => 'Reviews', 'action' => 'start']

);

// Match multiple verbs
$routes->connect(
'/reviews/start',
[
'controller' => 'Reviews',
'action' => 'start',
]
)->setMethods(['POST', 'PUT']);
s

You can match multiple HTTP methods by using an array. Because the _method parameter is a routing key, it partic-
ipates in both URL parsing and URL generation. To generate URLs for method specific routes you’ll need to include
the _method key when generating the URL:

$url = Router::url([
'controller' => 'Reviews',
'action' => 'start',
'_method' => 'POST',

D;

Matching Specific Hosthames

Routes can use the _host option to only match specific hosts. You can use the *. wildcard to match any subdomain:

$routes->scope('/', function (RouteBuilder $routes) {
// This route only matches on http://images.example.com
$routes->connect(
'/images/default-logo.png',

(continues on next page)

144 Chapter 8. Routing

CakePHP Book, Release 5.x

(continued from previous page)
['controller' => 'Images', 'action' => 'default']
)->setHost('images.example.com');

// This route only matches on http://*.example.com
$routes->connect(

'/images/old-logo.png',

['controller' => 'Images', 'action' => 'oldLogo']
)->setHost('*.example.com');

B;

The _host option is also used in URL generation. If your _host option specifies an exact domain, that domain will
be included in the generated URL. However, if you use a wildcard, then you will need to provide the _host parameter
when generating URLSs:

// If you have this route
$routes->connect(

'/images/old-logo.png',

['controller' => 'Images', 'action' => 'oldLogo']
)->setHost('images.example.com');

// You need this to generate a url
echo Router: :url([
'controller' => 'Images',
'action' => 'oldLogo',
'_host' => 'images.example.com',

D;

Routing File Extensions
static Cake\Routing\RouterBuilder::extensions (string|array|null $extensions, $merge = true)

To handle different file extensions in your URLs, you can define the extensions using the Cake\Routing\
RouteBuilder: :setExtensions() method:

$routes->scope('/', function (RouteBuilder $routes) {
$routes->setExtensions(['json', 'xml']);

b;

This will enable the named extensions for all routes that are being connected in that scope after the setExtensions ()
call, including those that are being connected in nested scopes.

© Note

Setting the extensions should be the first thing you do in a scope, as the extensions will only be applied to routes
connected after the extensions are set.

Also be aware that re-opened scopes will not inherit extensions defined in previously opened scopes.

By using extensions, you tell the router to remove any matching file extensions from the URL, and then parse what
remains. If you want to create a URL such as /page/title-of-page.html you would create your route using:

Connecting Routes 145

CakePHP Book, Release 5.x

$routes->scope('/page', function (RouteBuilder $routes) {

$routes->setExtensions(['json', 'xml', 'html']);
$routes->connect(

'/{title}",

['controller' => 'Pages', 'action' => 'view']

)->setPass(['title']);
Ps

Then to create links which map back to the routes simply use:

$this->Html->1ink(

'Link title',

['controller' => 'Pages', 'action' => 'view', 'title' => 'super-article', '_ext' =>
< 'html"']
DE

Route Scoped Middleware

While Middleware can be applied to your entire application, applying middleware to specific routing scopes offers more
flexibility, as you can apply middleware only where it is needed allowing your middleware to not concern itself with
how/where it is being applied.

© Note

Applied scoped middleware will be run by RoutingMiddleware, normally at the end of your application’s middle-
ware queue.

Before middleware can be applied to a scope, it needs to be registered into the route collection:

// in config/routes.php
use Cake\Http\Middleware\CsrfProtectionMiddleware;
use Cake\Http\Middleware\EncryptedCookieMiddleware;

$routes->registerMiddleware('csrf', new CsrfProtectionMiddleware());
$routes->registerMiddleware('cookies', new EncryptedCookieMiddleware());

Once registered, scoped middleware can be applied to specific scopes:

$routes->scope('/cms', function (RouteBuilder $routes) {
// Enable CSRF & cookies middleware
$routes->applyMiddleware('csrf', 'cookies');
$routes->get('/articles/{action}/*', ['controller' => 'Articles']);

b;

In situations where you have nested scopes, inner scopes will inherit the middleware applied in the containing scope:

$routes->scope('/api', function (RouteBuilder $routes) {
$routes->applyMiddleware('ratelimit', 'auth.api');
$routes->scope('/vl', function (RouteBuilder S$routes) {
$routes->applyMiddleware('vlcompat');
// Define routes here.

(continues on next page)

146 Chapter 8. Routing

CakePHP Book, Release 5.x

(continued from previous page)

b;
b;

In the above example, the routes defined in /v1 will have ‘ratelimit’, ‘auth.api’, and ‘vlcompat’ middleware applied.
If you re-open a scope, the middleware applied to routes in each scope will be isolated:

$routes->scope('/blog', function (RouteBuilder $routes) {
$routes->applyMiddleware('auth');
// Connect the authenticated actions for the blog here.

19K

$routes->scope('/blog', function (RouteBuilder $routes) {
// Connect the public actions for the blog here.

b;

In the above example, the two uses of the /blog scope do not share middleware. However, both of these scopes will
inherit middleware defined in their enclosing scopes.

Grouping Middleware

To help keep your route code DRY (Do not Repeat Yourself) middleware can be combined into groups. Once combined
groups can be applied like middleware can:

$routes->registerMiddleware('cookie', new EncryptedCookieMiddleware());
$routes->registerMiddleware('auth', new AuthenticationMiddleware());
$routes->registerMiddleware('csrf', new CsrfProtectionMiddleware());
$routes->middlewareGroup('web', ['cookie', 'auth', 'csrf']l);

// Apply the group
$routes->applyMiddleware('web');

RESTful Routing

Router helps generate RESTful routes for your controllers. RESTful routes are helpful when you are creating API
endpoints for your application. If we wanted to allow REST access to a recipe controller, we’d do something like this:

// In config/routes.php...

$routes->scope('/', function (RouteBuilder S$routes) {
$routes->setExtensions(['json']);
$routes->resources('Recipes');

b;

The first line sets up a number of default routes for REST access where method specifies the desired result format, for
example, xml, json and rss. These routes are HTTP Request Method sensitive.

HTTP format URL.format Controller action invoked

GET /recipes.format RecipesController::index()
GET /recipes/123.format RecipesController::view(123)
POST /recipes.format RecipesController::add()

PUT /recipes/123.format RecipesController::edit(123)
PATCH /recipes/123.format RecipesController::edit(123)
DELETE /recipes/123.format RecipesController::delete(123)

RESTful Routing

147

CakePHP Book, Release 5.x

© Note

The default for pattern for resource IDs only matches integers or UUIDs. If your IDs are different you will have to
supply a regular expression pattern via the id option, for example, $builder->resources('Recipes’, ['id'

= ".*']).

The HTTP method being used is detected from a few different sources. The sources in order of preference are:
1. The _method POST variable
2. The X_HTTP_METHOD_OVERRIDE header.
3. The REQUEST_METHOD header

The _method POST variable is helpful in using a browser as a REST client (or anything else that can do POST). Just
set the value of _method to the name of the HTTP request method you wish to emulate.

Creating Nested Resource Routes

Once you have connected resources in a scope, you can connect routes for sub-resources as well. Sub-resource routes
will be prepended by the original resource name and a id parameter. For example:

$routes->scope('/api', function (RouteBuilder $routes) {
$routes->resources('Articles', function (RouteBuilder $routes) {
$routes->resources('Comments');

B¢
b;

Will generate resource routes for both articles and comments. The comments routes will look like:

/api/articles/{article_id}/comments
/api/articles/{article_id}/comments/{id}

You can get the article_id in CommentsController by:

$this->request->getParam('article_id');

By default resource routes map to the same prefix as the containing scope. If you have both nested and non-nested
resource controllers you can use a different controller in each context by using prefixes:

$routes->scope('/api', function (RouteBuilder $routes) {
$routes->resources('Articles’', function (RouteBuilder $routes) {
$routes->resources('Comments', ['prefix' => 'Articles']);
B;
s

The above would map the ‘Comments’ resource to the App\Controller\Articles\CommentsController. Having
separate controllers lets you keep your controller logic simpler. The prefixes created this way are compatible with Prefix
Routing.

© Note

While you can nest resources as deeply as you require, it is not recommended to nest more than 2 resources together.

148 Chapter 8. Routing

CakePHP Book, Release 5.x

Limiting the Routes Created

By default CakePHP will connect 6 routes for each resource. If you’d like to only connect specific resource routes you
can use the only option:

$routes->resources('Articles', [
'only' => ['index', 'view']
D;
Would create read only resource routes. The route names are create, update, view, index, and delete.

The default route name and controller action used are as follows:

Route name Controller action used

create add
update edit
view view
index index
delete delete

Changing the Controller Actions Used

You may need to change the controller action names that are used when connecting routes. For example, if your edit ()
action is called put () you can use the actions key to rename the actions used:

$routes->resources('Articles', [
'actions' => ['update' => 'put', 'create' => 'add'l]

D;

The above would use put () for the edit () action, and add () instead of create().

Mapping Additional Resource Routes

You can map additional resource methods using the map option:

$routes->resources('Articles', [
'map' => [
'deleteAll' => [
'action' => 'deleteAll',
'method' => 'DELETE'

]
D;
// This would connect /articles/deleteAll

In addition to the default routes, this would also connect a route for /articles/delete-all. By default the path segment
will match the key name. You can use the ‘path’ key inside the resource definition to customize the path name:

$routes->resources('Articles', [
'map' => [
'updateAll' => [
'action' => 'updateAll',
'method' => 'PUT',
'path' => '/update-many',
(continues on next page)

RESTful Routing 149

CakePHP Book, Release 5.x

(continued from previous page)

i
1,
D;
// This would connect /articles/update-many

If you define ‘only’ and ‘map’, make sure that your mapped methods are also in the ‘only’ list.

Prefixed Resource Routing

Resource routes can be connected to controllers in routing prefixes by connecting routes within a prefixed scope or by
using the prefix option:

$routes->resources('Articles', [
'prefix' => 'Api',

D;

Custom Route Classes for Resource Routes

You can provide connectOptions key in the $options array for resources() to provide custom setting used by
connect():

$routes->scope('/', function (RouteBuilder $routes) {
$routes->resources('Books', [
'connectOptions' => [
'routeClass' => 'ApiRoute',
]
1;
s

URL Inflection for Resource Routes

By default, multi-worded controllers’ URL fragments are the dashed form of the controller’s name. For example,
BlogPostsController’s URL fragment would be /blog-posts.

You can specify an alternative inflection type using the inflect option:

$routes->scope('/', function (RouteBuilder S$routes) {
$routes->resources('BlogPosts', [
'inflect' => 'underscore' // Will use “Inflector: :underscore()"
D
D;

The above will generate URLSs styled like: /blog_posts.

Changing the Path Element

By default resource routes use an inflected form of the resource name for the URL segment. You can set a custom URL
segment with the path option:

$routes->scope('/', function (RouteBuilder S$routes) {
$routes->resources('BlogPosts', ['path' => 'posts']);

b;

150 Chapter 8. Routing

CakePHP Book, Release 5.x

Passed Arguments

Passed arguments are additional arguments or path segments that are used when making a request. They are often used
to pass parameters to your controller methods.

http://localhost/calendars/view/recent/mark

In the above example, both recent and mark are passed arguments to CalendarsController: :view(). Passed
arguments are given to your controllers in three ways. First as arguments to the action method called, and secondly
they are available in $this->request->getParam('pass') as a numerically indexed array. When using custom
routes you can force particular parameters to go into the passed arguments as well.

If you were to visit the previously mentioned URL, and you had a controller action that looked like:

class CalendarsController extends AppController

{
public function view($argl, $arg2)
{
debug(func_get_args());
1
}

You would get the following output:

Array

(
[0] => recent
[1] => mark

)

This same data is also available at $this->request->getParam('pass') in your controllers, views, and helpers.
The values in the pass array are numerically indexed based on the order they appear in the called URL:

debug($this->request->getParam('pass'));

Either of the above would output:

Array

(

[0] => recent
[1] => mark

When generating URLSs, using a routing array you add passed arguments as values without string keys in the array:
['controller' => 'Articles', 'action' => 'view', 5]
Since 5 has a numeric key, it is treated as a passed argument.

Generating URLs

static Cake\Routing\RouterBuilder: :url ($url = null, $full = false)

Passed Arguments 151

CakePHP Book, Release 5.x

static Cake\Routing\RouterBuilder::reverse($params, $full = false)

Generating URLSs or Reverse routing is a feature in CakePHP that is used to allow you to change your URL structure
without having to modify all your code.

If you create URLs using strings like:

$this->Html->1ink('View', '/articles/view/' . $id);

And then later decide that /articles should really be called ‘posts’ instead, you would have to go through your entire
application renaming URLs. However, if you defined your link like:

//"1link()" uses Router::url() internally and accepts a routing array

$this->Html->1ink(
'View',
['controller' => 'Articles', 'action' => 'view',6 $id]

);
or.

//Router: :reverse()' operates on the request parameters array
//and will produce a url string, valid input for “link()"

$requestParams = Router::getRequest()->getAttribute('params');
$this->Html->1link('View', Router::reverse($requestParams));

Then when you decided to change your URLs, you could do so by defining a route. This would change both the
incoming URL mapping, as well as the generated URLSs.

The choice of technique is determined by how well you can predict the routing array elements.

Using Router: :url()

Router::url() allows you to use routing arrays in situations where the array elements required are fixed or easily
deduced.

It will provide reverse routing when the destination url is well defined:
$this->Html->1ink(

"View',

['controller' => 'Articles', 'action' => 'view',6 $id]

);

It is also useful when the destination is unknown but follows a well defined pattern:

$this->Html->1ink(
'View',
['controller' => $controller, 'action' => 'view',6 $id]

);

Elements with numeric keys are treated as Passed Arguments.

When using routing arrays, you can define both query string parameters and document fragments using special keys:

152 Chapter 8. Routing

CakePHP Book, Release 5.x

$routes->url ([
'controller' => 'Articles',
'action' => 'index',
'?' = ['page' => 1],
"#' = "top'
D

// Will generate a URL like.

/articles/index?page=1#top

You can also use any of the special route elements when generating URLs:
e _ext Used for Routing File Extensions routing.

* _base Set to false to remove the base path from the generated URL. If your application is not in the root
directory, this can be used to generate URLs that are ‘cake relative’.

¢ _scheme Set to create links on different schemes like webcal or ftp. Defaults to the current scheme.
* _host Set the host to use for the link. Defaults to the current host.

» _port Set the port if you need to create links on non-standard ports.

* _method Define the HTTP verb the URL is for.

e _full If true the value of App.fullBaseUrl mentioned in General Configuration will be prepended to gen-
erated URLs.

e _https Set to true to convert the generated URL to https or false to force http. Prior to 4.5.0 use _ssl

* _name Name of route. If you have setup named routes, you can use this key to specify it.

Using Router: :reverse()

Router: :reverse() allows you to use the Request Parameters in cases where the current URL with some modification
is the basis for the destination and the elements of the current URL are unpredictable.

As an example, imagine a blog that allowed users to create Articles and Comments, and to mark both as either pub-
lished or draft. Both the index page URLs might include the user id. The Comments URL might also include an
article id to identify what article the comment refers to.

Here are urls for this scenario:

/articles/index/42
/comments/index/42/18

When the author uses these pages, it would be convenient to include links that allow the page to be displayed with all
results, published only, or draft only.

To keep the code DRY, it would be best to include the links through an element:

// element/filter_published.php

$params = $this->getRequest()->getAttribute('params');
/* prepare url for Draft */

$params = Hash::insert($params, '?.published', 0);

echo $this->Html->link(__('Draft'), Router::reverse($params));

(continues on next page)

Generating URLs 153

CakePHP Book, Release 5.x

(continued from previous page)
/* Prepare url for Published */
$params = Hash::insert($params, '?.published', 1);
echo $this->Html->link(__('Published'), Router::reverse($params));

/% Prepare url for All */
$params = Hash::remove($params, '?.published');
echo $this->Html->link(__('All'), Router::reverse($params));

The links generated by these method calls would include one or two pass parameters depending on the structure of the
current URL. And the code would work for any future URL, for example, if you started using pathPrefixes or if you
added more pass parameters.

Routing Arrays vs Request Parameters

The significant difference between the two arrays and their use in these reverse routing methods is in the way they
include pass parameters.

Routing arrays include pass parameters as un-keyed values in the array:

$url = [
'controller' => 'Articles',
'action' => 'View',
$id, //a pass parameter
'page' => 3, //a query argument

1l

Request parameters include pass parameters on the ‘pass’ key of the array:

$url = [

'controller' => 'Articles',

'action' => 'View',

'pass' => [$id], //the pass parameters

'?' => ['page' => 3], //the query arguments
iK;

So it is possible, if you wish, to convert the request parameters into a routing array or vice versa.

Generating Asset URLs

The Asset class provides methods for generating URLSs to your application’s css, javascript, images and other static
asset files:

use Cake\Routing\Asset;

// Generate a URL to APP/webroot/js/app.js
$js = Asset::scriptUrl('app.js');

// Generate a URL to APP/webroot/css/app.css
$css = Asset::cssUrl('app.css');

// Generate a URL to APP/webroot/image/logo.png
$img = Asset::imageUrl('logo.png');

(continues on next page)

154 Chapter 8. Routing

CakePHP Book, Release 5.x

(continued from previous page)

// Generate a URL to APP/webroot/files/upload/photo.png
$file = Asset::url('files/upload/photo.png');

The above methods also accept an array of options as their second parameter:
» fullBase Append the full URL with domain name.
e pathPrefix Path prefix for relative URLs.
* plugin You can provide false to prevent paths from being treated as a plugin asset.

* timestamp Overrides the value of Asset.timestamp in Configure. Set to false to skip timestamp generation.
Set to true to apply timestamps when debug is true. Set to ' force' to always enable timestamping regardless
of debug value.

// Generates http://example.org/img/logo.png
$img = Asset::url('logo.png', ['fullBase' => true]);

// Generates /img/logo.png?1568563625
// Where the timestamp is the last modified time of the file.
$img = Asset::url('logo.png', ['timestamp' => true]);

To generate asset URLs for files in plugins use plugin syntax:

// Generates "/debug_kit/img/cake.png’
$img = Asset::imageUrl('DebugKit.cake.png');

Redirect Routing

Redirect routing allows you to issue HTTP status 30x redirects for incoming routes, and point them at different URLSs.
This is useful when you want to inform client applications that a resource has moved and you don’t want to expose two
URLs for the same content.

Redirection routes are different from normal routes as they perform an actual header redirection if a match is found.
The redirection can occur to a destination within your application or an outside location:

$routes->scope('/', function (RouteBuilder $routes) {
$routes->redirect(
'/home/* ",
['controller' => 'Articles', 'action' => 'view'],
['persist' => true]
// Or ['persist'=>['id']] for default routing where the
// view action expects $id as an argument.
D
B

Redirects /home/* to /articles/view and passes the parameters to /articles/view. Using an array as the redirect
destination allows you to use other routes to define where a URL string should be redirected to. You can redirect to
external locations using string URLSs as the destination:

$routes->scope('/', function (RouteBuilder S$routes) {
$routes->redirect('/articles/*', 'http://google.com', ['status' => 302]);

b;

This would redirect /articles/* to http://google.com with a HTTP status of 302.

Redirect Routing 155

CakePHP Book, Release 5.x

Entity Routing

Entity routing allows you to use an entity, an array or object implement ArrayAccess as the source of routing param-
eters. This allows you to refactor routes more easily, and generate URLs with less code. For example, if you start off
with a route that looks like:

$routes->get(
'/view/{id}",
['controller' => 'Articles', 'action' => 'view'],
'articles:view'

)3
You can generate URLS to this route using:

// $article is an entity in the local scope.
Router: :url(['_name' => 'articles:view', 'id' => $article->id]);

Later on, you may want to expose the article slug in the URL for SEO purposes. In order to do this you would need
to update everywhere you generate a URL to the articles:view route, which could take some time. If we use entity
routes we pass the entire article entity into URL generation allowing us to skip any rework when URLs require more
parameters:

use Cake\Routing\Route\EntityRoute;

// Create entity routes for the rest of this scope.
$routes->setRouteClass(EntityRoute: :class);

// Create the route just like before.

$routes->get(
"/view/{id}/{slug}’,
['controller' => 'Articles', 'action' => 'view'],
'articles:view'

)3
Now we can generate URLs using the _entity key:

Router::url(['_name' => 'articles:view', '_entity' => S$article]);

This will extract both the id property and the slug property out of the provided entity.

Custom Route Classes
Custom route classes allow you to extend and change how individual routes parse requests and handle reverse routing.
Route classes have a few conventions:

* Route classes are expected to be found in the Routing\Route namespace of your application or plugin.

¢ Route classes should extend Cake\Routing\Route\Route.

* Route classes should implement one or both of match() and/or parse().

The parse () method is used to parse an incoming URL. It should generate an array of request parameters that can be
resolved into a controller & action. Return null from this method to indicate a match failure.

The match () method is used to match an array of URL parameters and create a string URL. If the URL parameters do
not match the route false should be returned.

156 Chapter 8. Routing

CakePHP Book, Release 5.x

You can use a custom route class when making a route by using the routeClass option:

$routes->connect(
'/{slug}',
['controller' => 'Articles', 'action' => 'view'],
['routeClass' => 'SlugRoute']

s

// Or by setting the routeClass in your scope.
$routes->scope('/', function (RouteBuilder $routes) {
$routes->setRouteClass('SlugRoute');
$routes->connect(
'/{slug}",
['controller' => 'Articles', 'action' => 'view']
DN
9N

This route would create an instance of SlugRoute and allow you to implement custom parameter handling. You can
use plugin route classes using standard plugin syntax.

Default Route Class
static Cake\Routing\RouterBuilder::setRouteClass($routeClass = null)

If you want to use an alternate route class for your routes besides the default Route, you can do so by calling
RouterBuilder::setRouteClass() before setting up any routes and avoid having to specify the routeClass op-
tion for each route. For example using:

use Cake\Routing\Route\DashedRoute;
$routes->setRouteClass(DashedRoute: :class);

will cause all routes connected after this to use the DashedRoute route class. Calling the method without an argument
will return current default route class.

Fallbacks Method
Cake\Routing\RouterBuilder: : fallbacks ($routeClass = null)

The fallbacks method is a simple shortcut for defining default routes. The method uses the passed routing class for the
defined rules or if no class is provided the class returned by RouterBuilder: :setRouteClass() is used.

Calling fallbacks like so:

use Cake\Routing\Route\DashedRoute;
$routes->fallbacks(DashedRoute: :class);

Is equivalent to the following explicit calls:

use Cake\Routing\Route\DashedRoute;

$routes->connect('/{controller}', ['action' => 'index'], ['routeClass' =>.
—DashedRoute: :class]);
$routes->connect('/{controller}/{action}/*"', [], ['routeClass' => DashedRoute::class]);

Custom Route Classes 157

CakePHP Book, Release 5.x

© Note

Using the default route class (Route) with fallbacks, or any route with {plugin} and/or {controller} route
elements will result in inconsistent URL case.

A Warning

Fallback route templates are very generic and allow URLs to be generated and parsed for controllers & actions that
do not exist. Fallback URLs can also introduce ambiguity and duplication in your URLs.

As your application grows, it is recommended to move away from fallback URLSs and explicitly define the routes in
your application.

Creating Persistent URL Parameters
You can hook into the URL generation process using URL filter functions. Filter functions are called before the URLs
are matched against the routes, this allows you to prepare URLs before routing.
Callback filter functions should expect the following parameters:
* $params The URL parameter array being processed.
* $request The current request (Cake\Http\ServerRequest instance).
The URL filter function should always return the parameters even if unmodified.

URL filters allow you to implement features like persistent parameters:

Router::addUrlFilter(function (array $params, ServerRequest S$request) {
if ($request->getParam('lang') && !isset($params['lang'])) {
$params['lang'] = $request->getParam('lang');

}

return $params;

s
Filter functions are applied in the order they are connected.

Another use case is changing a certain route on runtime (plugin routes for example):

Router::addUrlFilter(function (array $params, ServerRequest S$request) {
if (empty($params['plugin']) || $params['plugin'] !== 'MyPlugin' || empty($params[
—'controller'])) {
return $params;

3
if ($params['controller'] === 'Languages' && $params['action'] === 'view') {
$params['controller'] = 'Locations';
$params['action'] = 'index';
$params['language'] = $params[0];
unset($params[0]);
3

return $params;

b;

158 Chapter 8. Routing

CakePHP Book, Release 5.x

This will alter the following route:

Router: :url(['plugin' => 'MyPlugin', 'controller' => 'Languages', 'action' => 'view',6 'es
~'1);

into this:

Router: :url(['plugin' => 'MyPlugin', 'controller' => 'Locations', 'action' => 'index',

—'language' => 'es']);

A\ Warning

If you are using the caching features of routing-middleware you must define the URL filters in your application
bootstrap() as filters are not part of the cached data.

Creating Persistent URL Parameters 159

CakePHP Book, Release 5.x

160 Chapter 8. Routing

CHAPTER 9

Request & Response Objects

The request and response objects provide an abstraction around HTTP requests and responses. The request object in
CakePHP allows you to introspect an incoming request, while the response object allows you to effortlessly create
HTTP responses from your controllers.

Request

class Cake\Http\ServerRequest

ServerRequest is the default request object used in CakePHP. It centralizes a number of features for interrogating
and interacting with request data. On each request one Request is created and then passed by reference to the various
layers of an application that use request data. By default the request is assigned to $this->request, and is available
in Controllers, Cells, Views and Helpers. You can also access it in Components using the controller reference.

Changed in version 4.4.0: The ServerRequest is available via DI. So you can get it from container or use it as a
dependency for your service.

Some of the duties ServerRequest performs include:
* Processing the GET, POST, and FILES arrays into the data structures you are familiar with.

* Providing environment introspection pertaining to the request. Information like the headers sent, the client’s IP
address, and the subdomain/domain names the server your application is running on.
* Providing access to request parameters both as array indexes and object properties.
CakePHP’s request object implements the PSR-7 ServerRequestInterface'"’
side of CakePHP.

making it easier to use libraries from out-

105 https://www.php-fig.org/pst/pst-7/

161

https://www.php-fig.org/psr/psr-7/

CakePHP Book, Release 5.x

Request Parameters

The request exposes routing parameters through the getParam() method:

$controllerName = $this->request->getParam('controller');

To get all routing parameters as an array use getAttribute():

$parameters = $this->request->getAttribute('params');

All Route Elements are accessed through this interface.

In addition to Route Elements, you also often need access to Passed Arguments. These are both available on the request
object as well:

// Passed arguments
$passedArgs = $this->request->getParam('pass’');

Will all provide you access to the passed arguments. There are several important/useful parameters that CakePHP uses
internally, these are also all found in the routing parameters:

* plugin The plugin handling the request. Will be null when there is no plugin.

e controller The controller handling the current request.

e action The action handling the current request.

» prefix The prefix for the current action. See Prefix Routing for more information.

Query String Parameters
Cake\Http\ServerRequest: :getQuery ($name, $default = null)
Query string parameters can be read using the getQuery () method:

// URL is /posts/index?page=1&sort=title
$page = $this->request->getQuery('page');

You can either directly access the query property, or you can use getQuery () method to read the URL query array in
an error-free manner. Any keys that do not exist will return null:

$foo = $this->request->getQuery('value_that_does_not_exist');
// $foo === null

// You can also provide default values
$foo = $this->request->getQuery('does_not_exist', 'default val');

If you want to access all the query parameters you can use getQueryParams():

$query = $this->request->getQueryParams() ;

You can use the casting utility functions to provide typesafe access to request data and other input:

use function Cake\Core\toBool;
use function Cake\Core\toInt;
use function Cake\Core\toString;
use function Cake\Il8n\toDate;
use function Cake\Il8n\toDateTime;
(continues on next page)

162 Chapter 9. Request & Response Objects

CakePHP Book, Release 5.x

(continued from previous page)

// $active is bool [null.
factive = toBool($this->request->getQuery('active'));

// $page is int|null.
$page = toInt($this->request->getQuery('page'));

// $query is string|null.
$query = toString($this->request->getQuery('query'));

// Parse a date based on the format or null
$date = toDate($this->request->getQuery('date'), 'Y-m-d');

// Parse a datetime based on a format or null
$date = toDateTime($this->request->getQuery('datetime'), 'Y-m-d H:i:s');

Added in version 5.1.0: Casting functions were added.

Request Body Data
Cake\Http\ServerRequest: :getData($name, $default = null)

All POST data normally available through PHP’s $_POST global variable can be accessed using Cake\Http)\
ServerRequest: :getData(). For example:

// An input with a name attribute equal to 'title' is accessible at
$title = $this->request->getData('title');

You can use a dot separated names to access nested data. For example:

$value = $this->request->getData('address.street_name');

For non-existent names the $default value will be returned:

$foo = $this->request->getData('value.that.does.not.exist');
// $foo == null

You can also use body-parser-middleware to parse request body of different content types into an array, so that it’s
accessible through ServerRequest: :getData().

If you want to access all the data parameters you can use getParsedBody():

$data = $this->request->getParsedBody();

File Uploads

Uploaded files can be accessed through the request body data, using the Cake\Http\ServerRequest: :getData()
method described above. For example, a file from an input element with a name attribute of attachment, can be
accessed like this:

$attachment = $this->request->getData('attachment');

Request 163

CakePHP Book, Release 5.x

By default file wuploads are represented in the request data as objects that implement
\Psr\Http\Message\UploadedFileInterface'”®. In the current implementation, the $attachment variable in the
above example would by default hold an instance of \Laminas\Diactoros\UploadedFile.

Accessing the uploaded file details is fairly simple, here’s how you can obtain the same data as provided by the old style
file upload array:

$name = $attachment->getClientFilename();

$type $attachment->getClientMediaType();

$size = $attachment->getSize();

$tmpName = $attachment->getStream()->getMetadata('uri');
$error = $attachment->getError();

Moving the uploaded file from its temporary location to the desired target location, doesn’t require manually accessing
the temporary file, instead it can be easily done by using the objects moveTo () method:

$attachment->moveTo($targetPath);

In an HTTP environment, the moveTo () method will automatically validate whether the file is an actual uploaded file,
and throw an exception in case necessary. In an CLI environment, where the concept of uploading files doesn’t exist, it
will allow to move the file that you’ve referenced irrespective of its origins, which makes testing file uploads possible.

Cake\Http\ServerRequest: :getUploadedFile ($path)

Returns the uploaded file at a specific path. The path uses the same dot syntax as the Cake\Http\
ServerRequest: :getData() method:

$attachment = $this->request->getUploadedFile('attachment"');

Unlike Cake\Http\ServerRequest::getData(), Cake\Http\ServerRequest::getUploadedFile() would
only return data when an actual file upload exists for the given path, if there is regular, non-file request body data
present at the given path, then this method will return null, just like it would for any non-existent path.

Cake\Http\ServerRequest: :getUploadedFiles()

Returns all uploaded files in a normalized array structure. For the above example with the file input name of
attachment, the structure would look like:

[
'attachment' => object(Laminas\Diactoros\UploadedFile) {
/) ...
}
]

Cake\Http\ServerRequest: :withUploadedFiles (array $files)

This method sets the uploaded files of the request object, it accepts an array of objects that implement
\Psr\Http\Message\UploadedFileInterface!’”. It will replace all possibly existing uploaded files:

$files = [
'MyModel' => [
'attachment' => new \Laminas\Diactoros\UploadedFile(
$streamOrFile,
$size,

(continues on next page)

106 https://www.php-fig.org/pst/pst-7/#16-uploaded-files
107 https://www.php-fig.org/pst/pst-7/#16-uploaded-files

164 Chapter 9. Request & Response Objects

https://www.php-fig.org/psr/psr-7/#16-uploaded-files
https://www.php-fig.org/psr/psr-7/#16-uploaded-files

CakePHP Book, Release 5.x

(continued from previous page)
$errorStatus,
$clientFilename,
$clientMediaType
s
'anotherAttachment' => new \Laminas\Diactoros\UploadedFile(
'/tmp/hfz6dbn. tmp"',
123,
\UPLOAD_ERR_OK,
'attachment.txt',
'text/plain’

1,
1l

$this->request = $this->request->withUploadedFiles($files);

© Note

Uploaded files that have been added to the request via this method, will not be available in the request body
data, ie you cannot retrieve them via Cake\Http\ServerRequest::getData()! If you need them in the re-
quest data (too), then you have to set them via Cake\Http\ServerRequest::withData() or Cake\Http\
ServerRequest: :withParsedBody ().

PUT, PATCH or DELETE Data
Cake\Http\ServerRequest: :getBody ()

When building REST services, you often accept request data on PUT and DELETE requests. Any application/
x-www-form-urlencoded request body data will automatically be parsed and available via $request->getData()
for PUT and DELETE requests. If you are accepting JSON or XML data, you can access the raw data with getBody():

// Get the stream wrapper on the request body
$body = $request->getBody();

// Get the request body as a string
$bodyString = (string)$request->getBody();

If your requests contain XML or JSON request content, you should consider using body-parser-middleware to have
CakePHP automatically parse those content types making the parsed data available in $request->getData() and
$request->getParsedBody ().

Environment Variables (from $_SERVER and $_ENV)
Cake\Http\ServerRequest: :getEnv($key, $default = null)

ServerRequest: :getEnv() is a wrapper for getenv () global function and acts as a getter for environment variables
without possible undefined keys:

$host = $this->request->getEnv('HTTP_HOST');

To access all the environment variables in a request use getServerParams():

Request 165

CakePHP Book, Release 5.x

$env = $this->request->getServerParams();

Cake\Http\ServerRequest: :withEnv($key, $value)

ServerRequest: :withEnv() isawrapper for putenv() global function and acts as a setter for environment variables
without having to modify globals $_SERVER and $_ENV:

// Set a value, generally helpful in testing.
$this->request->withEnv('REQUEST_METHOD', 'POST');

XML or JSON Data

Applications employing REST often exchange data in non-URL-encoded post bodies. You can read input data in any
format using input (). By providing a decoding function, you can receive the content in a deserialized format:

// Get JSON encoded data submitted to a PUT/POST action
$jsonData = $this->request->input('json_decode');

Some deserializing methods require additional parameters when called, such as the ‘as array’ parameter on
json_decode. If you want XML converted into a DOMDocument object, input () supports passing in additional
parameters as well:

// Get XML encoded data submitted to a PUT/POST action
$data = $this->request->input('Cake\Utility\Xml::build', ['return' => 'domdocument']);

Path Information

The request object also provides useful information about the paths in your application. The base and webroot
attributes are useful for generating URLs, and determining whether or not your application is in a subdirectory. The
attributes you can use are:

// Assume the current request URL is /subdir/articles/edit/1?page=1

// Holds /subdir/articles/edit/1?page=1
$here = $request->getRequestTarget();

// Holds /subdir
$base = $request->getAttribute('base');

// Holds /subdir/
$base = $request->getAttribute('webroot');

Checking Request Conditions
Cake\Http\ServerRequest: :is($type, $args...)

The request object provides a way to inspect certain conditions in a given request. By using the is() method you can
check a number of common conditions, as well as inspect other application specific request criteria:

$isPost = $this->request->is('post');

You can also extend the request detectors that are available, by using Cake\Http\ServerRequest: :addDetector ()
to create new kinds of detectors. There are different types of detectors that you can create:

166 Chapter 9. Request & Response Objects

CakePHP Book, Release 5.x

» Environment value comparison - Compares a value fetched from env () for equality with the provided value.
* Header value comparison - If the specified header exists with the specified value, or if the callable returns true.

* Pattern value comparison - Pattern value comparison allows you to compare a value fetched from env() to a
regular expression.

* Option based comparison - Option based comparisons use a list of options to create a regular expression. Sub-
sequent calls to add an already defined options detector will merge the options.

* Callback detectors - Callback detectors allow you to provide a ‘callback’ type to handle the check. The callback
will receive the request object as its only parameter.

Cake\Http\ServerRequest: :addDetector ($name, $options)
Some examples would be:

// Add an environment detector.
$this->request->addDetector(

'post’,

['env' => 'REQUEST_METHOD', 'value' => 'POST']
DE

// Add a pattern value detector.
$this->request->addDetector(

"iphone',

['env' => '"HTTP_USER_AGENT', 'pattern' => '/iPhone/i']
DE

// Add an option detector
$this->request->addDetector('internalIp', [

'env' => 'CLIENT_IP',

'options' => ['192.168.0.101', '192.168.0.100']
D;

// Add a header detector with value comparison
$this->request->addDetector('fancy', [

'env' => '"CLIENT_IP',

'header' => ['X-Fancy' => 1]
D;

// Add a header detector with callable comparison
$this->request->addDetector (' fancy', [
'env' => 'CLIENT_IP',
'header' => ['X-Fancy' => function ($value, S$header) {
return in_array($value, ['1", '0', 'yes', 'no'], true);
1]
D;

// Add a callback detector. Must be a valid callable.
$this->request->addDetector(
'awesome ',
function ($request) {
return $request->getParam('awesome');

}

(continues on next page)

Request 167

CakePHP Book, Release 5.x

(continued from previous page)

);

// Add a detector that uses additional arguments.
$this->request->addDetector(

csv',

[
'accept' => ['text/csv'],
'param' => '_ext',
'value' => 'csv',

]

)

There are several built-in detectors that you can use:
e is('get") Check to see whether the current request is a GET.
e is('put') Check to see whether the current request is a PUT.
e is('patch') Check to see whether the current request is a PATCH.
e is('post") Check to see whether the current request is a POST.
e is('delete') Check to see whether the current request is a DELETE.
e is('head') Check to see whether the current request is HEAD.
e is('options') Check to see whether the current request is OPTIONS.
e is('ajax"') Check to see whether the current request came with X-Requested-With = XMLHttpRequest.
e is('ssl") Check to see whether the request is via SSL.
e is('flash') Check to see whether the request has a User-Agent of Flash.

e is('json") Check to see whether the request URL has ‘json’ extension or the Accept header is set to ‘applica-
tion/json’.

e is('xml") Check to see whether the request URL has ‘xml’ extension or the Accept header is set to ‘applica-
tion/xml’ or ‘text/xml’.

ServerRequest also includes methods like Cake\Http\ServerRequest::domain(), Cake\Http)\
ServerRequest: :subdomains() and Cake\Http\ServerRequest::host() to make applications that use
subdomains simpler.

Session Data

To access the session for a given request use the getSession() method or use the session attribute:

$session = $this->request->getSession();
$session = $this->request->getAttribute('session');

$data = $session->read('sessionKey');

For more information, see the Sessions documentation for how to use the session object.

168 Chapter 9. Request & Response Objects

CakePHP Book, Release 5.x

Host and Domain Name
Cake\Http\ServerRequest: :domain($tidLength = 1)
Returns the domain name your application is running on:

// Prints 'example.org'
echo $request->domain();

Cake\Http\ServerRequest: : subdomains ($tldLength = I)
Returns the subdomains your application is running on as an array:

// Returns [my', 'dev'] for 'my.dev.example.org'
$subdomains = $request->subdomains();

Cake\Http\ServerRequest: :host()
Returns the host your application is on:

// Prints 'my.dev.example.org'
echo $request->host();

Reading the HTTP Method
Cake\Http\ServerRequest: :getMethod ()
Returns the HTTP method the request was made with:

// Output POST
echo $request->getMethod();

Restricting Which HTTP method an Action Accepts
Cake\Http\ServerRequest: :allowMethod ($methods)

Set allowed HTTP methods. If not matched, will throw MethodNotAllowedException. The 405 response will
include the required Allow header with the passed methods:

public function delete()

{
// Only accept POST and DELETE requests
$this->request->allowMethod(['post', 'delete']);

Reading HTTP Headers

Allows you to access any of the HTTP_* headers that were used for the request. For example:

// Get the header as a string
$userAgent = $this->request->getHeaderLine('User-Agent');

// Get an array of all values.
$acceptHeader = $this->request->getHeader('Accept');
(continues on next page)

Request 169

CakePHP Book, Release 5.x

(continued from previous page)

// Check if a header exists
$hasAcceptHeader = $this->request->hasHeader('Accept');

While some apache installs don’t make the Authorization header accessible, CakePHP will make it available through
apache specific methods as required.

Cake\Http\ServerRequest: :referer ($local = true)

Returns the referring address for the request.

Cake\Http\ServerRequest::clientIp()

Returns the current visitor’s IP address.

Trusting Proxy Headers

If your application is behind a load balancer or running on a cloud service, you will often get the load balancer host,
port and scheme in your requests. Often load balancers will also send HTTP-X-Forwarded-* headers with the original
values. The forwarded headers will not be used by CakePHP out of the box. To have the request object use these headers
set the trustProxy property to true:

$this->request->trustProxy = true;

// These methods will now use the proxied headers.
$port = $this->request->port();

$host = $this->request->host();

$scheme = $this->request->scheme();

$clientIp = $this->request->clientIp();

Once proxies are trusted the clientIp() method will use the last IP address in the X-Forwarded-For header. If
your application is behind multiple proxies, you can use setTrustedProxies() to define the IP addresses of proxies
in your control:

$request->setTrustedProxies(['127.1.1.1"', '127.8.1.3']);

After proxies are trusted clientIp() will use the first IP address in the X-Forwarded-For header providing it is the
only value that isn’t from a trusted proxy.

Checking Accept Headers
Cake\Http\ServerRequest: :accepts ($type = null)

Find out which content types the client accepts, or check whether it accepts a particular type of content.

Get all types:

$accepts = $this->request->accepts();

Check for a single type:

$acceptsIJson = $this->request->accepts('application/json');

Cake\Http\ServerRequest: :acceptLanguage ($language = null)

170 Chapter 9. Request & Response Objects

CakePHP Book, Release 5.x

Get all the languages accepted by the client, or check whether a specific language is accepted.

Get the list of accepted languages:

$acceptsLanguages = $this->request->acceptLanguage();

Check whether a specific language is accepted:

$acceptsSpanish = $this->request->acceptlLanguage('es-es');

Reading Cookies

Request cookies can be read through a number of methods:

// Get the cookie value, or null if the cookie is missing.
$rememberlMe = $this->request->getCookie('remember_me');

// Read the value, or get the default of 0
$rememberMe = $this->request->getCookie('remember_me', 0);

// Get all cookies as an hash
$cookies = $this->request->getCookieParams();

// Get a CookieCollection instance
$cookies = $this->request->getCookieCollection()

See the Cake\Http\Cookie\CookieCollection documentation for how to work with cookie collection.

Uploaded Files

Requests expose the uploaded file datain getData() or getUploadedFiles() asUploadedFileInterface objects:

// Get a list of UploadedFile objects
$files = $request->getUploadedFiles();

// Read the file data.
$files[0]->getStream();
$files[0]->getSize();
$files[0]->getClientFileName();

// Move the file.
$files[0]->moveTo($targetPath);

Manipulating URIs

Requests contain a URI object, which contains methods for interacting with the requested URI:

// Get the URI
$uri = $request->getUri(Q);

// Read data out of the URI.
$path = $uri->getPathQ);
$query = $uri->getQuery(Q);
$host = $uri->getHost();

Request 171

CakePHP Book, Release 5.x

Response

class Cake\Http\Response

Cake\Http\Response is the default response class in CakePHP. It encapsulates a number of features and functionality
for generating HTTP responses in your application. It also assists in testing, as it can be mocked/stubbed allowing you
to inspect headers that will be sent.

Response provides an interface to wrap the common response-related tasks such as:
* Sending headers for redirects.
* Sending content type headers.
* Sending any header.

* Sending the response body.

Dealing with Content Types
Cake\Http\Response: :withType ($contentType = null)

You can control the Content-Type of your application’s responses with Cake\Http\Response: :withType (). If your
application needs to deal with content types that are not built into Response, you can map them with setTypeMap ()
as well:

// Add a vCard type
$this->response->setTypeMap('vcf', ['text/v-card']);

// Set the response Content-Type to vcard.
$this->response = $this->response->withType('vcf');

Usually, you’ll want to map additional content types in your controller’s beforeFilter () callback, so you can benefit
from automatic view switching provided by Content Type Negotiation.

Sending Files
Cake\Http\Response: :withFile (string $path, array $options = [])

There are times when you want to send files as responses for your requests. You can accomplish that by using Cake\
Http\Response: :withFile():

public function sendFile($id)

{
$file = $this->Attachments->getFile($id);
$response = $this->response->withFile($file['path']);
// Return the response to prevent controller from trying to render
// a view.
return $response;
}

As shown in the above example, you must pass the file path to the method. CakePHP will send a proper content type
header if it’s a known file type listed in Cake\Http\Response::$_mimeTypes. You can add new types prior to calling
Cake\Http\Response: :withFile () by using the Cake\Http\Response: :withType () method.

If you want, you can also force a file to be downloaded instead of displayed in the browser by specifying the options:

172 Chapter 9. Request & Response Objects

CakePHP Book, Release 5.x

$response = $this->response->withFile(
$file['path'],
['download' => true, 'name' => 'foo']
J;
The supported options are:

name
The name allows you to specify an alternate file name to be sent to the user.

download
A boolean value indicating whether headers should be set to force download.

Sending a String as File

You can respond with a file that does not exist on the disk, such as a pdf or an ics generated on the fly from a string:

public function sendIcs()

{
$icsString = $this->Calendars->generatelIcs();
$response = $this->response;
// Inject string content into response body
$response = $response->withStringBody($icsString);
$response = $response->withType('ics');
// Optionally force file download
$response = $response->withDownload('filename_for_download.ics');
// Return response object to prevent controller from trying to render
// a view.
return $response;
}

Setting Headers
Cake\Http\Response: :withHeader ($header, $value)

Setting headers is done with the Cake\Http\Response: :withHeader () method. Like all of the PSR-7 interface
methods, this method returns a new instance with the new header:

// Add/replace a header
$response = $response->withHeader('X-Extra', 'My header');

// Set multiple headers
$response = $response->withHeader('X-Extra', 'My header')

->withHeader('Location', 'http://example.com');

// Append a value to an existing header
$response = $response->withAddedHeader('Set-Cookie', 'remember_me=1");

Headers are not sent when set. Instead, they are held until the response is emitted by Cake\Http\Server.

Response 173

CakePHP Book, Release 5.x

You can now use the convenience method Cake\Http\Response: :withLocation() to directly set or get the redirect
location header.

Setting the Body
Cake\Http\Response: :withStringBody ($string)
To set a string as the response body, do the following:

// Set a string into the body
$response = $response->withStringBody('My Body');

// If you want a json response
$response = $response->withType('application/json')
->withStringBody(json_encode(['Foo' => 'bar']));

Cake\Http\Response: :withBody ($body)

To set the response body, use the withBody() method, which is provided by the Laminas\Diactoros\
MessageTrait:

$response = $response->withBody($stream) ;

Be sure that $streamis a Psr\Http\Message\StreamInterface object. See below on how to create a new stream.

You can also stream responses from files using Laminas\Diactoros\Stream streams:

// To stream from a file
use Laminas\Diactoros\Stream;

$stream = new Stream('/path/to/file', 'rb');
$response = $response->withBody($stream) ;

You can also stream responses from a callback using the CallbackStream. This is useful when you have resources
like images, CSV files or PDFs you need to stream to the client:

// Streaming from a callback
use Cake\Http\CallbackStream;

// Create an image.
$img = imagecreate(100, 100);
/) ...

$stream = new CallbackStream(function () use ($img) {
imagepng($img) ;
};

$response = $response->withBody($stream) ;

Setting the Character Set
Cake\Http\Response: :withCharset ($charser)
Sets the charset that will be used in the response:

$this->response = $this->response->withCharset('UTF-8');

174 Chapter 9. Request & Response Objects

CakePHP Book, Release 5.x

Interacting with Browser Caching
Cake\Http\Response: :withDisabledCache ()

You sometimes need to force browsers not to cache the results of a controller action. Cake\Http\
Response: :withDisabledCache () is intended for just that:

public function index()

{
// Disable caching
$this->response = $this->response->withDisabledCache();
}
A Warning

Disabling caching from SSL domains while trying to send files to Internet Explorer can result in errors.

Cake\Http\Response: :withCache ($since, $rime = '+1 day")
You can also tell clients that you want them to cache responses. By using Cake\Http\Response: :withCache():

public function index()

{
// Enable caching
$this->response = $this->response->withCache('-1 minute', '+5 days');

}

The above would tell clients to cache the resulting response for 5 days, hopefully speeding up your visitors’ experience.
The withCache () method sets the Last-Modified value to the first argument. Expires header and the max-age
directive are set based on the second parameter. Cache-Control’s public directive is set as well.

Fine Tuning HTTP Cache

One of the best and easiest ways of speeding up your application is to use HTTP cache. Under this caching model, you
are only required to help clients decide if they should use a cached copy of the response by setting a few headers such
as modified time and response entity tag.

Rather than forcing you to code the logic for caching and for invalidating (refreshing) it once the data has changed,
HTTP uses two models, expiration and validation, which usually are much simpler to use.

Apart from using Cake\Http\Response: :withCache (), you can also use many other methods to fine-tune HTTP
cache headers to take advantage of browser or reverse proxy caching.
The Cache Control Header

Cake\Http\Response: :withSharable ($public, $time = null)

Used under the expiration model, this header contains multiple indicators that can change the way browsers or proxies
use the cached content. A Cache-Control header can look like this:

Cache-Control: private, max-age=3600, must-revalidate

Response class helps you set this header with some utility methods that will produce a final valid Cache-Control
header. The first is the withSharable() method, which indicates whether a response is to be considered sharable
across different users or clients. This method actually controls the public or private part of this header. Setting a

Response 175

CakePHP Book, Release 5.x

response as private indicates that all or part of it is intended for a single user. To take advantage of shared caches, the
control directive must be set as public.

The second parameter of this method is used to specify a max-age for the cache, which is the number of seconds after
which the response is no longer considered fresh:

public function view()

{
/) ...
// Set the Cache-Control as public for 3600 seconds
$this->response = $this->response->withSharable(true, 3600);
}
public function my_data()
{
/) ...
// Set the Cache-Control as private for 3600 seconds
$this->response = $this->response->withSharable(false, 3600);
}

Response exposes separate methods for setting each of the directives in the Cache-Control header.

The Expiration Header

Cake\Http\Response: :withExpires ($rime)

You can set the Expires header to a date and time after which the response is no longer considered fresh. This header
can be set using the withExpires() method:

public function view()

{

$this->response = $this->response->withExpires('+5 days');

}

This method also accepts a DateTime instance or any string that can be parsed by the DateTime class.

The Etag Header
Cake\Http\Response: :withEtag($rag, $weak = false)

Cache validation in HTTP is often used when content is constantly changing, and asks the application to only generate
the response contents if the cache is no longer fresh. Under this model, the client continues to store pages in the cache,
but it asks the application every time whether the resource has changed, instead of using it directly. This is commonly
used with static resources such as images and other assets.

The withEtag() method (called entity tag) is a string that uniquely identifies the requested resource, as a checksum
does for a file, in order to determine whether it matches a cached resource.

To take advantage of this header, you must either call the i sNotModified () method manually or include the Checking
HTTP Cache in your controller:

public function index()

{
$articles = $this->Articles->find('all')->all();

// Simple checksum of the article contents.
(continues on next page)

176 Chapter 9. Request & Response Objects

CakePHP Book, Release 5.x

(continued from previous page)
// You should use a more efficient implementation
// in a real world application.
$checksum = md5(json_encode($articles));

$response = $this->response->withEtag($checksum);
if ($response->isNotModified($this->request)) {
return $response;

}

$this->response = $response;

V/ARTY

O Note

Most proxy users should probably consider using the Last Modified Header instead of Etags for performance and
compatibility reasons.

The Last Modified Header
Cake\Http\Response: :withModified ($time)

Also, under the HTTP cache validation model, you can set the Last-Modified header to indicate the date and time at
which the resource was modified for the last time. Setting this header helps CakePHP tell caching clients whether the
response was modified or not based on their cache.

To take advantage of this header, you must either call the i sNotModified () method manually or include the Checking
HTTP Cache in your controller:

public function view()

{
$article = $this->Articles->find()->first();
$response = $this->response->withModified($article->modified);
if ($response->isNotModified($this->request)) {
return $response;
}
$this->response;
/) ...
}
The Vary Header

Cake\Http\Response: :withVary($header)

In some cases, you might want to serve different content using the same URL. This is often the case if you have a
multilingual page or respond with different HTML depending on the browser. Under such circumstances you can use
the Vary header:

$response = $this->response->withVary('User-Agent');
$response = $this->response->withVary('Accept-Encoding', 'User-Agent');
$response = $this->response->withVary('Accept-Language');

Response 177

CakePHP Book, Release 5.x

Sending Not-Modified Responses
Cake\Http\Response: :isNotModified(Request $request)

Compares the cache headers for the request object with the cache header from the response and determines whether it
can still be considered fresh. If so, deletes the response content, and sends the 304 Not Modified header:

// In a controller action.
if ($this->response->isNotModified($this->request)) {
return $this->response;

}

Setting Cookies

Cookies can be added to response using either an array or a Cake\Http\Cookie\Cookie object:

use Cake\Http\Cookie\Cookie;
use DateTime;

// Add a cookie
$this->response = $this->response->withCookie(Cookie: :create(
'remember_me"',

'yes',
// All keys are optional
[
'expires' => new DateTime('+1 year'),
'path' => "',
'domain' => "',
'secure' => false,
'httponly' => false,
'samesite' => null // Or one of Cookielnterface::SAMESITE_* constants
]

));

See the Creating Cookies section for how to use the cookie object. You can use withExpiredCookie() to send an
expired cookie in the response. This will make the browser remove its local cookie:

$this->response = $this->response->withExpiredCookie(new Cookie('remember_me'));

Setting Cross Origin Request Headers (CORS)
The cors() method is used to define HTTP Access Control'?® related headers with a fluent interface:

$this->response = $this->response->cors($this->request)
->allowOrigin(['*.cakephp.org'])
->allowMethods(['GET', 'POST'])
->allowHeaders(['X-CSRF-Token'])
->allowCredentials()
->exposeHeaders(['Link'])
->maxAge (300)
->buildQ);

CORS related headers will only be applied to the response if the following criteria are met:

108 hitps://developer.mozilla.org/en-US/docs/Web/HT TP/ Access_control_CORS

178 Chapter 9. Request & Response Objects

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

CakePHP Book, Release 5.x

1. The request has an Origin header.

2. The request’s Origin value matches one of the allowed Origin values.

© Tip

CakePHP has no built-in CORS middleware because dealing with CORS requests is very application specific. We
recommend you build your own CORSMiddleware if you need one and adjust the response object as desired.

Running logic after the Response has been sent

In fastcgi based environments you can listen to the Server. terminate event to run logic after the response has been
sent to the client. The terminate event will be passed a request and response. The request is fetched from the
applications’ DI container, or from Router: :getRequest () if the DI container does not have a request registered.

Warning

In non fastcgi environments the Server. terminate event is fired before the response is sent.

Added in version 5.1.0.

Common Mistakes with Inmutable Responses

Response objects offer a number of methods that treat responses as immutable objects. Immutable objects help prevent
difficult to track accidental side-effects, and reduce mistakes caused by method calls caused by refactoring that change
ordering. While they offer a number of benefits, immutable objects can take some getting used to. Any method that
starts with with operates on the response in an immutable fashion, and will always return a new instance. Forgetting
to retain the modified instance is the most frequent mistake people make when working with immutable objects:

$this->response->withHeader('X-CakePHP', 'yes!');

In the above code, the response will be lacking the X-CakePHP header, as the return value of the withHeader () method
was not retained. To correct the above code you would write:

$this->response = $this->response->withHeader('X-CakePHP', 'yes!');

Cookie Collections

class Cake\Http\Cookie\CookieCollection

CookieCollection objects are accessible from the request and response objects. They let you interact with groups
of cookies using immutable patterns, which allow the immutability of the request and response to be preserved.

Creating Cookies
class Cake\Http\Cookie\Cookie

Cookie objects can be defined through constructor objects, or by using the fluent interface that follows immutable
patterns:

Common Mistakes with Immutable Responses 179

CakePHP Book, Release 5.x

use Cake\Http\Cookie\Cookie;

// All arguments in the constructor
$cookie = new Cookie(
'remember_me', // name
1, // value
new DateTime('+1 year'), // expiration time, if applicable
'/', // path, if applicable
'example.com', // domain, if applicable
false, // secure only?
true // http only ?
DE

// Using the builder methods

$cookie = (new Cookie('remember_me'))
->withValue('1l")
—>withExpiry(new DateTime('+1 year'))
->withPath('/")
->withDomain('example.com')
->withSecure(false)
->withHttpOnly(true);

Once you have created a cookie, you can add it to a new or existing CookieCollection:

use Cake\Http\Cookie\CookieCollection;

// Create a new collection
$cookies = new CookieCollection([$cookie]);

// Add to an existing collection
$cookies = $cookies->add($cookie);

// Remove a cookie by name
$cookies = $cookies->remove('remember_me');

© Note

Remember that collections are immutable and adding cookies into, or removing cookies from a collection, creates
a new collection object.

Cookie objects can be added to responses:

// Add one cookie
$response = $this->response->withCookie($cookie);

// Replace the entire cookie collection
$response = $this->response->withCookieCollection($cookies);

Cookies set to responses can be encrypted using the encrypted-cookie-middleware.

180 Chapter 9. Request & Response Objects

CakePHP Book, Release 5.x

Reading Cookies

Once you have a CookieCollection instance, you can access the cookies it contains:

// Check if a cookie exists
$cookies->has('remember_me');

// Get the number of cookies in the collection
count ($cookies);

// Get a cookie instance. Will throw an error if the cookie is not found
$cookie = $cookies->get('remember_me');

// Get a cookie or null
$cookie = $cookies->remember_me;

// Check if a cookie exists
$exists = isset($cookies->remember_me)

Once you have a Cookie object you can interact with it’s state and modify it. Keep in mind that cookies are immutable,
so you’ll need to update the collection if you modify a cookie:

// Get the value
$value = $cookie->getValue()

// Access data inside a JSON value
$id = $cookie->read('User.id');

// Check state
$cookie->isHttpOnly();
$cookie->isSecure();

Cookie Collections 181

CakePHP Book, Release 5.x

182 Chapter 9. Request & Response Objects

CHAPTER 10

Controllers

class Cake\Controller\Controller

Controllers are the ‘C’ in MVC. After routing has been applied and the correct controller has been found, your con-
troller’s action is called. Your controller should handle interpreting the request data, making sure the correct models
are called, and the right response or view is rendered. Controllers can be thought of as middle layer between the Model
and View. You want to keep your controllers thin, and your models fat. This will help you reuse your code and makes
your code easier to test.

Commonly, a controller is used to manage the logic around a single model. For example, if you were building a site for
an online bakery, you might have a RecipesController managing your recipes and an IngredientsController managing
your ingredients. However, it’s also possible to have controllers work with more than one model. In CakePHP, a
controller is named after the primary model it handles.

Your application’s controllers extend the AppController class, which in turn extends the core Controller class.
The AppController class can be defined in src/Controller/AppController.php and it should contain methods that
are shared between all of your application’s controllers.

Controllers provide a number of methods that handle requests. These are called actions. By default, each public
method in a controller is an action, and is accessible from a URL. An action is responsible for interpreting the request
and creating the response. Usually responses are in the form of a rendered view, but there are other ways to create
responses as well.

The App Controller

As stated in the introduction, the AppController class is the parent class to all of your application’s controllers.
AppController itself extends the Cake\Controller\Controller class included in CakePHP. AppController is
defined in src¢/Controller/AppController.php as follows:

namespace App\Controller;

use Cake\Controller\Controller;
(continues on next page)

183

CakePHP Book, Release 5.x

(continued from previous page)

class AppController extends Controller
{
}

Controller attributes and methods created in your AppController will be available in all controllers that extend it.
Components (which you’ll learn about later) are best used for code that is used in many (but not necessarily all) con-
trollers.

You can use your AppController to load components that will be used in every controller in your application.
CakePHP provides a initialize () method that is invoked at the end of a Controller’s constructor for this kind of
use:

namespace App\Controller;
use Cake\Controller\Controller;

class AppController extends Controller

{
public function initialize(): void
{
// Always enable the FormProtection component.
$this->loadComponent ('FormProtection');
}
}

Request Flow

When a request is made to a CakePHP application, CakePHP’s Cake\Routing\Router and Cake\Routing\
Dispatcher classes use Connecting Routes to find and create the correct controller instance. The request data is
encapsulated in a request object. CakePHP puts all of the important request information into the $this->request
property. See the section on Request for more information on the CakePHP request object.

Controller Actions

Controller actions are responsible for converting the request parameters into a response for the browser/user making the
request. CakePHP uses conventions to automate this process and remove some boilerplate code you would otherwise
need to write.

By convention, CakePHP renders a view with an inflected version of the action name. Returning to our online bakery
example, our RecipesController might contain the view(), share(), and search() actions. The controller would be
found in src¢/Controller/RecipesController.php and contain:

// src/Controller/RecipesController.php

class RecipesController extends AppController

{
public function view($id)
{
// Action logic goes here.
}

(continues on next page)

184 Chapter 10. Controllers

CakePHP Book, Release 5.x

(continued from previous page)

public function share($customerId, S$recipeId)

{

// Action logic goes here.
}
public function search($query)
{

// Action logic goes here.
}

The template files for these actions would be templates/Recipes/view.php, templates/Recipes/share.php, and tem-
plates/Recipes/search.php. The conventional view file name is the lowercased and underscored version of the action
name.

Controller actions generally use Controller::set() to create a context that View uses to render the view layer.
Because of the conventions that CakePHP uses, you don’t need to create and render the view manually. Instead, once
a controller action has completed, CakePHP will handle rendering and delivering the View.

If for some reason you’d like to skip the default behavior, you can return a Cake\Http\Response object from the
action with the fully created response.

In order for you to use a controller effectively in your own application, we’ll cover some of the core attributes and
methods provided by CakePHP’s controllers.

Interacting with Views

Controllers interact with views in a number of ways. First, they are able to pass data to the views, using
Controller::set(). You can also decide which view class to use, and which view file should be rendered from
the controller.

Setting View Variables
Cake\Controller\Controller: :set(string $var, mixed $value)

The Controller: :set() method is the main way to send data from your controller to your view. Once you’ve used
Controller::set(), the variable can be accessed in your view:

// First you pass data from the controller:
$this->set('color', 'pink');

// Then, in the view, you can utilize the data:
7>

You have selected <?= h($color) ?> icing for the cake.

The Controller: :set() method also takes an associative array as its first parameter. This can often be a quick way
to assign a set of information to the view:

$data = [
'color' => 'pink',
"type' => 'sugar',
(continues on next page)

Interacting with Views 185

CakePHP Book, Release 5.x

(continued from previous page)

'base_price' => 23.95,

1l

// Make $color, $type, and $base_price
// available to the view:

$this->set($data);

Keep in mind that view vars are shared among all parts rendered by your view. They will be available in all parts of
the view: the template, the layout and all elements inside the former two.

Setting View Options

If you want to customize the view class, layout/template paths, helpers or the theme that will be used when rendering
the view, you can use the viewBuilder () method to get a builder. This builder can be used to define properties of the
view before it is created:

$this->viewBuilder ()
->addHelper('MyCustom')
->setTheme('Modern"')
->setClassName('Modern.Admin');

The above shows how you can load custom helpers, set the theme and use a custom view class.

Rendering a View
Cake\Controller\Controller: :render (string $view, string $layout)

The Controller: :render() method is automatically called at the end of each requested controller action. This
method performs all the view logic (using the data you’ve submitted using the Controller: :set () method), places
the view inside its View: : $1ayout, and serves it back to the end user.

The default view file used by render is determined by convention. If the search() action of the RecipesController is
requested, the view file in templates/Recipes/search.php will be rendered:

namespace App\Controller;

class RecipesController extends AppController

{
/) ...
public function search()
{
// Render the view in templates/Recipes/search.php
return $this->render(Q);
}
/) ...
}

Although CakePHP will automatically call it after every action’s logic (unless you've called
$this->disableAutoRender()), you can use it to specify an alternate view file by specifying a view file
name as first argument of Controller: :render () method.

If $view starts with ¢/, it is assumed to be a view or element file relative to the templates folder. This allows direct
rendering of elements, very useful in AJAX calls:

186 Chapter 10. Controllers

CakePHP Book, Release 5.x

// Render the element in templates/element/ajaxreturn.php
$this->render('/element/ajaxreturn');

The second parameter $1ayout of Controller::render() allows you to specify the layout with which the view is
rendered.

Rendering a Specific Template

In your controller, you may want to render a different view than the conventional one. You can do this by calling
Controller: :render () directly. Once you have called Controller: :render (), CakePHP will not try to re-render
the view:

namespace App\Controller;

class PostsController extends AppController

{
public function my_action()
{
$this->render('custom_file');
}
}

This would render templates/Posts/custom_file.php instead of templates/Posts/my_action.php.

You can also render views inside plugins using the following syntax: $this->render('PluginName.
PluginController/custom_file'). For example:

namespace App\Controller;

class PostsController extends AppController

{
public function myAction()
{
$this->render('Users.UserDetails/custom_file');
3
}

This would render plugins/Users/templates/UserDetails/custom_file.php

Content Type Negotiation

Cake\Controller\Controller::addViewClasses()

Controllers can define a list of view classes they support. After the controller’s action is complete CakePHP will use
the view list to perform content-type negotiation with either Routing File Extensions or Accept headers. This enables
your application to re-use the same controller action to render an HTML view or render a JSON or XML response. To
define the list of supported view classes for a controller is done with the addViewClasses () method:

namespace App\Controller;

use Cake\View\JsonView;
use Cake\View\XmlView;

(continues on next page)

Content Type Negotiation 187

CakePHP Book, Release 5.x

(continued from previous page)

class PostsController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->addViewClasses([JsonView: :class, XmlView::class]);
1
}

The application’s View class is automatically used as a fallback when no other view can be selected based on the
request’s Accept header or routing extension. If your application only supports content types for a specific actions,
you can call addClasses () within your action too:

public function export(): void

{
// Use a custom CSV view for data exports.
$this->addViewClasses([CsvView: :class]);
// Rest of the action code

}

If within your controller actions you need to process the request or load data differently based on the content type you
can use Checking Request Conditions:

// In a controller action

// Load additional data when preparing JSON responses
if ($this->request->is('json')) {
$query->contain('Authors');

}

In case your app need more complex logic to decide which view classes to use then you can override the
Controller: :viewClasses() method and return an array of view classes as required.

© Note

View classes must implement the static contentType () hook method to participate in content-type negotiation.

Content Type Negotiation Fallbacks

If no View can be matched with the request’s content type preferences, CakePHP will use the base View class. If you
want to require content-type negotiation, you can use the NegotiationRequiredView which sets a 406 status code:

public function initialize(): void

{
parent::initialize();
// Require Accept header negotiation or return a 406 response.
$this->addViewClasses([JsonView: :class, NegotiationRequiredView::class]);
}

188 Chapter 10. Controllers

CakePHP Book, Release 5.x

You can use the TYPE_MATCH_ALL content type value to build your own fallback view logic:

namespace App\View;
use Cake\View\View;

class CustomFallbackView extends View

{
public static function contentType(): string
{
return static::TYPE_MATCH_ALL;
}
}

It is important to remember that match-all views are applied only affer content-type negotiation is attempted.

Using AjaxView

In applications that use hypermedia or AJAX clients, you often need to render view contents without the wrapping
layout. You can use the AjaxView that is bundled with the application skeleton:

// In a controller action, or in beforeRender.
if ($this->request->is('ajax')) {
$this->viewBuilder()->setClassName('Ajax');

}

AjaxView will respond as text/html and use the ajax layout. Generally this layout is minimal or contains client
specific markup. This replaces usage of RequestHandlerComponent automatically using the AjaxView in 4.x.

Redirecting to Other Pages

Cake\Controller\Controller: :redirect (string|larray $url, integer $status)

The redirect() method adds a Location header and sets the status code of a response and returns it. You should
return the response created by redirect () to have CakePHP send the redirect instead of completing the controller
action and rendering a view.

You can redirect using routing array values:

return $this->redirect([
'controller' => 'Orders',
'action' => 'confirm',
$order->id,
72 = [
'product' => 'pizza',
"quantity' => 5
1,
"#' => "top'
D

Or using a relative or absolute URL:

Using AjaxView 189

CakePHP Book, Release 5.x

return $this->redirect('/orders/confirm');
return $this->redirect('http://www.example.com');

Or to the referer page:

return $this->redirect($this->referer());

By using the second parameter you can define a status code for your redirect:

// Do a 301 (moved permanently)
return $this->redirect('/order/confirm', 301);

// Do a 303 (see other)
return $this->redirect('/order/confirm', 303);

See the Using Redirects in Component Events section for how to redirect out of a life-cycle handler.

Loading Additional Tables/Models

Cake\Controller\Controller: : fetchTable(string $alias, array $config = [])
The fetchTable() method comes handy when you need to use an ORM table that is not the controller’s default one:

// In a controller method.
$recentArticles = $this->fetchTable('Articles')->find('all',
limit: 5,
order: 'Articles.created DESC'
)
->allQ);

Cake\Controller\Controller: : fetchModel (string|null $modelClass = null, string|null $modelType = null)
The fetchModel () method is useful to load non ORM models or ORM tables that are not the controller’s default:

// ModelAwareTrait need to be explicity added to your controler first for fetchModel ().
—to work.
use ModelAwareTrait;

// Get an ElasticSearch model
$articles = $this->fetchModel ('Articles', 'Elastic');

// Get a webservices model
$github = $this->fetchModel('GitHub', 'Webservice');

// If you skip the 2nd argument it will by default try to load a ORM table.
$authors = $this->fetchModel ('Authors');

Added in version 4.5.0.

190 Chapter 10. Controllers

CakePHP Book, Release 5.x

Paginating a Model

Cake\Controller\Controller: :paginate()

This method is used for paginating results fetched by your models. You can specify page sizes, model find conditions
and more. See the pagination section for more details on how to use paginate().

The $paginate attribute gives you a way to customize how paginate () behaves:

class ArticlesController extends AppController

{
protected array $paginate = [
'"Articles' => [
'conditions' => ['published' => 1],
Jg
1;
}

Configuring Components to Load

Cake\Controller\Controller: :loadComponent ($name, $config = [])

In your Controller’s initialize () method you can define any components you want loaded, and any configuration
data for them:

public function initialize(): void

{

parent::initialize(Q);

$this->loadComponent('Flash');

$this->loadComponent ('Comments', Configure::read('Comments'));
}

Request Life-cycle Callbacks

CakePHP controllers trigger several events/callbacks that you can use to insert logic around the request life-cycle:

Event List
* Controller.initialize
e Controller.startup
* Controller.beforeRedirect
* Controller.beforeRender

¢ Controller.shutdown

Controller Callback Methods

By default the following callback methods are connected to related events if the methods are implemented by your
controllers

Paginating a Model 191

CakePHP Book, Release 5.x

Cake\Controller\Controller: :beforeFilter (EventInterface $event)

Called during the Controller.initialize event which occurs before every action in the controller. It’s a
handy place to check for an active session or inspect user permissions.

© Note

The beforeFilter() method will be called for missing actions.

Returning a response from a beforeFilter method will not prevent other listeners of the same event from being
called. You must explicitly stop the event.
Cake\Controller\Controller: :beforeRender (Eventinterface $event)

Called during the Controller.beforeRender event which occurs after controller action logic, but before the
view is rendered. This callback is not used often, but may be needed if you are calling Cake\Controller\
Controller: :render () manually before the end of a given action.

Cake\Controller\Controller: :afterFilter(Eventinterface $event)

Called during the Controller. shutdown event which is triggered after every controller action, and after ren-
dering is complete. This is the last controller method to run.

In addition to controller life-cycle callbacks, Components also provide a similar set of callbacks.

Remember to call AppController’s callbacks within child controller callbacks for best results:

//use Cake\Event\EventInterface;
public function beforeFilter(EventInterface $event): void

{

parent: :beforeFilter($event);

}

Using Redirects in Controller Events

To redirect from within a controller callback method you can use the following:

public function beforeFilter(EventInterface $event): void

{
if (...) {
fevent->setResult($this->redirect('/'));
return;
}
}

By setting a redirect as event result you let CakePHP know that you don’t want any other component callbacks to run,
and that the controller should not handle the action any further.

As of 4.1.0 you can also raise a RedirectException to signal a redirect.

192 Chapter 10. Controllers

CakePHP Book, Release 5.x

Controller Middleware

Cake\Controller\Controller: :middleware ($middleware, array $options = [])

Middleware can be defined globally, in a routing scope or within a controller. To define middleware for a specific
controller use the middleware () method from your controller’s initialize () method:

public function initialize(): void

{
parent::initialize();
$this->middleware(function ($request, $handler) {
// Do middleware logic.
// Make sure you return a response or call handle()
return $handler->handle($request);
b
}

Middleware defined by a controller will be called before beforeFilter () and action methods are called.

More on Controllers

The Pages Controller

CakePHP’s official skeleton app ships with a default controller PagesController.php. This is a simple and optional
controller for serving up static content. The home page you see after installation is generated using this controller and
the view file templates/Pages/home.php. If you make the view file templates/Pages/about_us.php you can access it
using the URL http://example.com/pages/about_us. You are free to modify the Pages Controller to meet your needs.

When you “bake” an app using Composer the Pages Controller is created in your sre/Controller/ folder.

Components

Components are packages of logic that are shared between controllers. CakePHP comes with a fantastic set of core
components you can use to aid in various common tasks. You can also create your own components. If you find yourself
wanting to copy and paste things between controllers, you should consider creating your own component to contain
the functionality. Creating components keeps controller code clean and allows you to reuse code between different
controllers.

For more information on the components included in CakePHP, check out the chapter for each component:

Flash

class Cake\Controller\Component\FlashComponent (ComponentCollection $collection, array $config = [])

FlashComponent provides a way to set one-time notification messages to be displayed after processing a form or ac-
knowledging data. CakePHP refers to these messages as “flash messages”. FlashComponent writes flash messages to
$_SESSION, to be rendered in a View using FlashHelper.

Setting Flash Messages

FlashComponent provides two ways to set flash messages: its __call() magic method and its set() method. To
furnish your application with verbosity, FlashComponent’s __call () magic method allows you use a method name
that maps to an element located under the templates/element/flash directory. By convention, camelcased methods will
map to the lowercased and underscored element name:

Controller Middleware 193

CakePHP Book, Release 5.x

// Uses templates/element/flash/success.php
$this->Flash->success('This was successful');

// Uses templates/element/flash/great_success.php
$this->Flash->greatSuccess('This was greatly successful');

Alternatively, to set a plain-text message without rendering an element, you can use the set () method:

$this->Flash->set('This is a message');

Flash messages are appended to an array internally. Successive calls to set() or __call() with the same key will
append the messages in the $_SESSION. If you want to overwrite existing messages when setting a flash message, set
the clear option to true when configuring the Component.

FlashComponent’s __call() and set () methods optionally take a second parameter, an array of options:
¢ key Defaults to ‘flash’. The array key found under the Flash key in the session.

¢ element Defaults to null, but will automatically be set when using the __call() magic method. The element
name to use for rendering.

* params An optional array of keys/values to make available as variables within an element.
» clear expects a bool and allows you to delete all messages in the current stack and start a new one.

An example of using these options:

// In your Controller
$this->Flash->success('The user has been saved', [
'key' => 'positive',
'clear' => true,
'params' => [
'name' => $user->name,
'email' => $user->email,
1,
D;

// In your View
<?= $this->Flash->render('positive') 7>

<!-- In templates/element/flash/success.php -->
<div id="flash-<?= h($key) ?>" class="message-info success">

<?= h($message) ?>: <?= h($params['name']) ?>, <?= h($params['email']) ?>.
</div>

Note that the parameter element will be always overridden while using __call(). In order to retrieve a specific
element from a plugin, you should set the plugin parameter. For example:

// In your Controller
$this->Flash->warning('My message', ['plugin' => 'PluginName']);

The code above will use the warning.php element under plugins/PluginName/templates/element/flash for rendering
the flash message.

© Note

194 Chapter 10. Controllers

CakePHP Book, Release 5.x

By default, CakePHP escapes the content in flash messages to prevent cross site scripting. User data in your flash
messages will be HTML encoded and safe to be printed. If you want to include HTML in your flash messages,
you need to pass the escape option and adjust your flash message templates to allow disabling escaping when the
escape option is passed.

HTML in Flash Messages
It is possible to output HTML in flash messages by using the 'escape’ option key:

$this->Flash->info(sprintf('%s %s', h($highlight), h($message)), ['escape' =>.
—false]);

Make sure that you escape the input manually, then. In the above example $highlight and $message are non-HTML
input and therefore escaped.

For more information about rendering your flash messages, please refer to the FlashHelper section.

Form Protection Component

class FormProtection(ComponentCollection $collection, array $config = [])

The FormProtection Component provides protection against form data tampering.

Like all components it is configured through several configurable parameters. All of these properties can be set directly
or through setter methods of the same name in your controller’s initialize () or beforeFilter() methods.

If you are using other components that process form data in their startup () callbacks, be sure to place FormProtection
Component before those components in your initialize() method.

© Note

When using the FormProtection Component you must use the FormHelper to create your forms. In addition, you
must not override any of the fields’ “name” attributes. The FormProtection Component looks for certain indicators
that are created and managed by the FormHelper (especially those created in create () and end()). Dynamically
altering the fields that are submitted in a POST request, such as disabling, deleting or creating new fields via
JavaScript, is likely to cause the form token validation to fail.

Form tampering prevention

By default the FormProtectionComponent prevents users from tampering with forms in specific ways. It will prevent
the following things:

¢ Form’s action (URL) cannot be modified.

¢ Unknown fields cannot be added to the form.
* Fields cannot be removed from the form.

* Values in hidden inputs cannot be modified.

Preventing these types of tampering is accomplished by working with the FormHelper and tracking which fields are in
a form. The values for hidden fields are tracked as well. All of this data is combined and turned into a hash and hidden
token fields are automatically be inserted into forms. When a form is submitted, the FormProtectionComponent will
use the POST data to build the same structure and compare the hash.

More on Controllers 195

CakePHP Book, Release 5.x

© Note

The FormProtectionComponent will not prevent select options from being added/changed. Nor will it prevent radio
options from being added/changed.

Usage

Configuring the form protection component is generally done in the controller’s initialize() or beforeFilter()
callbacks

Available options are:

validate
Set to false to completely skip the validation of POST requests, essentially turning off form validation.

unlockedFields
Set to a list of form fields to exclude from POST validation. Fields can be unlocked either in the Component, or
with FormHelper: :unlockField (). Fields that have been unlocked are not required to be part of the POST
and hidden unlocked fields do not have their values checked.

unlockedActions
Actions to exclude from POST validation checks.

validationFailureCallback
Callback to call in case of validation failure. Must be a valid Closure. Unset by default in which case exception
is thrown on validation failure.

Disabling form tampering checks
namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class WidgetsController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent (' FormProtection');
3
public function beforeFilter(EventInterface $event): void
{
parent: :beforeFilter($event) ;
if ($this->request->getParam('prefix') === 'Admin') {
$this->FormProtection->setConfig('validate', false);
}
3
}

The above example would disable form tampering prevention for admin prefixed routes.

196 Chapter 10. Controllers

CakePHP Book, Release 5.x

Disabling form tampering for specific actions

There may be cases where you want to disable form tampering prevention for an action (ex. AJAX requests).
You may “unlock” these actions by listing them in $this->FormProtection->setConfig('unlockedActions’,
['edit']); in your beforeFilter():

namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class WidgetController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent (' FormProtection');
3
public function beforeFilter(EventInterface $event): void
{
parent: :beforeFilter($event);
$this->FormProtection->setConfig('unlockedActions', ['edit']);
1
}

This example would disable all security checks for the edit action.

Handling validation failure through callbacks

If form protection validation fails it will result in a 400 error by default. You can configure this behavior by setting the
validationFailureCallback configuration option to a callback function in the controller.

By configuring a callback method you can customize how the failure handling process works:

use Cake\Controller\Exception\FormProtectionException;

public function beforeFilter(EventInterface $event): void

{

parent: :beforeFilter($event);

$this->FormProtection->setConfig(
'validationFailureCallback',
// Prior to 5.2 use Cake\Http\Exception\BadRequestException.
function (FormProtectionException $exception) {
// You can either return a response instance or throw the exception
// received as argument.

More on Controllers 197

CakePHP Book, Release 5.x

Checking HTTP Cache

class CheckHttpCacheComponent (ComponentCollection $collection, array $config = [])

The HTTP cache validation model is one of the processes used for cache gateways, also known as reverse proxies, to
determine if they can serve a stored copy of a response to the client. Under this model, you mostly save bandwidth, but
when used correctly you can also save some CPU processing, reducing response times:

// in a Controller
public function initialize(): void
{

parent::initialize();

$this->addComponent ('CheckHttpCache');

Enabling the CheckHttpCacheComponent in your controller automatically activates a beforeRender check. This
check compares caching headers set in the response object to the caching headers sent in the request to determine
whether the response was not modified since the last time the client asked for it. The following request headers are
used:

* If-None-Match is compared with the response’s Etag header.
e If-Modified-Since is compared with the response’s Last-Modified header.

If response headers match the request header criteria, then view rendering is skipped. This saves your application
generating a view, saving bandwidth and time. When response headers match, an empty response is returned with a
304 Not Modified status code.

Configuring Components

Many of the core components require configuration. One example would be the Form Protection Component. Configu-
ration for these components, and for components in general, is usually done via loadComponent () in your Controller’s
initialize() method or via the $components array:

class PostsController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent ('FormProtection', [
'unlockedActions' => ['index'],
D;
$this->loadComponent('Flash');
}
}

You can configure components at runtime using the setConfig() method. Often, this is done in your controller’s
beforeFilter () method. The above could also be expressed as:

public function beforeFilter(EventInterface $event): void

{

$this->FormProtection->setConfig('unlockedActions', ['index']);

}

Like helpers, components implement getConfig() and setConfig() methods to read and write configuration data:

198 Chapter 10. Controllers

CakePHP Book, Release 5.x

// Read config data.
$this->FormProtection->getConfig('unlockedActions');

// Set config
$this->Flash->setConfig('key', 'myFlash');

As with helpers, components will automatically merge their $_defaultConfig property with constructor configura-
tion to create the $_config property which is accessible with getConfig() and setConfig().

Aliasing Components

One common setting to use is the className option, which allows you to alias components. This feature is useful
when you want to replace $this->Flash or another common Component reference with a custom implementation:

// src/Controller/PostsController.php
class PostsController extends AppController

{
public function initialize(): void
{
$this->loadComponent('Flash', [
'className' => 'MyFlash',
D¢
}
}

// src/Controller/Component/MyFlashComponent.php
use Cake\Controller\Component\FlashComponent;

class MyFlashComponent extends FlashComponent
{

// Add your code to override the core FlashComponent

}

The above would alias MyFlashComponent to $this->Flash in your controllers.

© Note

Aliasing a component replaces that instance anywhere that component is used, including inside other Components.

Loading Components on the Fly

You might not need all of your components available on every controller action. In situations like this you can load a
component at runtime using the 1oadComponent () method in your controller:

// In a controller action
$this->loadComponent ('OneTimer");
$time = $this->OneTimer->getTime();

© Note

Keep in mind that components loaded on the fly will not have missed callbacks called. If you rely on the

More on Controllers 199

CakePHP Book, Release 5.x

beforeFilter or startup callbacks being called, you may need to call them manually depending on when you
load your component.

Using Components

Once you’ve included some components in your controller, using them is pretty simple. Each component you use is
exposed as a property on your controller. If you had loaded up the Cake\Controller\Component\FlashComponent
in your controller, you could access it like so:

class PostsController extends AppController

{
public function initialize(): void
{
parent::initialize();
$this->loadComponent('Flash');
3
public function delete()
{
if ($this->Post->delete($this->request->getData('Post.id")) {
$this->Flash->success('Post deleted.');
return $this->redirect(['action' => 'index']);
}
}
© Note

Since both Models and Components are added to Controllers as properties they share the same ‘namespace’. Be
sure to not give a component and a model the same name.

Changed in version 5.1.0: Components are able to use /development/dependency-injection to receive services.

Creating a Component

Suppose our application needs to perform a complex mathematical operation in many different parts of the application.
We could create a component to house this shared logic for use in many different controllers.

The first step is to «create a new component file and class. Create the file in
src/Controller/Component/MathComponent.php. The basic structure for the component would look some-
thing like this:

namespace App\Controller\Component;
use Cake\Controller\Component;

class MathComponent extends Component

{

public function doComplexOperation($amountl, $amount2)

{
return $amountl + $amount2;
(continues on next page)

200 Chapter 10. Controllers

CakePHP Book, Release 5.x

(continued from previous page)

© Note

All components must extend Cake\Controller\Component. Failing to do this will trigger an exception.

Components can use /development/dependency-injection to receive services as constructor parameters:

namespace App\Controller\Component;

use Cake\Controller\Component;
use App\Service\UserService;

class SsoComponent extends Component

{
public function __construct(
ComponentRegistry S$registry,
array $config = [],
UserService S$users
) {
parent::__construct($registry, $config);
$this->users = $users;
}
}

Including your Component in your Controllers

Once our component is finished, we can use it in the application’s controllers by loading it during the controller’s
initialize() method. Once loaded, the controller will be given a new attribute named after the component, through
which we can access an instance of it:

// In a controller

// Make the new component available at $this->Math,
// as well as the standard $this->Flash

public function initialize(): void

{
parent::initialize();
$this->loadComponent('Math');
$this->loadComponent('Flash');
}

When including Components in a Controller you can also declare a set of parameters that will be passed on to the
Component’s constructor. These parameters can then be handled by the Component:

// In your controller.
public function initialize(): void
{
parent::initialize();
$this->loadComponent('Math', [
'precision' => 2,
(continues on next page)

More on Controllers 201

CakePHP Book, Release 5.x

(continued from previous page)

'randomGenerator' => 'srand',

D;
$this->loadComponent('Flash');

The above would pass the array containing precision and randomGenerator to MathComponent: :initialize() in
the $config parameter.

Using Other Components in your Component

Sometimes one of your components may need to use another component. You can load other components by adding
them to the $components property:

// src/Controller/Component/CustomComponent.php
namespace App\Controller\Component;

use Cake\Controller\Component;

class CustomComponent extends Component

{
// The other component your component uses
protected array $components = ['Existing'];

// Execute any other additional setup for your component.
public function initialize(array $config): void
{

$this->Existing->foo();

}

public function bar()
{
/) ..
}

// src/Controller/Component/ExistingComponent.php
namespace App\Controller\Component;

use Cake\Controller\Component;

class ExistingComponent extends Component

{
public function foo()
{
J/ ...
}
}
© Note

In contrast to a component included in a controller no callbacks will be triggered on a component’s component.

202 Chapter 10. Controllers

CakePHP Book, Release 5.x

Accessing a Component’s Controller

From within a Component you can access the current controller through the registry:

$controller = $this->getController();

Component Callbacks
Components also offer a few request life-cycle callbacks that allow them to augment the request cycle.

beforeFilter (Eventinterface $event)
Is called before the controller’s beforeFilter() method, but after the controller’s initialize() method.

startup (Eventlnterface $event)
Is called after the controller’s beforeFilter() method but before the controller executes the current action handler.

beforeRender (Eventinterface $event)

Is called after the controller executes the requested action’s logic, but before the controller renders views and
layout.

afterFilter (Eventinterface $event)
Is called during the Controller. shutdown event, before output is sent to the browser.

beforeRedirect (Eventinterface $event, $url, Response $response)

Is invoked when the controller’s redirect method is called but before any further action. If this method returns
false the controller will not continue on to redirect the request. The $url, and $response parameters allow you
to inspect and modify the location or any other headers in the response.

Using Redirects in Component Events
To redirect from within a component callback method you can use the following:

public function beforeFilter(EventInterface $event): void

{
if ¢...) {
$event->setResult($this->getController()->redirect('/"));
return;
3
3

By setting a redirect as event result you let CakePHP know that you don’t want any other component callbacks to run,
and that the controller should not handle the action any further. As of 4.1.0 you can raise a RedirectException to
signal a redirect:

use Cake\Http\Exception\RedirectException;
use Cake\Routing\Router;

public function beforeFilter(EventInterface $event): void

{

throw new RedirectException(Router::url('/"))

}

Raising an exception will halt all other event listeners and create a new response that doesn’t retain or inherit any of the
current response’s headers. When raising a RedirectException you can include additional headers:

More on Controllers 203

CakePHP Book, Release 5.x

throw new RedirectException(Router::url('/'), 302, [
'Header-Key' => 'value',

D;

204 Chapter 10. Controllers

CHAPTER 11

Views

class Cake\View\View

Views are the V in MVC. Views are responsible for generating the specific output required for the request. Often
this is in the form of HTML, XML, or JSON, but streaming files and creating PDFs that users can download are also
responsibilities of the View Layer.

CakePHP comes with a few built-in View classes for handling the most common rendering scenarios:
* To create XML or JSON webservices you can use the JSON and XML views.
* To serve protected files, or dynamically generated files, you can use Sending Files.

* To create multiple themed views, you can use Themes.

The App View

AppView is your application’s default View class. AppView itself extends the Cake\View\View class included in
CakePHP and is defined in src/View/AppView.php as follows:

<?php
namespace App\View;

use Cake\View\View;
class AppView extends View

{
}

You can use your AppView to load helpers that will be used for every view rendered in your application. CakePHP
provides an initialize () method that is invoked at the end of a View’s constructor for this kind of use:

205

CakePHP Book, Release 5.x

<?php
namespace App\View;

use Cake\View\View;

class AppView extends View

{
public function initialize(): void
{
// Always enable the MyUtils Helper
$this->addHelper('MyUtils');
}
}

View Templates

The view layer of CakePHP is how you speak to your users. Most of the time your views will be rendering
HTML/XHTML documents to browsers, but you might also need to reply to a remote application via JSON, or output
a CSV file for a user.

CakePHP template files are regular PHP files and utilize the alternative PHP syntax'"” for control structures and output.
These files contain the logic necessary to prepare the data received from the controller into a presentation format that
is ready for your audience.

Alternative Echos

Echo, or print a variable in your template:

<?php echo $variable; 7>

Using Short Tag support:

<?= $variable ?>

Alternative Control Structures

Control structures, like if, for, foreach, switch, and while can be written in a simplified format. Notice that there
are no braces. Instead, the end brace for the foreach is replaced with endforeach. Each of the control structures
listed above has a similar closing syntax: endif, endfor, endforeach, and endwhile. Also notice that instead of
using a semicolon after each structure (except the last one), there is a colon.

The following is an example using foreach:

<?php foreach ($todo as $item): ?>
<?= $item 7></1i>

<?php endforeach; ?>

Another example, using if/elseif/else. Notice the colons:

109 hitps://php.net/manual/en/control-structures.alternative-syntax.php

206 Chapter 11. Views

https://php.net/manual/en/control-structures.alternative-syntax.php

CakePHP Book, Release 5.x

<?php if ($username === 'sally'): ?>
<h3>Hi Sally</h3>
<?php elseif ($username === 'joe'): ?>

<h3>Hi Joe</h3>
<?php else: ?>

<h3>Hi unknown user</h3>
<?php endif; 7>

If you’d prefer to use a templating language like Twig''?, checkout the CakePHP Twig Plugin'''

Template files are stored in templates/, in a folder named after the controller that uses the files, and named after the
action it corresponds to. For example, the view file for the Products controller’s view() action, would normally be
found in templates/Products/view.php.

The view layer in CakePHP can be made up of a number of different parts. Each part has different uses, and will be
covered in this chapter:

templates: Templates are the part of the page that is unique to the action being run. They form the meat of your
application’s response.

elements: small, reusable bits of view code. Elements are usually rendered inside views.

layouts: template files that contain presentational code that wraps many interfaces in your application. Most
views are rendered inside a layout.

helpers: these classes encapsulate view logic that is needed in many places in the view layer. Among other
things, helpers in CakePHP can help you build forms, build AJAX functionality, paginate model data, or serve
RSS feeds.

cells: these classes provide miniature controller-like features for creating self contained UI components. See the
View Cells documentation for more information.

View Variables

Any variables you set in your controller with set () will be available in both the view and the layout your action renders.
In addition, any set variables will also be available in any element. If you need to pass additional variables from the
view to the layout you can either call set () in the view template, or use View Blocks.

You should remember to always escape any user data before outputting it as CakePHP does not automatically escape
output. You can escape user content with the h() function:

<?= h(%user->bio); ?>

Setting View Variables

Cake\View\View: : set(string $var, mixed $value)

Views have a set() method that is analogous to the set () found in Controller objects. Using set() from your view
file will add the variables to the layout and elements that will be rendered later. See Setting View Variables for more
information on using set ().

In your view file you can do:

$this->set('activeMenuButton', 'posts');

Then, in your layout, the $activeMenuButton variable will be available and contain the value ‘posts’.

10 hitps://twig.symfony.com
11 https://github.com/cakephp/twig-view

View Templates 207

https://twig.symfony.com
https://github.com/cakephp/twig-view

CakePHP Book, Release 5.x

Extending Views

View extending allows you to wrap one view in another. Combining this with view blocks gives you a powerful way to
keep your views DRY . For example, your application has a sidebar that needs to change depending on the specific view
being rendered. By extending a common view file, you can avoid repeating the common markup for your sidebar, and
only define the parts that change:

<!-- templates/Common/view.php -->
<hl><?= h($this->fetch('title')) ?></hl>
<?= $this->fetch('content') 7>

<div class="actions">
<h3>Related actions</h3>

<?= $this->fetch('sidebar') 7>

</div>

The above view file could be used as a parent view. It expects that the view extending it will define the sidebar and
title blocks. The content block is a special block that CakePHP creates. It will contain all the uncaptured content
from the extending view. Assuming our view file has a $post variable with the data about our post, the view could
look like:

<!-- templates/Posts/view.php -->
<?php
$this->extend('/Common/view');

$this->assign('title', $post->title);

$this->start('sidebar');

7>

<1li>

<?php

echo $this->Html->link('edit', [
'action' => 'edit',

$post->id,
D;
7>
</1i>

<?php $this->end(); 7>

// The remaining content will be available as the 'content' block
// In the parent view.
<?= h($post->body) ?>

The post view above shows how you can extend a view, and populate a set of blocks. Any content not already in a
defined block will be captured and put into a special block named content. When a view contains a call to extend (),
execution continues to the bottom of the current view file. Once it is complete, the extended view will be rendered.
Calling extend () more than once in a view file will override the parent view that will be processed next:

$this->extend('/Common/view');
$this->extend('/Common/index");

The above will result in /Common/index.php being rendered as the parent view to the current view.

You can nest extended views as many times as necessary. Each view can extend another view if desired. Each parent

208 Chapter 11. Views

CakePHP Book, Release 5.x

view will get the previous view’s content as the content block.

© Note

You should avoid using content as a block name in your application. CakePHP uses this for uncaptured content
in extended views.

Extending Layouts

Just like views, layouts can also be extended. Like views, you use extend () to extend layouts. Layout extensions can
update or replace blocks, and update or replace the content rendered by the child layout. For example if we wanted to
wrap a block with additional markup you could do:

// Our layout extends the application layout.
$this->extend('application');
$this->prepend('content', '<main class="nosidebar'">');
$this->append('content', '</main>"');

// Output more markup.

// Remember to echo the contents of the previous layout.
echo $this->fetch('content');

Using View Blocks

View blocks provide a flexible API that allows you to define slots or blocks in your views/layouts that will be defined
elsewhere. For example, blocks are ideal for implementing things such as sidebars, or regions to load assets at the
bottom/top of the layout. Blocks can be defined in two ways: either as a capturing block, or by direct assignment. The
start(), append(), prepend(), assign(), fetch(), and end () methods allow you to work with capturing blocks:

// Create the sidebar block.
$this->start('sidebar');

echo $this->element('sidebar/recent_topics');
echo $this->element('sidebar/recent_comments');
$this->end();

// Append into the sidebar later on.
$this->start('sidebar');

echo $this->fetch('sidebar');

echo $this->element('sidebar/popular_topics');
$this->end(Q;

You can also append into a block using append():

$this->append('sidebar');
echo $this->element('sidebar/popular_topics');
$this->endQ;

// The same as the above.
$this->append('sidebar', $this->element('sidebar/popular_topics'));

Extending Layouts 209

CakePHP Book, Release 5.x

If you need to clear or overwrite a block there are a couple of alternatives. The reset () method will clear or overwrite
a block at any time. The assign() method with an empty content string can also be used to clear the specified block.:

// Clear the previous content from the sidebar block.
$this->reset('sidebar');

// Assigning an empty string will also clear the sidebar block.
$this->assign('sidebar', '');

Assigning a block’s content is often useful when you want to convert a view variable into a block. For example, you
may want to use a block for the page title, and sometimes assign the title as a view variable in the controller:

// In view file or layout above $this->fetch('title')
$this->assign('title', $title);

The prepend () method allows you to prepend content to an existing block:

// Prepend to sidebar
$this->prepend('sidebar', 'this content goes on top of sidebar');

Displaying Blocks
You can display blocks using the fetch() method. fetch() will output a block, returning “’ if a block does not exist:

<?= $this->fetch('sidebar') 7>

You can also use fetch to conditionally show content that should surround a block should it exist. This is helpful in
layouts, or extended views where you want to conditionally show headings or other markup:

// In templates/layout/default.php
<?php if ($this->fetch('menu')): ?>
<div class="menu">

<h3>Menu options</h3>

<?= $this->fetch('menu') ?>
</div>
<?php endif; 7>

You can also provide a default value for a block if it does not exist. This allows you to add placeholder content when a
block does not exist. You can provide a default value using the second argument:

<div class="shopping-cart">

<h3>Your Cart</h3>

<?= $this->fetch('cart', 'Your cart is empty') ?>
</div>

Using Blocks for Script and CSS Files

The HtmlHelper ties into view blocks, and its script (), css(), and meta () methods each update a block with the
same name when used with the block = true option:

<?php

// In your view file
$this->Html->script('carousel', ['block' => true]);
$this->Html->css('carousel', ['block' => true]);

(continues on next page)

210 Chapter 11. Views

CakePHP Book, Release 5.x

(continued from previous page)

7>

// In your layout file.
<!DOCTYPE html>
<html lang="en">
<head>
<title><?= h($this->fetch('title")) ?></title>
<?= $this->fetch('script') ?>
<?= $this->fetch('css') ?>
</head>
// Rest of the layout follows

The Cake\View\Helper\HtmlHelper also allows you to control which block the scripts and CSS go to:

// In your view
$this->Html->script('carousel', ['block' => 'scriptBottom']);

// In your layout
<?= $this->fetch('scriptBottom') 7>

Layouts

A layout contains presentation code that wraps around a view. Anything you want to see in all of your views should be
placed in a layout.

CakePHP’s default layout is located at templates/layout/default.php. If you want to change the overall look of your
application, then this is the right place to start, because controller-rendered view code is placed inside of the default
layout when the page is rendered.

Other layout files should be placed in templates/layout. When you create a layout, you need to tell CakePHP where
to place the output of your views. To do so, make sure your layout includes a place for $this->fetch('content')
Here’s an example of what a default layout might look like:

<!DOCTYPE html>

<html lang="en">

<head>

<title><?= h($this->fetch('title')) ?></title>

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon">
<!-- Include external files and scripts here (See HTML helper for more info.) -->
<?php

echo $this->fetch('meta');

echo $this->fetch('css');

echo $this->fetch('script');

7>

</head>

<body>

<!-- If you'd like some sort of menu to
show up on all of your views, include it here -->
<div id="header">
<div id="menu">...</div>
</div>

(continues on next page)

Layouts 211

CakePHP Book, Release 5.x

(continued from previous page)

<!-- Here's where I want my views to be displayed -->
<?= $this->fetch('content') ?>

<!-- Add a footer to each displayed page -->
<div id="footer">...</div>

</body>
</html>

The script, css and meta blocks contain any content defined in the views using the built-in HTML helper. Useful
for including JavaScript and CSS files from views.

O Note

When using HtmlHelper: :css() or HtmlHelper: :script () in template files, specify 'block' => true to
place the HTML source in a block with the same name. (See API for more details on usage).

The content block contains the contents of the rendered view.

You can set the title block content from inside your view file:

$this->assign('title', 'View Active Users');

Empty values for the title block will be automatically replaced with a representation of the current template path,
such as 'Admin/Articles’.

You can create as many layouts as you wish: just place them in the templates/layout directory, and switch between
them inside of your controller actions using the controller or view’s $1ayout property:

// From a controller
public function view()

{
// Set the layout.
$this->viewBuilder()->setLayout('admin');

}

// From a view file
$this->layout = 'loggedin';

For example, if a section of my site included a smaller ad banner space, I might create a new layout with the smaller
advertising space and specify it as the layout for all controllers’ actions using something like:

namespace App\Controller;

class UsersController extends AppController

{
public function viewActive()
{
$this->set('title', 'View Active Users');
$this->viewBuilder () ->setLayout('default_small_ad');
3

(continues on next page)

212 Chapter 11. Views

CakePHP Book, Release 5.x

(continued from previous page)
public function viewImage()

{

$this->viewBuilder()->setLayout('image');

// Output user image

Besides a default layout CakePHP’s official skeleton app also has an ‘ajax’ layout. The Ajax layout is handy for crafting
AJAX responses - it’s an empty layout. (Most AJAX calls only require a bit of markup in return, rather than a fully-
rendered interface.)

The skeleton app also has a default layout to help generate RSS.

Using Layouts from Plugins

If you want to use a layout that exists in a plugin, you can use plugin syntax. For example, to use the contact layout
from the Contacts plugin:

namespace App\Controller;

class UsersController extends AppController

{
public function viewActive()
{
$this->viewBuilder()->setlLayout('Contacts.contact');
1
}
Elements

Cake\View\View: : element (string $elementPath, array $data, array $options = [])

Many applications have small blocks of presentation code that need to be repeated from page to page, sometimes
in different places in the layout. CakePHP can help you repeat parts of your website that need to be reused. These
reusable parts are called Elements. Ads, help boxes, navigational controls, extra menus, login forms, and callouts are
often implemented in CakePHP as elements. An element is basically a mini-view that can be included in other views,
in layouts, and even within other elements. Elements can be used to make a view more readable, placing the rendering
of repeating elements in its own file. They can also help you re-use content fragments in your application.

Elements live in the templates/element/ folder, and have the .php filename extension. They are output using the element
method of the view:

echo $this->element('helpbox');

Passing Variables into an Element

You can pass data to an element through the element’s second argument:

echo $this->element('helpbox', [
'helptext' => 'Oh, this text is very helpful.',
D;

Elements 213

CakePHP Book, Release 5.x

Inside the element file, all the passed variables are available as members of the parameter array (in the same
way that Controller::set() in the controller works with template files). In the above example, the tem-
plates/element/helpbox.php file can use the $helptext variable:

// Inside templates/element/helpbox.php
echo $helptext; // Outputs "Oh, this text is very helpful.’

Keep in mind that in those view vars are merged with the view vars from the view itself. So all view vars set using
Controller::set() in the controller and View: :set () in the view itself are also available inside the element.

The View: :element () method also supports options for the element. The options supported are ‘cache’ and ‘call-
backs’. An example:

echo $this->element('helpbox', [
'helptext' => "This is passed to the element as ,
'foobar' => "This is passed to the element as ,

1,
[
// uses the ‘long_view cache configuration
'cache' => 'long_view',
// set to true to have before/afterRender called for the element
'callbacks' => true,
]

);

Element caching is facilitated through the Cache class. You can configure elements to be stored in any Cache configu-
ration you’ve set up. This gives you a great amount of flexibility to decide where and for how long elements are stored.
To cache different versions of the same element in an application, provide a unique cache key value using the following
format:

$this->element('helpbox', []1, [
'cache' => ['config' => 'short', 'key' => 'unique value'],
]
);

If you need more logic in your element, such as dynamic data from a datasource, consider using a View Cell instead of
an element. Find out more about View Cells.

Caching Elements

You can take advantage of CakePHP view caching if you supply a cache parameter. If set to true, it will cache the
element in the ‘default’ Cache configuration. Otherwise, you can set which cache configuration should be used. See
Caching for more information on configuring Cache. A simple example of caching an element would be:

echo $this->element('helpbox', [], ['cache' => truel);

If you render the same element more than once in a view and have caching enabled, be sure to set the ‘key’ parameter
to a different name each time. This will prevent each successive call from overwriting the previous element () call’s
cached result. For example:

echo $this->element(

'helpbox',
['var' => $var],
['cache' => ['key' => 'first_use', 'config' => 'view_long']]

)

(continues on next page)

214 Chapter 11. Views

CakePHP Book, Release 5.x

(continued from previous page)

echo $this->element(

'helpbox',
['var' => $differenVar],
['cache' => ['key' => 'second_use', 'config' => 'view_long']]

);

The above will ensure that both element results are cached separately. If you want all element caching to use the same
cache configuration, you can avoid some repetition by setting View: : §elementCache to the cache configuration you
want to use. CakePHP will use this configuration when none is given.

Requesting Elements from a Plugin

If you are using a plugin and wish to use elements from within the plugin, just use the familiar plugin syntax. If the
view is being rendered for a plugin controller/action, the plugin name will automatically be prefixed onto all elements
used, unless another plugin name is present. If the element doesn’t exist in the plugin, it will look in the main APP
folder:

echo $this->element('Contacts.helpbox');

If your view is a part of a plugin, you can omit the plugin name. For example, if you are in the ContactsController
of the Contacts plugin, the following:

echo $this->element('helpbox');

// and
echo $this->element('Contacts.helpbox');

are equivalent and will result in the same element being rendered.

For elements inside subfolder of a plugin (for example, plugins/Contacts/Template/element/sidebar/helpbox.php),
use the following:

echo $this->element('Contacts.sidebar/helpbox');

Routing prefix and Elements

If you have a Routing prefix configured, the Element path resolution can switch to a prefix location, as Layouts and
action View do. Assuming you have a prefix “Admin” configured and you call:

echo $this->element('my_element');

The element first be looked for in templates/Admin/element/. If such a file does not exist, it will be looked for in the
default location.

Caching Sections of Your View
Cake\View\View: :cache(callable $block, array $options = [])

Sometimes generating a section of your view output can be expensive because of rendered View Cells or expensive
helper operations. To help make your application run faster CakePHP provides a way to cache view sections:

// Assuming some local variables
echo $this->cache(function () use ($user, $article) {

(continues on next page)

Elements 215

CakePHP Book, Release 5.x

(continued from previous page)

echo $this->cell('UserProfile', [$user]);
echo $this->cell('ArticleFull', [$article]);
}, ['key' => 'my_view_key']);

By default cached view content will go into the View: : $elementCache cache config, but you can use the config
option to change this.

View Events

Like Controller, view trigger several events/callbacks that you can use to insert logic around the rendering life-cycle:

Event List
e View.beforeRender
e View.beforeRenderFile
e View.afterRenderFile
* View.afterRender
e View.beforeLayout
e View.afterLayout

You can attach application event listeners to these events or use Helper Callbacks.

Creating Your Own View Classes

You may need to create custom view classes to enable new types of data views, or add additional custom view-rendering
logic to your application. Like most components of CakePHP, view classes have a few conventions:

* View class files should be put in src/View. For example: src¢/View/PdfView.php
* View classes should be suffixed with View. For example: PdfView.

e When referencing view class names you should omit the View suffix. For example:
$this->viewBuilder()->setClassName('Pdf');.

You’ll also want to extend View to ensure things work correctly:

// In src/View/PdfView.php
namespace App\View;

use Cake\View\View;

class PdfView extends View

{
public function render($view = null, $layout = null)
{
// Custom logic here.
}
}

Replacing the render method lets you take full control over how your content is rendered.

216 Chapter 11. Views

CakePHP Book, Release 5.x

More About Views

View Cells

View cells are small mini-controllers that can invoke view logic and render out templates. The idea of cells is borrowed
from cells in Ruby'!'?, where they fulfill a similar role and purpose.

When to use Cells

Cells are ideal for building reusable page components that require interaction with models, view logic, and rendering
logic. A simple example would be the cart in an online store, or a data-driven navigation menu in a CMS.

Creating a Cell

To create a cell, define a class in src/View/Cell and a template in templates/cell/. In this example, we’ll be making
a cell to display the number of messages in a user’s notification inbox. First, create the class file. Its contents should
look like:

namespace App\View\Cell;
use Cake\View\Cell;

class InboxCell extends Cell

{
public function display()
{
}

}

Save this file into src/View/Cell/InboxCell.php. As you can see, like other classes in CakePHP, Cells have a few
conventions:

¢ Cells live in the App\View\Cell namespace. If you are making a cell in a plugin, the namespace would be
PluginName\View\Cell.

¢ Class names should end in Cell.
¢ Classes should inherit from Cake\View\Cell.

We added an empty display () method to our cell; this is the conventional default method when rendering a cell.
We’ll cover how to use other methods later in the docs. Now, create the file templates/cell/Inbox/display.php. This
will be our template for our new cell.

You can generate this stub code quickly using bake:

bin/cake bake cell Inbox
Would generate the code we created above.

Implementing the Cell

Assume that we are working on an application that allows users to send messages to each other. We have a Messages
model, and we want to show the count of unread messages without having to pollute AppController. This is a perfect
use case for a cell. In the class we just made, add the following:

112 https://github.com/trailblazer/cells

More About Views 217

https://github.com/trailblazer/cells

CakePHP Book, Release 5.x

namespace App\View\Cell;
use Cake\View\Cell;

class InboxCell extends Cell

{
public function display()
{
$unread = $this->fetchTable('Messages')->find('unread');
$this->set('unread_count', $unread->count());
3
}

Because Cells use the LocatorAwareTrait and ViewVarsTrait, they behave very much like a controller would.
We can use the fetchTable() and set() methods just like we would in a controller. In our template file, add the
following:

<!-- templates/cell/Inbox/display.php -->
<div class="notification-icon">

You have <7= $unread_count ?> unread messages.
</div>

© Note

Cell templates have an isolated scope that does not share the same View instance as the one used to render template
and layout for the current controller action or other cells. Hence they are unaware of any helper calls made or blocks
set in the action’s template / layout and vice versa.

Loading Cells

Cells can be loaded from views using the cell () method and works the same in both contexts:

// Load an application cell
$cell = $this->cell('Inbox');

// Load a plugin cell
$cell = $this->cell('Messaging.Inbox');

The above will load the named cell class and execute the display () method. You can execute other methods using
the following:

// Run the expanded() method on the Inbox cell
$cell = $this->cell('Inbox::expanded');

If you need controller logic to decide which cells to load in a request, you can use the Cel1Trait in your controller to
enable the cell () method there:

namespace App\Controller;

use App\Controller\AppController;
use Cake\View\CellTrait;

(continues on next page)

218 Chapter 11. Views

CakePHP Book, Release 5.x

(continued from previous page)
class DashboardsController extends AppController

{

use CellTrait;

// More code.

Passing Arguments to a Cell

You will often want to parameterize cell methods to make cells more flexible. By using the second and third arguments
of cell(), you can pass action parameters and additional options to your cell classes, as an indexed array:

$cell = $this->cell('Inbox::recent', ['-3 days']);

The above would match the following function signature:

public function recent($since)
{
}

Rendering a Cell

Once a cell has been loaded and executed, you’ll probably want to render it. The easiest way to render a cell is to echo
it:

<?= $cell ?>

This will render the template matching the lowercased and underscored version of our action name like display.php.

Because cells use View to render templates, you can load additional cells within a cell template if required.

© Note

Echoing a cell uses the PHP __toString() magic method which prevents PHP from showing the filename and
line number for any fatal errors raised. To obtain a meaningful error message, it is recommended to use the
Cell: :render () method, for example <?= $cell->render() 7>.

Rendering Alternate Templates

By convention cells render templates that match the action they are executing. If you need to render a different view
template, you can specify the template to use when rendering the cell:

// Calling render() explicitly
echo $this->cell('Inbox::recent', ['-3 days'])->render('messages');

// Set template before echoing the cell.
$cell = $this->cell('Inbox");

$cell->viewBuilder()->setTemplate('messages');

echo $cell;

More About Views 219

CakePHP Book, Release 5.x

Caching Cell Output

When rendering a cell you may want to cache the rendered output if the contents don’t change often or to help improve
performance of your application. You can define the cache option when creating a cell to enable & configure caching:

// Cache using the default config and a generated key
$cell = $this->cell('Inbox', [], ['cache' => true]);

// Cache to a specific cache config and a generated key
$cell = $this->cell('Inbox', [], ['cache' => ['config' => 'cell_cache']]);

// Specify the key and config to use.
$cell = $this->cell('Inbox', [1, L[
'cache' => ['config' => 'cell_cache', 'key' => 'inbox_' . $user->id]

D;

If a key is generated the underscored version of the cell class and template name will be used.

© Note

A new View instance is used to render each cell and these new objects do not share context with the main template
/ layout. Each cell is self-contained and only has access to variables passed as arguments to the View: :cell()
call.

Paginating Data inside a Cell

Creating a cell that renders a paginated result set can be done by leveraging a paginator class of the ORM. An example
of paginating a user’s favorite messages could look like:

namespace App\View\Cell;

use Cake\View\Cell;
use Cake\Datasource\Paging\NumericPaginator;

class FavoritesCell extends Cell
{
public function display($user)
{
// Create a paginator
$paginator = new NumericPaginator();

// Paginate the model

$results = $paginator->paginate(
$this->fetchTable('Messages'),
$this->request->getQueryParams(),

[
// Use a parameterized custom finder.
'finder' => ['favorites' => [$user]],
// Use scoped query string parameters.
'scope' => 'favorites',

]

(continues on next page)

220 Chapter 11. Views

CakePHP Book, Release 5.x

(continued from previous page)

// Set the paging params as a request attribute for use the PaginatorHelper

$paging = $paginator->getPagingParams() + (array)$this->request->getAttribute(
—'paging');

$this->request = $this->request->withAttribute('paging', $paging);

$this->set('favorites', $results);

The above cell would paginate the Messages model using scoped pagination parameters.

Cell Options

Cells can declare constructor options that are converted into properties when creating a cell object:

namespace App\View\Cell;
use Cake\View\Cell;

class FavoritesCell extends Cell

{
protected $_validCellOptions = ['limit'];
protected $limit = 3;
public function display($userId)
{
$result = $this->fetchTable('Users')->find('friends', ['for' => $userId])
->limit($this->1imit)
->allQ);
$this->set('favorites', $result);
3
}

Here we have defined a $1imit property and add 1imit as a cell option. This will allow us to define the option when
creating the cell:

$cell = $this->cell('Favorites', [$user->id], ['limit' => 10])
Cell options are handy when you want data available as properties allowing you to override default values.

Using Helpers inside a Cell

Cells have their own context and their own View instance but Helpers loaded inside your AppView: :initialize()
function are still loaded as usual.

Loading a specific Helper just for a specific cell can be done via the following example:

namespace App\View\Cell;
use Cake\View\Cell;

class FavoritesCell extends Cell

(continues on next page)

More About Views 221

CakePHP Book, Release 5.x

(continued from previous page)

{
public function initialize(): void
{
$this->viewBuilder () ->addHelper ('MyCustomHelper');
}
}
Cell Events

Cells trigger the following events around the cell action:
e Cell.beforeAction
e Cell.afterAction

Added in version 5.1.0.

Themes

Themes in CakePHP are simply plugins that focus on providing template files. See the section on Creating Your Own
Plugins. You can take advantage of themes, allowing you to switch the look and feel of your page quickly. In addition
to template files, they can also provide helpers and cells if your theming requires that. When using cells and helpers
from your theme, you will need to continue using the plugin syntax.

First ensure your theme plugin is loaded in your application’s bootstrap method. For example:

// Load our plugin theme residing in the folder /plugins/Modern
$this->addPlugin('Modern');

To use themes, set the theme name in your controller’s action or beforeRender () callback:

class ExamplesController extends AppController

{
public function beforeRender(\Cake\Event\EventInterface $event): void
{
$this->viewBuilder () ->setTheme('Modern');
3
}

Theme template files need to be within a plugin with the same name. For example, the above theme would be found
in plugins/Modern/templates. It’s important to remember that CakePHP expects PascalCase plugin/theme names.
Beyond that, the folder structure within the plugins/Modern/templates folder is exactly the same as templates/.

For example, the view file for an edit action of a Posts controller would reside at plug-
ins/Modern/templates/Posts/edit.php. Layout files would reside in plugins/Modern/templates/layout/. You
can provide customized templates for plugins with a theme as well. If you had a plugin named ‘Cms’, that contained a
TagsController, the Modern theme could provide plugins/Modern/templates/plugin/Cms/Tags/edit.php to replace
the edit template in the plugin.

If a view file can’t be found in the theme, CakePHP will try to locate the view file in the templates/ folder. This way,
you can create master template files and simply override them on a case-by-case basis within your theme folder.

222 Chapter 11. Views

CakePHP Book, Release 5.x

Theme Assets

Because themes are standard CakePHP plugins, they can include any necessary assets in their webroot direc-
tory. This allows for packaging and distribution of themes. Whilst in development, requests for theme as-
sets will be handled by CakeRoutingMiddlewareAssetMiddleware (which is loaded by default in cakephp/app
Application: :middleware()). To improve performance for production environments, it’s recommended that you
Improve Your Application’s Performance.

All of CakePHP’s built-in helpers are aware of themes and will create the correct paths automatically. Like template

files, if a file isn’t in the theme folder, it will default to the main webroot folder:

// When in a theme with the name of 'purple_cupcake'
$this->Html->css('main.css');

// creates a path like
/purple_cupcake/css/main.css

// and links to
plugins/PurpleCupcake/webroot/css/main.css

JSON and XML views

The JsonView and XmlView integration with CakePHP’s Content Type Negotiation features and let you create JSON
and XML responses.

These view classes are most commonly used alongside Cake\Controller\Controller: :viewClasses().

There are two ways you can generate data views. The first is by using the serialize option, and the second is by
creating normal template files.

Defining View Classes to Negotiate With

In your AppController or in an individual controller you can implement the viewClasses () method and provide
all of the views you want to support:

use Cake\View\JsonView;
use Cake\View\XmlView;

public function viewClasses(): array
{
return [JsonView::class, XmlView::class];

}

You can optionally enable the json and/or xml extensions with Routing File Extensions. This will allow you to access
the JSON, XML or any other special format views by using a custom URL ending with the name of the response type as
a file extension such as http://example.com/articles. json.

By default, when not enabling Routing File Extensions, the Accept header in the request is used for selecting which
type of format should be rendered to the user. An example Accept format that is used to render JSON responses is
application/json.

Using Data Views with the Serialize Key

The serialize option indicates which view variable(s) should be serialized when using a data view. This lets you
skip defining template files for your controller actions if you don’t need to do any custom formatting before your data
is converted into json/xml.

More About Views 223

CakePHP Book, Release 5.x

If you need to do any formatting or manipulation of your view variables before generating the response, you should use
template files. The value of serialize can be either a string or an array of view variables to serialize:

namespace App\Controller;
use Cake\View\JsonView;

class ArticlesController extends AppController

{
public function viewClasses(): array
{
return [JsonView::class];
}
public function index()
{
// Set the view vars
$this->set('articles', $this->paginate());
// Specify which view vars JsonView should serialize.
$this->viewBuilder()->setOption('serialize', 'articles');
3
}

You can also define serialize as an array of view variables to combine:

namespace App\Controller;
use Cake\View\JsonView;

class ArticlesController extends AppController

{
public function viewClasses(): array
{
return [JsonView::class];
3
public function index()
{
// Some code that created $articles and $comments
// Set the view vars
$this->set(compact('articles', 'comments'));
// Specify which view vars JsonView should serialize.
$this->viewBuilder()->setOption('serialize', ['articles', 'comments']);
3
3

Defining serialize as an array has added the benefit of automatically appending a top-level <response> element
when using XmlView. If you use a string value for serialize and XmlView, make sure that your view variable has a
single top-level element. Without a single top-level element the Xml will fail to generate.

224 Chapter 11. Views

CakePHP Book, Release 5.x

Using a Data View with Template Files

You should use template files if you need to manipulate your view content before creating the final output. For example,
if we had articles with a field containing generated HTML, we would probably want to omit that from a JSON response.
This is a situation where a view file would be useful:

// Controller code
class ArticlesController extends AppController

{
public function index()
{
$articles = $this->paginate('Articles');
$this->set(compact('articles'));
3
}

// View code - templates/Articles/json/index.php
foreach ($articles as $article) {
unset($article->generated_html);

¥

echo json_encode(compact('articles'));

You can do more complex manipulations, or use helpers to do formatting as well. The data view classes don’t support
layouts. They assume that the view file will output the serialized content.

Creating XML Views
class XmlView

By default when using serialize the XmlView will wrap your serialized view variables with a <response> node.
You can set a custom name for this node using the rootNode option.

The XmlView class supports the xm1Options option that allows you to customize the options, such as tags or
attributes, used to generate XML.

An example of using Xm1View would be to generate a sitemap.xml''?. This document type requires that you change
rootNode and set attributes. Attributes are defined using the @ prefix:

use Cake\View\XmlView;

public function viewClasses(): array

{

return [XmlView::class];
}
public function sitemap()
{

$pages = $this->Pages->find()->all(Q);

$urls = [];

foreach ($pages as $page) {

$urls[] = [
'loc' => Router::url(['controller' => 'Pages', 'action' => 'view', $page->

—slug, '_full' => true]),
'lastmod' => $page->modified->format('Y-m-d'),

(continues on next page)

113 https://www.sitemaps.org/protocol.html

More About Views 225

https://www.sitemaps.org/protocol.html

CakePHP Book, Release 5.x

(continued from previous page)
'changefreq' => 'daily',
'priority' => '0.5',

13

// Define a custom root node in the generated document.
$this->viewBuilder ()
->setOption('rootNode', 'urlset')
->setOption('serialize', ['@xmlns', 'url']);
$this->set ([
// Define an attribute on the root node.
'@xmlns' => 'http://www.sitemaps.org/schemas/sitemap/0.9',
'url' => $urls,

D;

Creating JSON Views

class JsonView

The JsonView class supports the jsonOptions option that allows you to customize the bit-mask used to generate
JSON. See the json_encode''* documentation for the valid values of this option.

For example, to serialize validation error output of CakePHP entities in a consistent form of JSON do:

// In your controller's action when saving failed
$this->set('errors', $articles->errors());
$this->viewBuilder()
->setOption('serialize', ['errors'])
->setOption('jsonOptions', JSON_FORCE_OBJECT);

JSONP Responses

When using JsonView you can use the special view variable jsonp to enable returning a JSONP response. Setting it to
true makes the view class check if query string parameter named “callback” is set and if so wrap the json response in
the function name provided. If you want to use a custom query string parameter name instead of “callback” set jsonp
to required name instead of true.

Choosing a View Class

While you can use the viewClasses hook method most of the time, if you want total control over view class selection
you can directly choose the view class:

// src/Controller/VideosController.php
namespace App\Controller;

use App\Controller\AppController;
use Cake\Http\Exception\NotFoundException;

class VideosController extends AppController
{

(continues on next page)

114 https://php.net/json_encode

226 Chapter 11. Views

https://php.net/json_encode

CakePHP Book, Release 5.x

(continued from previous page)

public function export($format = '')

{

$format = strtolower($format) ;

// Format to view mapping
$formats = [
'xml' => 'Xml',
'json' => 'Json',
1;
// Error on unknown type

if (lisset($formats[$format])) {
throw new NotFoundException(__('Unknown format.'));

}

// Set Out Format View
$this->viewBuilder () ->setClassName($formats[$format]);

// Get data
$videos = $this->Videos->find('latest')->all(Q);

// Set Data View
$this->set(compact('videos'));
$this->viewBuilder()->setOption('serialize', ['videos']);

// Set Force Download
return $this->response->withDownload('report-' . date('YmdHis') . '.' . $format);

Helpers

Helpers are the component-like classes for the presentation layer of your application. They contain presentational logic
that is shared between many views, elements, or layouts. This chapter will show you how to configure helpers. How to
load helpers and use those helpers, and outline the simple steps for creating your own custom helpers.

CakePHP includes a number of helpers that aid in view creation. They assist in creating well-formed markup (including
forms), aid in formatting text, times and numbers, and can even speed up AJAX functionality. For more information
on the helpers included in CakePHP, check out the chapter for each helper:

Breadcrumbs

class Cake\View\Helper\BreadcrumbsHelper (View $view, array $config = [])

BreadcrumbsHelper provides a way to easily deal with the creation and rendering of a breadcrumbs trail for your app.

Creating a Breadcrumbs Trail

You can add a crumb to the list using the add () method. It takes three arguments:
« title The string to be displayed as a the title of the crumb

* url A string or an array of parameters that will be given to the Url

More About Views 227

CakePHP Book, Release 5.x

 options An array of attributes for the item and itemWithoutLink templates. See the section about defining
attributes for the item for more information.

In addition to adding to the end of the trail, you can do a variety of operations:

// Add at the end of the trail
$this->Breadcrumbs->add(

'Products’',

['controller' => 'products', 'action' => 'index']

);

// Add multiple crumbs at the end of the trail
$this->Breadcrumbs->add([

['title' => 'Products', 'url' => ['controller' => 'products', 'action' => 'index']l],
['title' => 'Product name', 'url' => ['controller' => 'products', 'action' => 'view',
- 1234117,

D;

// Prepended crumbs will be put at the top of the list
$this->Breadcrumbs->prepend(

'Products’,

['controller' => 'products', 'action' => 'index']

);

// Prepend multiple crumbs at the top of the trail, in the order given
$this->Breadcrumbs->prepend([

['title' => 'Products', 'url' => ['controller' => 'products', 'action' => 'index']],
['title' => 'Product name', 'url' => ['controller' => 'products', 'action' => 'view',
< 123411,

D;

// Insert in a specific slot. If the slot is out of
// bounds, an exception will be raised.
$this->Breadcrumbs->insertAt(

2P

'Products’,

['controller' => 'products', 'action' => 'index']

);

// Insert before another crumb, based on the title.
// If the named crumb title cannot be found,
// an exception will be raised.
$this->Breadcrumbs->insertBefore(
'A product name', // the title of the crumb to insert before
'Products’',
['controller' => 'products', 'action' => 'index']

);

// Insert after another crumb, based on the title.
// If the named crumb title cannot be found,
// an exception will be raised.
$this->Breadcrumbs->insertAfter(
'A product name', // the title of the crumb to insert after
'Products’',
(continues on next page)

228 Chapter 11. Views

CakePHP Book, Release 5.x

(continued from previous page)
['controller' => 'products', 'action' => 'index']

);

Using these methods gives you the ability to work with CakePHP’s 2-step rendering process. Since templates and
layouts are rendered from the inside out (meaning, included elements are rendered first), this allows you to define
precisely where you want to add a breadcrumb.

Rendering the Breadcrumbs Trail

After adding crumbs to the trail, you can easily render it using the render () method. This method accepts two array
arguments:

* $attributes : An array of attributes that will applied to the wrapper template. This gives you the ability
to add attributes to the HTML tag. It accepts the special templateVars key to allow the insertion of custom
template variables in the template.

* $separator : An array of attributes for the separator template. Possible properties are:
— separator The string to be displayed as a separator
— innerAttrs To provide attributes in case your separator is divided in two elements
— templateVars Allows the insertion of custom template variable in the template

All other properties will be converted as HTML attributes and will replace the attrs key in the template. If you
use the default for this option (empty), it will not render a separator.

Here is an example of how to render a trail:

echo $this->Breadcrumbs->render(
['class' => 'breadcrumbs-trail'],
['separator' => '<i class="fa fa-angle-right"></i>"]

s

Customizing the Output

The BreadcrumbsHelper internally uses the StringTemplateTrait, which gives the ability to easily customize output
of various HTML strings. It includes four templates, with the following default declaration:

[

'wrapper' => '<ul{{attrs}}>{{content}}",

'item' => '<li{{attrs}l}>{{title}}</1i>{
- {separator}}"',

'"itemWithoutLink' => '<li{{attrs}}><span{{innerAttrs}}>{{title}}</1i>{
—{separator}}',

'separator' => '<li{{attrs}}><span{{innerAttrs}}>{{separator}}</1i>"'

]

You can easily customize them using the setTemplates () method from the StringTemplateTrait:

$this->Breadcrumbs->setTemplates([
'wrapper' => '<nav class="breadcrumbs'><ul{{attrs}}>{{content}}</nav>",

D;

Since your templates will be rendered, the templateVars option allows you to add your own template variables in the
various templates:

More About Views 229

CakePHP Book, Release 5.x

$this->Breadcrumbs->setTemplates([
'item' => '<li{{attrs}}>{{icon}l}{{title}}</1i>{
—{separator}}’'

D;

And to define the {{icon}} parameter, just specify it when adding the crumb to the trail:

$this->Breadcrumbs->add(

'Products’,
['controller' => 'products', 'action' => 'index'],
[
'templateVars' => [
'icon' => '<i class="fa fa-money"></i>',
iP
]

);

Defining Attributes for the Iltem

If you want to apply specific HTML attributes to both the item and its sub-item , you can leverage the innerAttrs
key, which the $options argument provides. Everything except innerAttrs and templateVars will be rendered as
HTML attributes:

$this->Breadcrumbs->add(
'Products’',
['controller' => 'products', 'action' => 'index'],
[
'class' => 'products-crumb',
'data-foo' => 'bar',
"innerAttrs' => [
'class' => 'inner-products-crumb',
'id" => 'the-products-crumb',

i
);

// Based on the default template, this will render the following HTML:
<1i class="products-crumb" data-foo="bar">

—Products
</1li>

Clearing the Breadcrumbs

You can clear the bread crumbs using the reset () method. This can be useful when you want to transform the crumbs
and overwrite the list:

$crumbs = $this->Breadcrumbs->getCrumbs();
$crumbs = collection($crumbs)->map(function ($crumb) {
$crumb['options']['class'] = 'breadcrumb-item';

return $crumb;
(continues on next page)

230 Chapter 11. Views

CakePHP Book, Release 5.x

(continued from previous page)

P ->toArray(Q);

$this->Breadcrumbs->reset () ->add($crumbs) ;

Flash
class Cake\View\Helper\FlashHelper (View $view, array $config = [])

FlashHelper provides a way to render flash messages that were set in $_SESSION by FlashComponent. FlashCom-
ponent and FlashHelper primarily use elements to render flash messages. Flash elements are found under the tem-
plates/element/flash directory. You’ll notice that CakePHP’s App template comes with three flash elements: suc-
cess.php, default.php, and error.php.

Rendering Flash Messages
To render a flash message, you can simply use FlashHelper’s render () method in your template file:

<?= $this->Flash->render() ?>

By default, CakePHP uses a “flash” key for flash messages in a session. But, if you’ve specified a key when setting the
flash message in FlashComponent, you can specify which flash key to render:

<?= $this->Flash->render('other') ?>

You can also override any of the options that were set in FlashComponent:

// In your Controller
$this->Flash->set('The user has been saved.', [
'element' => 'success'

D;

// In your template file: Will use great_success.php instead of success.php
<?= $this->Flash->render('flash', [
'element' => 'great_success'

D;

// In your template file: the flashy element file from the Company Plugin
<?= $this->Flash->render('flash', [
'element' => 'Company.flashy'

D;

© Note

When building custom flash message templates, be sure to properly HTML encode any user data. CakePHP won’t
escape flash message parameters for you.

For more information about the available array options, please refer to the FlashComponent section.

More About Views 231

CakePHP Book, Release 5.x

Routing Prefix and Flash Messages

If you have a Routing prefix configured, you can now have your Flash elements stored in tem-
plates/{Prefix}/element/flash. This way, you can have specific messages layouts for each part of your application. For
instance, using different layouts for your front-end and admin section.

Flash Messages and Themes

The FlashHelper uses normal elements to render the messages and will therefore obey any theme you might have
specified. So when your theme has a templates/element/flash/error.php file it will be used, just as with any Elements
and Views.

Form

class Cake\View\Helper\FormHelper (View $view, array $config = [])

The FormHelper does most of the heavy lifting in form creation. The FormHelper focuses on creating forms quickly,
in a way that will streamline validation, re-population and layout. The FormHelper is also flexible - it will do almost
everything for you using conventions, or you can use specific methods to get only what you need.

Starting a Form
Cake\View\Helper\FormHelper: :create (mixed $context = null, array $options = [])

* $context - The context for which the form is being defined. Can be an ORM entity, ORM resultset, Form
instance, array of metadata or null (to make a model-less form).

* $options - An array of options and/or HTML attributes.

The first method you’ll need to use in order to take advantage of the FormHelper is create(). This method outputs
an opening form tag.

All parameters are optional. If create() is called with no parameters supplied, it assumes you are building a form
that submits to the current controller, via the current URL. The default method for form submission is POST. If you
were to call create() inside the view for UsersController: :add(), you would see something like the following
output in the rendered view:

<form method="post" action="/users/add">
The $context argument is used as the form’s ‘context’. There are several built-in form contexts and you can add your
own, which we’ll cover below, in a following section. The built-in providers map to the following values of $context:

» An Entity instance or an iterator will map to EntityContext''”; this context class allows FormHelper to work
with results from the built-in ORM.

 An array containing the 'schema' key, will map to ArrayContext''® which allows you to create simple data
structures to build forms against.

* null will map to NullContext''’; this context class simply satisfies the interface FormHelper requires. This
context is useful if you want to build a short form that doesn’t require ORM persistence.

Once a form has been created with a context, all controls you create will use the active context. In the case of an ORM
backed form, FormHelper can access associated data, validation errors and schema metadata. You can close the active
context using the end () method, or by calling create() again.

To create a form for an entity, do the following:

115 https://api.cakephp.org/5.x/class-Cake. View.Form.EntityContext html
116 https://api.cakephp.org/5.x/class-Cake. View.Form. ArrayContext.html
117 https://api.cakephp.org/5.x/class-Cake. View.Form.NullContext.htm]

232 Chapter 11. Views

https://api.cakephp.org/5.x/class-Cake.View.Form.EntityContext.html
https://api.cakephp.org/5.x/class-Cake.View.Form.ArrayContext.html
https://api.cakephp.org/5.x/class-Cake.View.Form.NullContext.html

CakePHP Book, Release 5.x

// If you are on /articles/add
// $article should be an empty Article entity.
echo $this->Form->create($article);

Output:
<form method="post" action="/articles/add">
This will POST the form data to the add () action of ArticlesController. However, you can also use the same logic to

create an edit form. The FormHelper uses the Entity object to automatically detect whether to create an add or edit
form. If the provided entity is not ‘new’, the form will be created as an edit form.

For example, if we browse to http://example.org/articles/edit/S, we could do the following:

// src/Controller/ArticlesController.php:
public function edit($id = null)

{
if (empty($id)) {
throw new NotFoundException;
3
$article = $this->Articles->get($id);
// Save logic goes here
$this->set('article’', $article);
}

// View/Articles/edit.php:
// Since $article->isNew() is false, we will get an edit form
<?= $this->Form->create($article) ?>

Output:

<form method="post" action="/articles/edit/5">
<input type="hidden" name="_method" value="PUT">

© Note

Since this is an edit form, a hidden input field is generated to override the default HTTP method.

In some cases, the entity’s ID is automatically appended to the end of the form’s action URL. If you would like
to avoid an ID being added to the URL, you can pass a string to $options['url'], such as '/my-account' or
\Cake\Routing\Router::url(['controller' => 'Users', 'action' => 'myAccount']).

Options for Form Creation

The $options array is where most of the form configuration happens. This special array can contain a number of
different key-value pairs that affect the way the form tag is generated. Valid values:

e 'type' - Allows you to choose the type of form to create. If no type is provided then it will be autodetected
based on the form context. Valid values:

— 'get' - Will set the form method to HTTP GET.
— 'file' - Will set the form method to POST and the 'enctype' to “multipart/form-data”.
— 'post' - Will set the method to POST.

More About Views 233

CakePHP Book, Release 5.x

— 'put', 'delete', 'patch' - Will override the HTTP method with PUT, DELETE or PATCH respec-
tively, when the form is submitted.

* 'method’ - Valid values are the same as above. Allows you to explicitly override the form’s method.
e 'url' - Specify the URL the form will submit to. Can be a string or a URL array.

* "encoding' - Sets the accept-charset encoding for the form. Defaults to Configure: :read('App.
encoding').

* 'enctype' - Allows you to set the form encoding explicitly.

e "templates' - The templates you want to use for this form. Any templates provided will be merged on top of the
already loaded templates. Can be either a filename (without extension) from /config or an array of templates
to use.

* 'context' - Additional options for the form context class. (For example the EntityContext acceptsa 'table’
option that allows you to set the specific Table class the form should be based on.)

e '"idPrefix' - Prefix for generated ID attributes.
e 'templateVars' - Allows you to provide template variables for the formStart template.

* autoSetCustomValidity - Set to true to use custom required and notBlank validation messages in the con-
trol’s HTMLS validity message. Default is true.

© Tip

Besides the above options you can provide, in the $options argument, any valid HTML attributes that you want
to pass to the created form element.

Getting form values from other values sources

A FormHelper’s values sources define where its rendered elements, such as input-tags, receive their values from.

The supported sources are context, data and query. You can use one or more sources by setting valueSources
option or by using setValuesSource(). Any widgets generated by FormHelper will gather their values from the
sources, in the order you setup.

By default FormHelper draws its values from data or context, i.e. it will fetch data from $request->getData()
or, if not present, from the active context’s data, that are the entity’s data in the case of EntityContext.

If however, you are building a form that needs to read from the query string, you can change where FormHelper reads
input data from:

// Use query string instead of request data:
echo $this->Form->create($article, [

'type' => 'get',

'valueSources' => ['query', 'context'],

D;

// Same effect:

echo $this->Form
->setValueSources(['query', 'context'])
->create($articles, ['type' => 'get']);

When input data has to be processed by the entity, i.e. marshal transformations, table query result or entity computa-
tions, and displayed after one or multiple form submissions where request data is retained, you need to put context
first:

234 Chapter 11. Views

CakePHP Book, Release 5.x

// Prioritize context over request data:
echo $this->Form->create($article,
'valueSources' => ['context', 'data'],

D;

The value sources will be reset to the default ['data', 'context'] when end() is called.

Changing the HTTP Method for a Form

By using the type option you can change the HTTP method a form will use:

echo $this->Form->create($article, ['type' => 'get']l);

Output:

<form method="get" action="/articles/edit/5">

Specifying a 'file' value for type, changes the form submission method to ‘post’, and includes an enctype of
“multipart/form-data” on the form tag. This is to be used if there are any file elements inside the form. The absence of
the proper enctype attribute will cause the file uploads not to function.

For example:

echo $this->Form->create($article, ['type' => 'file']);

Output:

<form enctype="multipart/form-data" method="post" action="/articles/add">

When using 'put', 'patch' or 'delete’ as 'type' values, your form will be functionally equivalent to a ‘post’ form,
but when submitted, the HTTP request method will be overridden with ‘PUT’, ‘PATCH’ or ‘DELETE’, respectively.
This allows CakePHP to emulate proper REST support in web browsers.

Setting a URL for the Form

Using the "url' option allows you to point the form to a specific action in your current controller or another controller
in your application.

For example, if you’d like to point the form to the publish() action of the current controller, you would supply an
$options array, like the following:

echo $this->Form->create($article, ['url' => ['action' => 'publish']]);

Output:

<form method="post" action="/articles/publish">

If the desired form action isn’t in the current controller, you can specify a complete URL for the form action. The
supplied URL can be relative to your CakePHP application:

echo $this->Form->create(null, [
'url' => [
'controller' => 'Articles',
'action' => 'publish',
1,
D;

More About Views 235

CakePHP Book, Release 5.x

Output:

<form method="post" action="/articles/publish">

Or you can point to an external domain:

echo $this->Form->create(null, [
'url' => 'https://www.google.com/search',
'type' => 'get',

D;

Output:

<form method="get" action="https://www.google.com/search">
Use 'url' => false if you don’t want to output a URL as the form action.

Using Custom Validators

Often models will have multiple validator sets, you can have FormHelper mark fields required based on the specific
validator your controller action is going to apply. For example, your Users table has specific validation rules that only
apply when an account is being registered:

echo $this->Form->create($user, [
'context' => ['validator' => 'register'],

D;

The above will use validation rules defined in the register validator, which are defined by
UsersTable::validationRegister(), for $user and all related associations. If you are creating a form for
associated entities, you can define validation rules for each association by using an array:

echo $this->Form->create($user, [
'context' => [
'validator' => [
'Users' => 'register',
'Comments' => 'default',
Jg
1,
D

The above would use register for the user, and default for the user’s comments. FormHelper uses validators to
generate HTMLS required attributes, relevant ARIA attributes, and set error messages with the browser validator API''®
. If you would like to disable HTMLS5 validation messages use:

$this->Form->setConfig('autoSetCustomValidity', false);
This will not disable required/aria-required attributes.

Creating context classes

While the built-in context classes are intended to cover the basic cases you’ll encounter you may need to
build a new context class if you are using a different ORM. In these situations you need to implement the

118 hitps://developer.mozilla.org/en- US/docs/Learn/HTML/Forms/Form_validation#Customized_error_messages

236 Chapter 11. Views

https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation#Customized_error_messages

CakePHP Book, Release 5.x

Cake\View\Form\ContextInterface''” . Once you have implemented this interface you can wire your new context into
the FormHelper. It is often best to do this in a View.beforeRender event listener, or in an application view class:

$this->Form->addContextProvider ('myprovider', function ($request, $data) {
if ($data['entity'] instanceof MyOrmClass) {
return new MyProvider($data);
}
s

Context factory functions are where you can add logic for checking the form options for the correct type of entity. If
matching input data is found you can return an object. If there is no match return null.

Creating Form Controls
Cake\View\Helper\FormHelper: : control (siring $fieldName, array $options = [])

¢ $fieldName - A field name in the form 'Modelname. fieldname'.

* $options - An optional array that can include both Options for Control, and options of the other methods (which
control () employs internally to generate various HTML elements) as well as any valid HTML attributes.

The control () method lets you generate complete form controls. These controls will include a wrapping div, label,
control widget, and validation error if necessary. By using the metadata in the form context, this method will choose
an appropriate control type for each field. Internally control () uses the other methods of FormHelper.

© Tip

Please note that while the fields generated by the control () method are called generically “inputs” on this page,
technically speaking, the control () method can generate not only all of the HTML input type elements, but also
other HTML form elements such as select, button, textarea.

By default the control () method will employ the following widget templates:

"inputContainer' => '<div class="{{constainerClass}} {{type}}{{required}}">{{content}}</
div>'

"input' => '<input type="{{type}}" name="{{name}}"{{attrs}}>"'

'requiredClass' => 'required'

'containerClass' => 'input'

In case of validation errors it will also use:

"inputContainerError' => '<div class="{{containerClass}} {{type}}{{required}} error">{
—{content}}{{error}}t</div>"

The type of control created (when we provide no additional options to specify the generated element type) is inferred
via model introspection and depends on the column datatype:

Column Type
Resulting Form Field

string, uuid (char, varchar, etc.)
text

boolean, tinyint(1)
checkbox

119 https://api.cakephp.org/5.x/interface- Cake. View.Form.ContextInterface.html

More About Views 237

https://api.cakephp.org/5.x/interface-Cake.View.Form.ContextInterface.html

CakePHP Book, Release 5.x

decimal
number

float
number

integer
number

text
textarea

text, with name of password, passwd
password

text, with name of email
email

text, with name of tel, telephone, or phone
tel

date
date

datetime, timestamp
datetime-local

datetimefractional, timestampfractional
datetime-local

time
time

month
month

year
select with years

binary
file

The $options parameter allows you to choose a specific control type if you need to:

echo $this->Form->control('published', ['type' => 'checkbox']);

© Tip

As a small subtlety, generating specific elements via the control () form method will always also generate the
wrapping div, by default. Generating the same type of element via one of the specific form methods (e.g.
$this->Form->checkbox('published') ;) in most cases won’t generate the wrapping div. Depending on your
needs you can use one or another.

The wrapping div will have a required class name appended if the validation rules for the model’s field indicate
that it is required and not allowed to be empty. You can disable automatic required flagging using the 'required’
option:

echo $this->Form->control('title', ['required' => false]);

238 Chapter 11. Views

CakePHP Book, Release 5.x

To skip browser validation triggering for the whole form you can set option 'formnovalidate' => true for the
input button you generate using submit () or set 'novalidate' => true in options for create().

For example, let’s assume that your Users model includes fields for a username (varchar), password (varchar), approved
(datetime) and quote (text). You can use the control () method of the FormHelper to create appropriate controls for
all of these form fields:

echo $this->Form->create($user);

// The following generates a Text input

echo $this->Form->control('username');

// The following generates a Password input

echo $this->Form->control('password');

// Assuming 'approved' is a datetime or timestamp field the following
//generates an input of type '"datetime-local"

echo $this->Form->control('approved');

// The following generates a Textarea element

echo $this->Form->control('quote');

echo $this->Form->button('Add');
echo $this->Form->end();

A more extensive example showing some options for a date field:

echo $this->Form->control('birth_date', [
'label' => 'Date of birth',
'min' => date(C'Y') - 70,
'max' => date('Y') - 18,

D;

Besides the specific Options for Control, you also can specify any option accepted by corresponding specific method
for the chosen (or inferred by CakePHP) control type and any HTML attribute (for instance onfocus).

If you want to create a select form field while using a belongsTo (or hasOne) relation, you can add the following to
your UsersController (assuming your User belongsTo Group):

$this->set('groups', $this->Users->Groups->find('list')->all());

Afterwards, add the following to your view template:

echo $this->Form->control('group_id', ['options' => $groups]);
To make a select box for a belongsToMany Groups association you can add the following to your UsersController:
$this->set('groups', $this->Users->Groups->find('list')->all());

Afterwards, add the following to your view template:

echo $this->Form->control('groups._ids', ['options' => $groups]);

If your model name consists of two or more words (e.g. “UserGroups”), when passing the data using set () you should
name your data in a pluralised and lower camelCased'? format as follows:

$this->set('userGroups', $this->UserGroups->find('list')->all());

120 https://en.wikipedia.org/wiki/Camel_case#Variations_and_synonyms

More About Views 239

https://en.wikipedia.org/wiki/Camel_case#Variations_and_synonyms

CakePHP Book, Release 5.x

© Note

You should not use FormHelper: : control () to generate submit buttons. Use submit () instead.

Field Naming Conventions

When creating control widgets you should name your fields after the matching attributes in the form’s entity. For
example, if you created a form for an $article entity, you would create fields named after the properties. E.g. title,
body and published.

You can create controls for associated models, or arbitrary models by passing in association. fieldname as the first
parameter:

echo $this->Form->control('association.fieldname');

Any dots in your field names will be converted into nested request data. For example, if you created a field with a name
0.comments.body you would get a name attribute that looks like O [comments] [body]. This convention matches the
conventions you use with the ORM. Details for the various association types can be found in the Creating Inputs for
Associated Data section.

When creating datetime related controls, FormHelper will append a field-suffix. You may notice additional fields
named year, month, day, hour, minute, or meridian being added. These fields will be automatically converted into
DateTime objects when entities are marshalled.

Options for Control

FormHelper: :control () supports a large number of options via its $options argument. In addition to its own
options, control () accepts options for the inferred/chosen generated control types (e.g. for checkbox or textarea),
as well as HTML attributes. This subsection will cover the options specific to FormHelper: :control().

* $options['type'] - A string that specifies the widget type to be generated. In addition to the field types found
in the Creating Form Controls, you can also create 'file', 'password', and any other type supported by
HTMLS. By specifyinga 'type' you will force the type of the generated control, overriding model introspection.
Defaults to null.

For example:

echo $this->Form->control('field', ['type' => 'file']);
echo $this->Form->control('email', ['type' => 'email']);

Output:

<div class="input file">

<label for="field">Field</label>

<input type="file" name="field" value="" id="field">
</div>
<div class="input email">

<label for="email">Email</label>

<input type="email" name="email" value=
</div>

id="email">

* $options['label'] - Either a string caption or an array of options for the label. You can set this key to
the string you would like to be displayed within the label that usually accompanies the input HTML element.
Defaults to null.

For example:

240 Chapter 11. Views

CakePHP Book, Release 5.x

echo $this->Form->control('name', [
'label' => 'The User Alias'
D;

Output:

<div class="input">
<label for="name">The User Alias</label>
<input name="name" type="text" value=""
</div>

id="name">

Alternatively, set this key to false to disable the generation of the 1abel element.

For example:

echo $this->Form->control('name', ['label' => false]);

Output:

<div class="input'">
<input name="name" type="text" value=
</div>

id="name">

If the label is disabled, and a placeholder attribute is provided, the generated input will have aria-1label set.

Set the 1abel option to an array to provide additional options for the 1abel element. If you do this, you can use
a 'text' key in the array to customize the label text.

For example:

echo $this->Form->control('name', [
'label' => [
'class' => 'thingy',
"text' => 'The User Alias'

D;

Output:

<div class="input">
<label for="name" class="thingy">The User Alias</label>
<input name="name" type="text" value="" id="name">
</div>

* $options['options'] - You can provide in here an array containing the elements to be generated for widgets
such as radio or select, which require an array of items as an argument (see Creating Radio Buttons and
Creating Select Pickers for more details). Defaults to null.

* $options['error'] - Using this key allows you to override the default model error messages and can be used,
for example, to set i18n messages. To disable the error message output & field classes set the 'error' key to
false. Defaults to null.

For example:

echo $this->Form->control('name', ['error' => false]);

To override the model error messages use an array with the keys matching the original validation error messages.

More About Views 241

CakePHP Book, Release 5.x

For example:

$this->Form->control ('name', [
'error' => ['Not long enough' => __('This is not long enough')]

D;

As seen above you can set the error message for each validation rule you have in your models. In addition you
can provide i18n messages for your forms.

To disable the HTML entity encoding for error messages only, the 'escape' sub key can be used:

$this->Form->control ('name', [
'error' => ['escape' => false],

D;

* $options['nestedInput'] - Used with checkboxes and radio buttons. Controls whether the input element is
generated inside or outside the 1abel element. When control () generates a checkbox or a radio button, you
can set this to false to force the generation of the HTML input element outside of the 1abel element.

On the other hand you can set this to true for any control type to force the generated input element inside the
label. If you change this for radio buttons then you need to also modify the default radioWrapper template.
Depending on the generated control type it defaults to true or false.

* $options['templates'] - Thetemplates you want to use for this input. Any specified templates will be merged
on top of the already loaded templates. This option can be either a filename (without extension) in /config that
contains the templates you want to load, or an array of templates to use.

e $options['labelOptions'] - Set this to false to disable labels around nestedWidgets or set it to an array
of attributes to be provided to the 1abel tag.

e $options['readonly'] - Set the field to readonly in form.

For example:

echo $this->Form->control('name', ['readonly' => true]);

Generating Specific Types of Controls

In addition to the generic control () method, FormHelper has specific methods for generating a number of different
types of controls. These can be used to generate just the control widget itself, and combined with other methods like
label() and error() to generate fully custom form layouts.

Common Options For Specific Controls

Many of the various control element methods support a common set of options which, depending on the form method
used, must be provided inside the $options or in the $attributes array argument. All of these options are also
supported by the control () method. To reduce repetition, the common options shared by all control methods are as
follows:

e 'id' - Set this key to force the value of the DOM id for the control. This will override the 'idPrefix' that may
be set.

e 'default' - Used to set a default value for the control field. The value is used if the data passed to the form
does not contain a value for the field (or if no data is passed at all). If no default value is provided, the column’s
default value will be used.

Example usage:

242 Chapter 11. Views

CakePHP Book, Release 5.x

echo $this->Form->text('ingredient', ['default' => 'Sugar']);

Example with select field (size “Medium” will be selected as default):

Uy U

$sizes = ['s' => 'Small', 'm' => 'Medium', 'l' => 'Large'];
echo $this->Form->select('size', $sizes, ['default' => 'm']);

© Note

You cannot use default to check a checkbox - instead you might set the value in
$this->request->getData() in your controller, or set the control option 'checked' to true.

Beware of using false to assign a default value. A false value is used to disable/exclude options of a
control field, so 'default' => false would not set any value at all. Instead use 'default' => @.

e 'value' - Used to set a specific value for the control field. This will override any value that may else be injected
from the context, such as Form, Entity or request->getData() etc.

© Note

If you want to set a field to not render its value fetched from context or valuesSource you will need to set
'value' to "' (instead of setting it to null).

In addition to the above options, you can mixin any HTML attribute you wish to use. Any non-special option name
will be treated as an HTML attribute, and applied to the generated HTML control element.

Creating Input Elements

The rest of the methods available in the FormHelper are for creating specific form elements. Many of these methods also
make use of a special $options or $attributes parameter. In this case, however, this parameter is used primarily
to specify HTML tag attributes (such as the value or DOM id of an element in the form).

Creating Text Inputs
Cake\View\Helper\FormHelper: : text (string $name, array $options)

¢ $name - A field name in the form 'Modelname.fieldname’'.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

Creates a simple input HTML element of text type.

For example:

echo $this->Form->text('username', ['class' => 'users']);

Will output:

<input name="username" type="text" class="users">

More About Views 243

CakePHP Book, Release 5.x

Creating Password Inputs
Cake\View\Helper\FormHelper: :password(string $fieldName, array $options)

e $fieldName - A field name in the form 'Modelname.fieldname’.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

Creates a simple input element of password type.

For example:
echo $this->Form->password('password');

Will output:

<input name="password" value= type="password">

Creating Hidden Inputs
Cake\View\Helper\FormHelper: :hidden(string $fieldName, array $options)

e $fieldName - A field name in the form 'Modelname. fieldname'.

* $options - An optional array including any of the Common Options For Specific Controls as well as any valid
HTML attributes.

Creates a hidden form input.

For example:

echo $this->Form->hidden('id');

Will output:

<input name="id" type="hidden">

Creating Textareas
Cake\View\Helper\FormHelper: : textarea (string $fieldName, array $options)

e $fieldName - A field name in the form 'Modelname. fieldname'.

* $options - Anoptional array including any of the Common Options For Specific Controls, of the specific textarea
options (see below) as well as any valid HTML attributes.

Creates a textarea control field. The default widget template used is:

'textarea' => '<textarea name="{{name}}"{{attrs}}>{{value}l</textarea>'

For example:

echo $this->Form->textarea('notes');

Will output:

<textarea name="notes"></textarea>

244 Chapter 11. Views

CakePHP Book, Release 5.x

If the form is being edited (i.e. the array $this->request->getData() contains the information previously saved
for the User entity), the value corresponding to notes field will automatically be added to the HTML generated.

Example:

<textarea name="notes" id="notes">
This text is to be edited.
</textarea>
Options for Textarea
In addition to the Common Options For Specific Controls, textarea() supports a couple of specific options:
e 'escape' - Determines whether or not the contents of the textarea should be escaped. Defaults to true.

For example:

echo $this->Form->textarea('notes', ['escape' => false]);

// OR....
echo $this->Form->control('notes', ['type' => 'textarea', 'escape' => false]);
e 'rows', 'cols' - You can use these two keys to set the HTML attributes which specify the number of rows

and columns for the textarea field.

For example:

echo $this->Form->textarea('comment', ['rows' => '5', 'cols' => '5']);

Output:

<textarea name="comment" cols="5" rows="5">
</textarea>

Creating Select, Checkbox and Radio Controls

These controls share some commonalities and a few options and thus, they are all grouped in this subsection for easier
reference.

Options for Select, Checkbox and Radio Controls

You can find below the options which are shared by select (), checkbox() and radio() (the options particular only
to one of the methods are described in each method’s own section.)

e 'value' - Sets or selects the value of the affected element(s):

— For checkboxes, it sets the HTML 'value' attribute assigned to the input element to whatever you provide
as value.

— For radio buttons or select pickers it defines which element will be selected when the form is rendered (in
this case 'value' must be assigned a valid, existent element value). May also be used in combination with
any select-type control, such as date(), time(), dateTime():

echo $this->Form->time('close_time', [
'value' => "'13:30:00',
D;

More About Views 245

CakePHP Book, Release 5.x

© Note

The 'value' key for date() and dateTime() controls may also have as value a UNIX timestamp, or a
DateTime object.

For a select control where you set the 'multiple’' attribute to true, you can provide an array with the values
you want to select by default:

// HTML <option> elements with values 1 and 3 will be rendered preselected
echo $this->Form->select(

'rooms',

[1, 2, 3, 4, 5],

[
'multiple' => true,
'value' => [1, 3]

e "empty' - Applies to radio() and select(). Defaults to false.

— When passed to radio() and set to true it will create an extra input element as the first radio button, with

a value of ' ' and a label caption equal to the string 'empty'. If you want to control the label caption set
this option to a string instead.

When passed to a select method, this creates a blank HTML option element with an empty value in
your drop down list. If you want to have an empty value with text displayed instead of just a blank option,
pass a string to 'empty':

echo $this->Form->select(
'field',
[1, 2, 3, 4, 5],
['empty' => '(choose one)']

)3
Output:

<select name="field">
<option value="">(choose one)</option>
<option value="0">1</option>
<option value="1">2</option>
<option value="2">3</option>
<option value="3">4</option>
<option value="4">5</option>
</select>

e 'hiddenField' - For checkboxes and radio buttons, by default, a hidden input element is also created, along

with the main element, so that the key in $this->request->getData() will exist even witho